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SUMMARY

To determine if a prediction of epidemic cholera using climate data can be made, we performed

autoregression analysis using the data recorded in Dhaka City, Bangladesh over a 20-year period

(1983–2002) comparing the number of children aged <10 years who were infected with Vibrio

cholerae O1 to the maximum and minimum temperatures and rainfall. We formulated a simple

autoregression model that predicts the monthly number of patients using earlier climate variables.

The monthly number of patients predicted by this model agreed well with the actual monthly

number of patients where the Pearson’s correlation coefficient was 0.95. Arbitrarily defined,

39.4% of the predicted numbers during the study period were within 0.8–1.2 times the observed

numbers. This prediction model uses the climate data recorded 2–4 months before. Therefore, our

approach may be a good basis for establishing a practical early warning system for epidemic

cholera.

INTRODUCTION

The World Health Organization (WHO) reported

in 2005 that diarrhoeal diseases accounted for 18%

of the deaths among children aged <5 years [1].

Although the deaths caused by diarrhoeal diseases are

gradually decreasing, they are still a significant public

health problem especially for children in developing

countries.

Cholera is an important diarrhoeal disease and is

considered to be a disease of poverty. It is a major

health problem for those living in places where the

public health system is underdeveloped or collapsed.

However, the case-fatality rate of cholera could be-

come less than 1% if prompt and adequate medical

measures are taken [2]. Therefore, detecting or pre-

dicting an epidemic as early as possible would be

helpful for public health authorities to prepare for

disease intervention and prevention. Previous studies
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demonstrated a strong correlation between climate

and infectious diarrhoeal diseases including epidemics

of cholera [3–11]. The WHO emphasizes the import-

ance of an early warning system for infectious disease

epidemics based on climate data [12] ; however, stu-

dies to establish early warning systems of practical use

are still being assessed.

Cholera is endemic in Bangladesh where there are

two epidemic seasons per year: a spring epidemic

around April ( just before the monsoons) and an

autumn epidemic occurring during September–

December (at the end of the monsoons) [13]. This

seasonality suggests some climatic factor(s) may be

associated with epidemic cholera. In addition, there is

an inter-annual variation in the scale of the epidemic

cholera and the pattern of the seasonal cycle in the

Bengal area spanning Bangladesh and India [9]. Sea-

water temperature variation in the Pacific caused by

the El Niño Southern Oscillation (ENSO) plays a

major role in the inter-annual variation, including the

seasonal modulation of cholera in Bangladesh [6, 9,

10]. The sea surface temperature in the Bay of Bengal

is a key mediating factor for the ENSO effect [8, 9]

and affects a complex ecology system controlling the

persistence and proliferation of Vibrio cholerae, viru-

lent strains of which are responsible for cholera, in its

natural habitat, brackish water and the estuarine en-

vironment [3, 14–17]. Further studies concerning the

regional variables mediating the ENSO effect locally

are necessary [11].

We hypothesized local climatic variables may

correlate with and precede the local sea surface

temperature variation and could be useful for an

early warning system for cholera. Local atmospheric

temperature affects local water temperature in

Bangladesh and ultimately mediates the ENSO effect

[6]. Rainfall is one of the mediating factors for the

ENSO effect and can affect concentration of the

pathogen in the aquatic environment and human ex-

posure to the pathogen [6, 11]. Atmospheric tem-

perature data and rainfall data are usually available

from local authorities. We evaluated whether these

simple local climatic valuables could be useful pre-

dictors for the number of cholera patients in

Bangladesh using a powerful statistic, regression

analysis. We focused on the number of patients due to

V. cholerae O1 infection (hereafter abbreviated as O1

cholera patients) in children aged <10 years. Case

rates were highest among the 2–9 or 5–9 years age

groups in previous epidemiological studies carried out

in Bangladesh [18, 19]. We presume the<10 years age

group more precisely reflects the scale of exposure to

V. cholerae than do persons in other age groups who

are mostly asymptomatic due to acquired immunity.

We studied cholera cases due to V. cholerae serovar

O1 because this serotype was a major cause of epi-

demic cholera among children throughout the study

period in Dhaka City.

METHODS

Patient data

We obtained the daily data of O1 cholera patients

during the 20-year period from 1983 to 2002 from

International Centre for Diarrhoeal Disease Re-

search, Bangladesh (ICDDR,B). Data of the surveil-

lance for aetiologies of diarrhoea at Dhaka Hospital

of ICDDR,B have been recorded since 1979 [20].

Diarrhoeal stool from every 25th patient until 1995

and every 50th patient from 1996 onwards was ex-

amined for aetiologies and recorded at ICDDR,B.

We extracted the data for O1 cholera patients aged

<10 years, and estimated the monthly total number

of O1 cholera patients aged <10 years. The monthly

patient data were used for the statistical analysis.

Climate data

We obtained the daily maximum temperature, mini-

mum temperature, and rainfall in Dhaka City that

were recorded by the Bangladesh Meteorological

Department during the period from 1983 to 2001.

When the daily data were missing, we interpolated the

data by calculating the means from the daily data

before and after the missing day(s). We calculated the

monthly average for the maximum temperature in

Celsius (MAXT), minimum temperature in Celsius

(MINT), and the monthly total rainfall in millilitres

(RAIN) from the daily data; and used these monthly

data for the following analyses.

Statistical analysis

Spectral analysis was performed to examine the

periodicity in the number of monthly O1 cholera

patients.

Autoregression analysis was used to examine the

association between lagged climate data using MAXT,

MINT, and RAIN and number of O1 cholera patients

aged <10 years. The time lag of the climate data was

termed ‘lag 1’ meaning 1 month preceding the
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original patient data and was independently set for

each of the three climate variables. The range of the

climatic lag was determined based on the result of

the spectral analysis which was carried out before the

autoregression analysis. Each of the three indepen-

dent climate data at different lag times was combined

to create the lagged climate datasets (e.g. lag 3 for

MAXT, lag 1 for MINT and lag 4 for RAIN). The lagged

climate datasets were compared to the patient data

for autoregression. Fitness of the autoregression

model was evaluated based on the P values of the

coefficients of the equation and Pearson’s correlation

coefficient between the number of patients predicted

by the autoregression model and the observed number

of patients. A P value off0.05 for the coefficient was

considered to be significant. We also evaluated the

predictability of the scale of the epidemic as follows.

The prediction was arbitrarily defined as ‘well-

predicted’ if the number of patients predicted at a

time-point by the autoregression model was within

the range of 0.8–1.2 times the number of observed

patients.

Statistical analyses were performed using the soft-

ware program SPSS trends 11.5 J (SPSS Inc.,

Chicago, IL, USA).

RESULTS

Figure 1 shows the time-series change in the monthly

number of O1 cholera patients aged <10 years from

1983 to 2002. The total sample size of the subjects

studied over the 20-year period was 153 775. There

was no visually detectable trend in the time-series

change during this study period. The unusually large

numbers of patients in 1997 and 1998 are considered

to be due to the deterioration of sanitary conditions

after floods around Dhaka City in these years. The

spectral analysis shows a 6- to 7-month periodicity in

the numbers of monthly O1 cholera patients during

the study period (Fig. 2). This indicates the peak of

O1 cholera epidemics occur nearly every half year.

Therefore, we set time lags for the climate variables

from 0 to 6, i.e. 0, 1, 2, 3, 4, 5, and 6; and created new

time-series data using the combination of each of the

lagged climate data. A total of 343 (=73) combi-

nations of lagged climate data were created and tested

against the observed patient data using autoregres-

sion. During the autoregression analysis, we noted

when we set ‘ lead 1’, which means the patient data

was shifted 1 month to the past (opposite of the lag),

we could obtain very significant Pearson’s correlation

coefficients between the numbers of patients predicted

by the autoregression model and the real numbers of

observed patients. Therefore, we decided to perform

the analysis using patient data with lead 1. Both

Pearson’s correlation coefficients and P values for all

of the coefficients of the autoregression equations

were significant for the combination of climate vari-

ables listed in the Table. Residuals of the autoregres-

sion were mostly white noise (data not shown). Of the

combinations of climate variables listed in the Table,

the combination MAXT (lag2) – MINT (lag4) – RAIN

(lag3) was judged to be the most suitable for the pre-

diction model because the Pearson’s correlation coef-

ficient was the highest and the lags were in the range

for practical use (discussed in detail below). The

equation to predict the monthly number of O1 chol-

era patients aged <10 years (lead 1) using this lagged

climatic combination is as follows:

x56�2 [MAXT� (lag2)]x23�6 [MINT (lag4)]

+0�53[RAIN (lag3)]+2790+r(t),
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Fig. 1. Number of monthly O1 cholera patients aged <10
years in Dhaka City between 1983 and 2002.
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Fig. 2. Result of the spectral analysis for the monthly
numbers of O1 cholera patients aged <10 years in Dhaka
City between 1983 and 2002.
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where r(t)=0.663 [r(tx1)]+u(t), r(t) is the residual,

and u(t) is the white noise.

Figure 3 shows a graphic comparison of the num-

bers of patients predicted by this equation and the

actual numbers of observed patients. As shown in this

Figure, the tendency of the change in the numbers of

predicted patients, i.e. seasonal variation, agrees well

with the numbers of observed patients. When we ex-

amined the difference between the numbers of the

observed and predicted patients at a time-point by the

standard we arbitrarily set (explained in the Methods

section), the number of patients was judged to be ‘well

predicted’ on 39.4% of the all time-points. To evalu-

ate the contribution of the climate variables and the

effect of the residual in the above equation to the

numbers of predicted patients, we graphically com-

pared the number of patients predicted by the equa-

tion (Fig. 4, grey dotted line) and those by the

modified equation where the residual, r(t), was re-

moved from the original equation (Fig. 4, black line).

The difference between the two lines is not very small.

This is discussed below.
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Fig. 3. Comparison of the monthly numbers of predicted and observed O1 cholera patients aged<10 years between 1983 and

2002. The numbers of predicted patients were calculated by the autoregression equation explained in the text.

Table. Combinations of lagged climate data showing significant P values of the coefficients of the autoregression

equation and high Pearson’s correlation coefficient between the numbers of patients predicted by the autoregression

model and the observed patient numbers set at lead 1

Lag of climate variable Coefficients of the autoregression equation for Primary
autocorrelation
coefficient

Pearson’s
correlation
coefficientMAXT MINT RAIN MAXT MINT RAIN Constant

5 4 0 84.0* x34.8# 0.42# x1260# 0.646* 0.920
5 1 4 69.2* 31.6# x0.46# x2100* 0.660* 0.928
5 0 1 56.8* 48.4* x0.48# x2070* 0.654* 0.910
3 5 0 x64.9* 27.3# 0.71# 1930* 0.673* 0.923

3 0 2 x63.6* 24.6# 0.44# 1990* 0.665* 0.923
2 4 3 x56.2* x23.6# 0.53# 2790* 0.663* 0.952
2 2 0 x108.2* 47.1# 0.56# 2850 0.668* 0.930

0 6 0 69.9* 28.9# 0.56# x2240* 0.650* 0.919
0 5 0 83.6* 48.0* 0.70# x3110* 0.661* 0.892
0 4 0 80.2* 23.5# 0.45# x2420* 0.654* 0.926

MAXT, Maximum temperature ; MINT, minimum temperature ; RAIN, rainfall.

* P<0.001, # Pf0.05.
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DISCUSSION

This work demonstrates an approach to formulate a

simple autoregression model to predict the numbers

of monthly cholera patients using a lag in monthly

climate data. By setting the lead to 1 for the patient

data, the autoregression model using the combi-

nations of climate variables listed in the Table was

found to predict the number of patients significantly

(Pearson’s correlation coefficient >0.910). If the

combination containing lag 0 (climate data collected

in the current month) in any of the climate variables

is used to predict the number of patients at lead 1

(number of patients occurring next month), this

means the epidemic may start 1 month after the

climate data are collected. This short prediction gives

no time for the authorities to prepare for an epi-

demic. For this reason, we judged the combination

MAXT (lag2)xMINT (lag4)xRAIN (lag3) is practical for

prediction. Climate data collected during the preced-

ing 2–4 months could be used to predict the numbers

of patients during the next month. There is sufficient

lead time to allow practical mobilization of medical

resources.

MAXT, MINT, and RAIN values ranged from 22.8 xC to

36.5 xC, from 11.3 xC to 28.1 xC, and from 0 mm to

707 mm (data not shown) during the study period and

their coefficient ranges were x108.2 to 84, x34.8 to

48.4, and x0.48 to 0.71, respectively (Table). This

shows the contribution of RAIN for the prediction is

the smallest and MAXT is the most important of the

three climatic variables. There is a debate concerning

the role of rainfall contributing to epidemic cholera

[11]. Our data suggests the contribution of rainfall is

minor or may not affect epidemic cholera. The lag in

the climate variables shown in the Table varied con-

siderably. This shows the MAXT value must be high

when the coefficient of MAXT is positive to predict a

large number of patients during an epidemic season.

This can happen when the lag is 0 or 5 (Table). if the

coefficient of MAXT is negative, the MAXT value must be

small to predict a large number of patients. This can

happen when the lag is 2 or 3 (Table). Our spectral

analysis shows, as previously reported, the peak of

O1 epidemic cholera occurs nearly every half year

(Fig. 2). Assuming the increased atmospheric tem-

perature mediates the ENSO effect to increase the

sea surface temperature, then the predicted increase

in the number of patients showing a lag 0 or 5 may

correspond to the epidemic season and a lag 2 or

3 corresponds to the intermediate between the epi-

demic seasons.

The equation we selected to closely fit observation

was the one that exhibited the highest Pearson’s cor-

relation coefficient (0.952). The equation states the

lower the MAXT (2 months before) and MINT (4 months

before) and the higher the RAIN (3 months before)

were, the higher the number of cholera patients

1 month after the present time will be. This equation

predicts well the seasonal variation of epidemics
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Fig. 4. Comparison of the monthly numbers of O1 cholera patients aged <10 years between 1983 and 2002 predicted by the
autoregression equation with ( ) and without (––––) the residual.
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depicted in Figure 3, however, it could only accurately

predict the scale of epidemics at 39.4% of all the

time-points according to our arbitrarily determined

standard.

We conclude the beginning of an epidemic can be

predicted using the climate variables ; but the climate

data are not precise enough to estimate the scale of

the epidemics. Figure 4 shows, as previously reported,

the fluctuation in the numbers of the patients due to

the three climate variables remained within a narrow

range (about 500) and suggests the scale of epidemics

largely depends on other factors [r(tx1) in the re-

sidual of the equation]. Climate change, e.g. high

temperature, triggers proliferation of virulent strains

of V. cholerae in the natural environment. A virulent

strain when propagated to a large number causes

infection in a human community where its spread

may largely depends on factors not directly related to

climate factors. These include poor hygiene, over-

crowding, and herd immunity. Abrupt breakdown of

sanitation due to civil wars and natural disasters

like flood can also lead to large epidemics. As such,

it is not easy to predict the disasters in advance by

consulting climate variables.

Our investigation has the following limitations.

First, we did not include population change dy-

namics in the Dhaka target population. We used

the absolute numbers of O1 cholera patients aged

<10 years at a hospital in Dhaka City, but we did

not correct it for the population change in this

area for the following reasons. We roughly estimated

the population change in the children aged <10

years in Dhaka City; and concluded this would not

significantly influence the result of our regression

analysis during the study period (data not shown).

Therefore, we avoided correcting the original data

using a population estimation method that may not

be reliable. Second, we presumed all epidemics that

peak in the spring and autumn were caused by an

unknown but identical mechanism; however, we have

not identified this mechanism. Finally, we did not in-

clude non-climate factors in the prediction model

since they are outside of the scope of this study.

Other reports suggest it is important to include non-

climate factors and factors that are indirectly affected

by climate to improve the prediction model [6, 11,

21–23]. These factors include herd immunity, nu-

trition, seasonal change in community behaviour,

sanitary conditions, socioeconomic conditions, and

bacterial change by mutation. However, each of these

factors is difficult to define in absolute numbers and

thus would be difficult to use in a mathematic

formula.

In conclusion, our study does demonstrate simple

climate variables such as atmospheric temperature

and rainfall may be useful climate variables for early

warning of epidemic cholera and may be a good basis

for further regression using improved data collection

to include the other factors. The most conservative

interpretation of this study is that this conclusion

applies only to the O1 epidemic among the children

aged <10 years in Dhaka City, but this concept may

be expanded to include the other aetiological agents

(serovar O139), other age groups, and other localities

in future studies.
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