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On the absolute Norlund summability

factors of a Fourier series

and its conjugate series at a point

Kdsi Kanno

The object of this paper is to give generalizations of Okuyama's

Theorem {Bull. Austral. Math. Soo. 12 (1975), 9-21, Tohoku Math.

J. (2) 28 (1976), 563-581] on the absolute Norlund summability

factors of a Fourier series and its conjugate series.

Our theorems imply many results proved by other authors:

especially Theorem 1 includes the results of Bhatt and Kishor

{.Indian J. Math. 9 (1967), 259-267 (1968)], Dikshit [Pacific J.

Math. 63 (1976), 371-379], and Lai [Publ. Inst. Math. (Beograd)

20 (34) (1976), 169-178], and we can easily deduce Lai's result

{.Indian J. Math. 16 (197*0, 1-22] from our Corollary 2.

1. Notations and theorems

Let Y, a be a given infinite series with the sequence of partial

sums {s } . Let \p } be a given sequence of constants, real or complex,

n
such that P = V p, t 0 for n > 0 and p = P = 0 for n < 0 .

n k=0 n n

The sequence {t } given by
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n n
(1.1) * = p" E Pnk

Sk=P~ S V M fc
n n k=0 " "" K n k=0 k n~k

defines the Norlund means of the sequence {s } generated by the sequence

{p } . The series £ a is said to be absolutely sutnmable [N, p ) , or

summable \li, p \ , if the sequence {t } is of bounded variation, that

i s , if

is convergent.

Let fit) be a periodic function with period 2rr and integrable over

(-IT, TT) . Without any loss of generality we may assume that the constant

term in the Fourier series of fit) is zero, so that

CO CO

(1.3) fit) ~ £ [a cos nt + b sin nt) = Y A it)
«=1 n n n=l

and

The conjugate series to series (1.3) is

= 0 .

£ (fc cos nt - a sin nt) = £ B (t) .
n=l " n n=l "

In what follows, we use the following notations:

t

0

*0(*) = «P(*) ;

r cos ktdt ;
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n n-±

n; 3, I, t) = Y P(n, fc)A u,fc6~a cos kt ;

' U) =

[u 6 d

Moreover we write

to i t ) — \p(t)

I
G&_a(n; 3, I, t) = £ P(n,

We employ ¥ (t), Ho (n; 3, I, u) with meanings similar to the above
ot p—ex

notations. Throughout the present paper we denote by v(t) a positive

bounded function, X(t) a positive non-decreasing function, and {p } a

non-negative, non-increasing sequence.

Given a function w(£) , we write for n = 1, 2, ... ,

Let [a:] denote the greatest integer not greater than x ; in
particular we write m = [n/2] and T = [%((2rr/u)-l)] ; and A denotes a
positive constant which is not necessarily the same at each occurrence.

The purpose of this paper is to establish some generalizations of
Okuyama's results LI01, [ / / ] .

l x / ( " + l ) 1 f (0 s 0 < i) be non-THEOREM 1. Let

increasing.

If the conditions

00

in

the

k1-*

sequence j

k

\X n 6

P
n

(n = l , 2 , . . . ) ,
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(1.5) I
k=l

and

cos | (B-ct+1) < « ,

f(1.6) f X(2ir/t)

hold for O S a s B S l , ihew the series

i s summahle \N, p \ at t = x .

o

If P £ 4X n , the right-hand side of condition ( l . l t) i s replaced by

0(1) .

This theorem has wider applications than the resul t s of Bhatt and

Kishore [ I ] , Dikshit [ 2 ] , and Lai [5] , [6] . As special cases of Theorem 1

we obtain the r e su l t s of Matsumoto [ 7 ] .

THEOREM 2. Let {Ap } be non-negative non-increasing. Assume that

1—6rik y , n /\ \i , and X y /p are all non-decreasing, where 0 S B s 1 .

If the conditions ( l .U) ,

(1.7)

and

d.8)
Jo

h o l d for O s a s B s l j the« the series

i s summable \N, p \ at t = x .

THEOREM 3. Let JX u /M ~ > fee a non-increasing sequence. If the
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conditions ( l .U) ,

( 1 . 9 ) f AiiqZZA !<»„(*) | < » , ^ ¥ „ ( * » = 0
J0

*U)\ , and ¥ (
a a

/ o r O S a s f J s i , then the series

•is summable \N, p \ at t = x .

In the two theorems above, if P £ AX n , then the right-hand side

of (1.10 is replaced by 0(l) .

If the property

d_x{2n/t) =A M2*/tM2*/t)

holds for a suitable constant A , it is easy to see that (1.9) implies

(1.7).

2. Proof and corollaries of Theorem 1

We need some lemmas for the proof of Theorem 1.

LEMMA 1. Let [a } be a given sequence; then for any x , we have

i \ r* K r S+L r-r ,
( l - x ) > a , a ; = a x - a x - > A a ,

k=r K v s k=r '

where r and s are integers such tltat s 2 r 2 0 .

LEMMA 2. For 0 £ a £ ZJ £ °° and aw/ n ,

6

k=a

uniformly in 0 £ u £ IT .

LEMMA 3. For aZZ fc > 0 and 1 £ a £ b £ °° ,

exp i(n-k)u £ AP

n=a n=a [ n n-1
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The proofs of the above lemmas are quite easy and we omit them.

LEMMA 4. For 0 < t s TT _, and 0 2 a 2 8 < 1 ,,

f e-a . , t»-%inkt n(.,.
u cos kudu = T + O\l/k

J0 k

\
and

r B-a , , Trr(B-a+l) IT ,„ ., v t asinkt „ r. „ 6-a+l-i

u cos kudu = —Mj—-T-2- cos -r (B-a+1) - T + O[l/k ) ,
2k*-

where if a = B we may obviously omit the last term in both oases.

Proof. By integration by parts, we have

f
'o

• ~ cos kudu

fiinfew B-al* a+l-B T B-a sinfcw , ^ f* B-a-1 .= —i-— u + —j—— u du + u sn kudu

where 0 5 ̂  S ir/fe < n S t . The second formula is obvious by

Proof of Theorem 1. We suppose 0 < a < 1 , because we can treat

a = 0 or 1 more easily (see [3], [70]). Since

= - ip(t) cos fetdt

2
irr(l-a)

[ cos kt f U - M ) " ^ * (u)dt
J0 J0 a

• f0 c o s

we have
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n n-1

= f
0

< „)

, *)

d . ~T
do 3-a ' _] _

-J0

| Kn; j, Z, M)d|U"
B$a; j, I, IT)

If, in particular, we suppose that <p(t) = t , in which case

and

we get * (t)\ = 0 and

; o, I, *) = A t Pin, k) -\± cos £ (B-o+l) .
k 2

00

If t denotes the n t h (tf, p ) m e a n o f J X y n * > l (x) , then b y
71 n ^ Tt ft Yt

n-i.

(l.l) and the above calculations
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t - t = Yn n-1 ,.tr-k=l

n-k n-k-l\

n n-1
Vr

= A T P(n, k) —^ cos | (B-a+1) + Kn; I, n,
k=l K d jQ

Since, by (1.5) and Lemma 3,

n A,u,

n=i k=l
P(n, k) -Ajf- cos | (B-a+1)

^ I cos \ (3-a+l)
n=k

< A ,

to prove our theorem i t is enough to show that
00 fir tx>

E l*M-*n J
 <4 + ^ lJ(n; z-n' «)l

n=X n x '0 n=l

Thus it suffices for our purpose to prove that, uniformly in 0 < u 5 IT ,

0 { 1 ) •

(2.1) = I I J ( « ; I, n, u)\ = 0(A(2ir/u)) .

We divide ê  into the following three parts:

2T+1 oo
( 2 . 2 ) c7= £ | J ( M ; J , n , u) | + £ | J ( n j *, T ,

n=l n=2x+2

n=2r+2
+ J 3 '

say.

Using the first and second mean value theorems, we have
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(2.3) h(u) =
(•w+ir/fe fir

+
J-ii JU+TT

(t-u)~a cos ktdt

= cos
rU+Tt/k f

[t-u)~adt + (k/vf
* 11 <M

cos ktdt
u+ir/k

(u 5 £ 5 u+ir/?: 5 n S w)

Thus

(2.it)

r~ r>/ J \ T 7 3 - l f i " c o s ? c £ . , , 1
£ P(n, k)X,vpk

p \ n^ + sin kr) + sin ku\
=i K K { l-a )

Moreover, for some C (05 C - M) >

l; 3, I, U) - \ V -fo flg_a(«; J. .̂

Hence we get

(2.5)

Using (2 .5) ,

(2.6)

|X(n; J, J, u)| < AiT £ P(«.

R 2T+1 n
5 Au ) )

D 2T+1 _ , 2T+1
P(n, k)

2T+1

2T+1
*=1

t>y our assumptions and Lemma 3. For the same reasons,
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(2.7)
oo x

£ v
M=2T+2 k=l

fc=l
1

M=2T+2

3-1

> * >

\TT& = 0(X(2TT/M)) .

For the calculation of J , we see

(n; J , I , u) = J(n; 3, I, v) - j "B | j

r B-i 2 r
+ 3 v dv —jn r

'u n ~ a •'y

= x ( « ; «/, z , IT) + " ^ ^ ( " i J . z> M3

fir

= J ( n ; j , E, TT) + wpfl (n; j , Z, u)

(-1 g_x ^ fir

J 7/ /ir J A
; j , I,

(by the second mean value theorem, where u S 0 5 IT)

4̂  | 3 (n; j , I, u), fe) - ^ cos I

I

Thus, u s ing ( 1 . 5 ) and (2.I4) , we have

fi0 (

s i n (by Lemma U).

(2.8)
n=2x+2

K|5g_1(n; T + 1 , n,

ft

" {'GB-l(n; T+1, n,

n=2r+2

V l ( n ; T+1' n* n)'

, ( » ; T + 1 , n, 6)

Now we put
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GHn; o, I, a.) = I Hn, k)\ u. fcV ,

where Y = 6 - e - 1 (e = 0 or a ) and « 5 m S i . Then, by (2 .8) , in

order to prove that J = 0[\(2i\/u)) , i t i s enough to prove that

N
(2.9) wY

«=2T+2
\G*{n, T+1, n, u)

L
ff /I?

I \G*(n, T + 1 , «i, u) | + E |c*(n; ^ 1 , n,
2x+2 ' T

re=2x+2

= \ + K-2 = 0(A(2ir/u)) , as H

Now using Lemma 1, we get

Hence

Z-l
I

n-l n

Z-l •A, y ,
k k

J.-Y

P(n, T+1)X u (T+1) Y +
T + 1 T -1

tf P p -p P^ rfn-m cn n-m

I P(n,
n=2x+2

^ P P
n=2r+2 n n- l

X u m'mm

I I
n=2x+2 fc=

n-k

n=2x+2 n - l

P . P
n- l n
N m
Y £ P(n, fe)A

W=2T+2 fe=T+l

ff

n - l n

fe~T'
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A + AIM1

r w p

[n=2r+2 m k=r+l '2k-l

£ 4A
2 T

n Y + e A

n=x
n . _ ^ - eP • • PS

[because {p } and <X,\iv/k \ are non-increasing

= O(X(2TT/M)) (by (1.1») and Tpx < PT ) .

F ina l ly , by P(n, fe) = ' w e

K £

= A(X>

n=2T+2

n=2x+2

n=2T+2

n

I

, n, u)

Pn-fe

V l
n

p

n n-1

N

n=2T+2
P

?n

? n -1

n
y

say. Since "j A , y . fe >• i s non-increasing,

N A J J

21 ~ ^ P
n=2v n-1

max n-k

n=v n

by Lemma 2 a n d C o n d i t i o n ( l . U ) , where V = [ l / w ] .

* 2 2 ^ V i « — ^ t S A u mY m a x

Similarly,

y P *e

https://doi.org/10.1017/S0004972700008650 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008650


Summability factors '

For the case P 5 An X , the above estimations of K , K^ also hold

because, for example u>YT~ep 5 W Y T £ P 5 J4(U)T)YXT 5 A\^ . Collecting

these estimations, we obtain (2.9).

Summing (2.2), (2.6), (2.7), and (2.9), we obtain (2.1).

This terminates the proof of Theorem 1.

Now we consider some applications of Theorem 1.

C O R O L L A R Y 1 . J f O < a S B < l J Y ^ O , a n d

00

then the series £ n a(log(n+l)) A (t) is summable

, (log(n+l)) /(n+l) ~^| at t = x , where X > 0 , 6-y > 1 for a +

X+6-Y > 1 for a = 6 .

We can restate Theorem 1 in the following form.

COROLLARY 2. Suppose that {w } is a positive sequence such that

o
P w In is non-increasing. P w In X is bounded andn n *' n n n

.6,
<*> w.

(2.10) I -r=o
k=n

nMX
n

P
n

y k k
cos ̂  (e-a+1)

. 3%en under the condition (1.6) ue conclude that T n n A (t) -is
n=l nB n

8summable \H, p \ at t = x . If P 5 An X j the right-hand side of

(2.10) is replaced 0(l) .

The next theorem is a special case of Corollary 2.

COROLLARY 3. Let {w } be a positive sequence such that w In a

is non-increasing and J* -r- is convergent. If t~a* (t) (o 5 a 5 l)
fe=l " a
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is a function of bounded variation in ( 0 , TT) , then the series Y u A (t)
n=l n n

is summable \C, ot| at t = x .

I t i s worth whi le to compare the resu l ts of Corol lar ies 2 and 3 w i th

those due to D iksh i t [ Z ] , Kishore [ 4 ] , Lai [ 5 ] , Mehrotra [ « ] , Mohapatra,

Das, and Srivastava [ 9 ] , Prasad and Bhatt [7 2 ] , and Vershney [73 ] .

3. Proofs and c o r o l l a r i e s of Theorems 2 and 3

We need the following lemmas, which are generalizations of Lemmas

3, k, and 6 of Okuyama [77].

LEMMA 5. \{P -P 1)/k
l~a\ (k = 1 , 2 , . . . , « ) is a non-decreasing

sequence for 0 5 a 5 1 .

Proof.

P -P . \ - (fe+l^fP-P .n n-k-lJ K n n-k

Hence we have

LEMMA 6. Let {Ap } be non-negative and non-increasing; then

the sequence j (Pn_£~Pn)/^ ~\ (k = 1, 2, ..., n) is non-decreasing for

0 2 a 2 l .

This follows similarly to Lemma 5.

LEMMA 7. Suppose that ^ "" /Af i )uU) tmd £A(i)vjU) are non-

<ieereasin£ /or 0 S a 5 i . If g{t) is a function of bounded variation

and
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< oo

for some constant C > TT , then the series

converges, where 6 is a continuity point- of g(t) such that

ir/(n+l) £ 6 < tr/n , n 2 2 .

The proof runs similarly to that of Lemma 6 of Okuyama [ / / ] .

Proof of Theorem 2. We may confine ourselves to the case

0 < a = B < 1 . When a # B , we only use A(i) = t^~a\(t) instead of

Since

P f11

x) = -
" J o

P f
BAx) = - y(t) sin ktdt

K " J

sin fctJo " f j

= - f f cos fetcft -pT^-y f (t-M)"a¥ (w)iu

= - ^r(l-a) j V * ^ } (*-")~^ cos ktdt ,

we get for the nth [N, p ) mean £ of £ X u B (x) ,

*» -

Va(u)du vT(l \ {t-u^GAn; I, n, t)dt
0 J u

= - J Bin; I, n, M)?a((u)du .

Let 6 be a continuity point of V (M) such that

ir/(n+l) - 6n < v/n for n > 1 . Then
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<A

n=l
^(n; I, n, u)Vaiu)du

say.

We define

^ (n; Z, n , u) for 0 £ u < 9

for 6 5 w 5 IT .

S i n c e C ( M ) = 0 f o r n > 2 T + 1 > TT/K , we h a v e by ( 2 . 3 ) ,

I
2x+l

^ K(u

2x+l n

n = l k=

2 T + 1

Pin, k)XjU.ka

£ A *

2T+1

' k)

2T+1
,a-l

by Lemma 3 and the non-decreasing property of {k\,\i,} . Thus, by (1.7),

we have

\,\i,}

(3.2) LI- r IVM)I E i«j

0 u

Observing that
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rU rU (

Hv)dv = dv \
Jo Jo Ji

(t-v) a cos ktdt

e Je
n n

rU rV

- J du (t~v)~ cos
'9 J9

n n

cos fetdt (t-v)~adv - cos fctdt

n M

cos ktdt | it-v)~adv

•" 9 •* 9
n

+ ^ {t-u) a

cos ktdt

cos

we get, by integration by parts and simple calculations

n

2k r
Trr(l-a) Jfl ird-

f i r <-Tr

dV^iu) (t-u) a cos ktdt

n

11 d*a(M) I (t-w) a sin ktdt

Hence

(3.3)
n=l

f77 ~
I ^ Q ( n ; n,

n
n=l

say. Considering

(3.10 BQ(n; 3, I, u)

we h a v e

- c o s kr\ - cos ku\ ( s e e ( 2 . 3 ) ) ,
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\(n; j , I, u) = 0 ,a-l

Thus, using Lemmas 5, 6, and 7, we get by the same calculations as

those of I of Okuyama [7 7] ,

(3 .5) r.a-1

— A H | I IU

n=2

Next, we shall estimate £„ . We define

0 for 0 5 u <

Rn(u) =

Since i? (w) = 0 for n 5 x-1 < TT/U - 1 , we have

21
5 £ f |* ( u ) | | ^

n=l J0

0 W=T
(«)||d*

Hence, by (1.7), to prove the finiteness of L , i t suffices to show

that , uniformly in 0 < t 5 TT ,

GO

( 3 . 6 ) M= £ |i? ( u ) |
n=T

\HQ(n; I, n, u)\ = O ^

We divide M in the following form:

https://doi.org/10.1017/S0004972700008650 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008650


Stab iI i ty factors I 79

2r+l .. °°
MS Y \BAn; I, n, u)\ + £ \H{n; I, T, u)\

> n>

say. Then

2T+1 n

n=T k=l

T A.u. 2T+1

P(n, k)\k\ikk'

2T+1 X, la, 2x+l

Using (3.^) instead of (2.U), we may treat /'/„ and JV ty easier methods

than those used for J^ and «f, in §2. Thus we have (3.6). Combining

(3.1), (3.2), (3.3), (3.5), and (3.6), Theorem 2 is completely proved.

Since the calculations to prove Theorem 3 are similar to those for

Theorem 1, we omit them.

Using Theorems 2 and 3, we obtain several corollaries which are

parallel to those of §2 or Okuyama's paper [77].

We shall show one of them.

COROLLARY 4. If o < » 5 M l ,

0

and

I1] \\{t)\db < - [or y + 0 ) = 0

then the series Y ^""(log «)YB (t) is summable |iV, (log nj^/n1"^! at

t = x , where 0 < y+1 < X .
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