Canad. Math. Bull. Vol. 14 (3), 1971

ADMISSIBLE ESTIMATORS OF θ^r IN SOME EXTREME VALUE DENSITIES

ву R. SINGH

1. Introduction. Let the random variables X, Y, Z have respectively the extreme value densities as

(1)
$$f_{X}(x;\theta) = \begin{cases} n\theta^{-n}x^{n-1}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

(2)
$$f_{\mathbf{Y}}(y;\lambda) = \begin{cases} n\lambda^{n}y^{-n-1}, & y \ge \lambda \\ 0, & \text{otherwise} \end{cases}$$

(3)
$$f_{z}(z; \mu) = \begin{cases} e^{-(z-\mu)}, & z \ge \mu \\ 0, & \text{otherwise} \end{cases}$$

where $\theta > 0$, $\lambda > 0$ and μ are real numbers.

If δ is any estimator of the parametric function $g(\theta)$, the loss function L_0 is assumed to be

$$L_0(\delta, \theta) = [(\delta - g(\theta))/g(\theta)]^2.$$

We prove the following:

THEOREM. Let the loss function be L_0 . (a) If X has density (1) then

$$\delta_0(X) = [(n+2r)/(n+r)]X^r$$

is an admissible minimax estimator of θ^r, r > -n/2.
(b) If Y has density (2) then

$$\delta_0(Y) = \left[(n-2s)/(n-s) \right] Y^s$$

is an admissible minimax estimator of λ^s, s < n/2.
(c) If Z has density (3) then

$$\delta_0(Z) = [(1+2\alpha)/(1+\alpha)] e^{-\alpha Z}$$

is an admissible minimax estimator of $e^{-\alpha\mu}$, $\alpha > -\frac{1}{2}$. As a particular case of (a) we have

Received by the editors April 27, 1970 and, in revised form, November 10, 1970.

R. SINGH

COROLLARY 1. If X_1, \ldots, X_n represent n independent observations from a rectangular density on $(0, \theta)$ then

$$(n+2r)/(n+r) [\max, (X_1, \ldots, X_n)]^r$$

is an admissible minimax estimator of θ^r , r > -n/2, with respect to the loss L_0 . Before proving the theorem in §2 we make the following

REMARKS. (i) Karlin [1] proved two theorems (his Theorems 2 and 3 on pp. 418–419) which when applied to densities (1), (2), and (3) state, respectively,

(a') the estimator $\delta_0(X)$ is an admissible estimator of θ^r , r > 0;

(b') $\delta_0(Y)$ is an admissible estimator of λ^r , r < 0;

(c') $\delta_0(Z)$ is an admissible estimator of $e^{-\alpha\mu}$, $\alpha > 0$.

Thus our theorem extends the admissibility of δ_0 in (a) to negative powers r of θ , r > -n/2; in (b) to positive powers s of λ , s < n/2; in (c) to negative values of $\alpha > -\frac{1}{2}$.

Although we have not been able to extend Theorems 2 and 3 of Karlin (in their general form) to values of $\alpha > -\frac{1}{2}$, our theorem follows as we have been able to use, in our proof, the exact form of the densities involved.

(ii) The restriction r > -n/2 in (a), r < n/2 in (b) and $\alpha > -\frac{1}{2}$ in (c) is necessary, for otherwise the risk of the estimator δ_0 is not defined.

(iii) Under the loss function L_0 , an estimator $\delta(X) = CX^r$, C constant, has risk

$$R(CX, \theta) = C^{2}(n/n+2r) - 2C(n/n+r) + 1$$

which is minimized with respect to C for C = (n+2r)/(n+r). Thus the estimator $\delta_0(X) = [(n+2r)/(n+r)]X^r$ is the uniformly minimum risk estimator in the class of all estimators of the type CX^r . Its risk is given by

(4)
$$R(\delta_0, \theta) = [r/n+r]^2.$$

It may be noted that θ^r has a UMVUE given by $\delta_1(X) = [(n+r)/r]X^r$. This follows from the fact that $\delta_1(X)$ is a function of the sufficient and complete statistic X, and has expected value $E(\delta_1(X)) = \theta^r$. But, being of the type CX^r , it is clearly uniformly inferior to $\delta_0(X)$.

Similar remarks apply to $\delta_0(Y)$ and $\delta_0(Z)$.

2. Discussion of the proof. Karlin's approach to establish admissibility can be briefly stated as follows. To prove the admissibility of δ_0 for $g(\theta)$, assume that there is an estimator δ better than δ_0 . This leads to the inequality

(5)
$$T(\theta) = \int (\delta_0 - \delta)^2 f(x; \theta) \, dx$$
$$\leq 2 \int (\delta_0 - \delta) (\delta_0 - g(\theta)) f(x; \theta) \, dx$$

holding for all θ . In order to demonstrate that δ_0 is admissible it is enough to show

that (5) is possible provided $\delta(x) = \delta_0(x)$ a.e. This is done as follows. Suppose there exists an increasing function $F(\theta)$ with the property that r.h.s. of (5), integrated with respect to $dF(\theta)$, reduces to zero. This implies that $\int T(\theta) dF(\theta) \le 0$, proving thereby that $T(\theta) = 0$ a.e., which in turn implies the desired result $\delta(x) = \delta_0(x)$ a.e. One way to look for $F(\theta)$ is to choose it so that

$$\int g(\theta) f(x; \theta) \, dF(\theta) = \delta_0(x) \int f(x; \theta) \, dF(\theta).$$

Proof. (a) Let δ be an estimator better than δ_0 . Then the inequality (5) in our case becomes

(6)
$$T(\theta) = \int_0^\theta (\delta_0 - \delta)^2 \theta^{-n} x^{n-1} dx$$
$$\leq 2 \int_0^\theta (\delta_0 - \delta) (\delta_0 - \theta^r) \theta^{-n} x^{n-1} dx$$

holding for all θ . On applying Schwarz inequality to the r.h.s. of (6) and then using (4) we get

(7)
$$\int_0^\theta (\delta_0 - \delta)(\delta_0 - \theta^r) \theta^{-n} x^{n-1} dx \le k_1 \theta^{2r}$$

(8)
$$T(\theta) \le k_2 \theta^{2r}$$

where k_1, k_2 depend on *n* and *r* but not on θ . Let $dF(\theta) = \theta^{-2r-1} d\theta$ and let 0 < a < b be real numbers. Integrating (6) with respect to $dF(\theta)$ we have

$$\int_a^b T(\theta)\theta^{-2r-1}\,d\theta \leq 2\int_a^b \left[\int_0^\theta (\delta_0-\delta)(\delta_0-\theta^r)\theta^{-n}x^{n-1}\,dx\right]\theta^{-2r-1}\,d\theta.$$

The r.h.s., after an interchange of order of integration (which is justified on account of (7) and (8)) is equal to $I_b - I_a$, where I_a is obtained on replacing b by a in

$$I_{b} = 2 \int_{0}^{b} (\delta_{0} - \delta) x^{n-1} \left[\int_{x}^{b} (\delta_{0} - \theta^{r}) \theta^{-2r - n - 1} d\theta \right] dx$$

= 2 $\int_{0}^{b} (\delta_{0} - \delta) x^{n-1} [b^{-n-r} - x^{r} b^{-n-2r}] (n+r)^{-1} dx$

Applying Schwarz inequality to the r.h.s. after taking absolute values we find

$$|I_b| \le k_3 b^{-r} (T(b))^{1/2}$$

where $k_3 = (2/n+r)[n^{-1/2} + (n+2r)^{-1/2}]$ is independent of θ . It follows therefore that

(9)
$$\int_0^b T(\theta) \theta^{-2r-1} d\theta \le k_3 [b^{-r}(T(b))^{1/2} + a^{-r}(T(a))^{1/2}].$$

Below we show that there exist two sequences of real numbers $\{a_i\}$ and $\{b_j\}$ such

R. SINGH

that $a_i \to 0 \Rightarrow T(a_i)a_i^{-2r} \to 0$ and $b_j \to \infty \Rightarrow T(b_j)b_j^{-2r} \to 0$. If we let $a \to 0$ along $\{a_i\}$ and $b \to \infty$ along $\{b_j\}$ in (9) we get

$$\int_0^\infty T(\theta)\theta^{-2r-1}\,d\theta=0$$

implying the desired result $\delta(x) = \delta_0(x)$ a.e.

To prove the existence of the two sequences asserted above we first note that (8) and (9) imply

(10)
$$\int_0^\infty T(\theta)\theta^{-2r-1}\,d\theta < \infty.$$

Suppose $T(\theta)\theta^{-2r} > \epsilon > 0$ for $\theta > \theta_0$. Then

$$\int_0^\infty T(\theta)\theta^{-2r-1}\,d\theta > \int_{\theta_0}^\infty (\epsilon/\theta)\,d\theta = +\infty,$$

contradicting (10). Thus there exists a sequence $\{b_j\}$ with the desired property. The existence of the sequence $\{a_i\}$ can be proved in a similar way. This completes the proof of the admissibility part. The minimaxity of δ_0 follows from the fact that $R(\delta_0, \theta)$ is constant with respect to the loss L_0 . The proof of part (b) and (c) can be either given in a similar way or deduced from that of (a) as follows. (b) Let Y=1/X and $\lambda=1/\theta$ in the density (2). We get the density of X as in (1).

(b) Let I = 1/X and $\lambda = 1/\delta$ in the density (2). We get the density of X as in (1). Therefore, $[(n+2r)/(n+r)]X^r$ is admissible for θ^r . That is, $[(n+2r)/(n+r)]Y^{-r}$ is admissible for λ^{-r} for r > n/2. If we set s = -r, we get the assertion in (b).

(c) Let $Y=e^{z}$ and $\lambda=e^{\mu}$ in (3). Then Z has the same density as in (2) with n=1. Therefore, $[(1-2s)/(1-s)]Y^{s}$ is admissible for λ^{s} . That is, $[(1-2s)/(1-s)]e^{sZ}$ is admissible for $e^{s\mu}$ for s < n/2. If we set $s = -\alpha$ we get the assertion in (c). This completes the proof of our theorem.

Reference

1. S. Karlin, Admissibility for estimation with quadratic loss, Ann. Math. Stat. 29 (1958), 406-435.

UNIVERSITY OF SASKATCHEWAN, SASKATOON, SASKATCHEWAN

414