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ABSTRACT. The combination of numerical weather prediction (NWP) and snow
avalanche forecasting has been performed using the output of two weather models run at
the University of British Columbia, Canada, and a local numerical avalanche-forecasting
model developed for Kootenay Pass (McClung andTweedy,1994).The main motivations
for this work are. (1) to extend the lead time of avalanche forecasts by usingNWP forecasts
of meteorological variables as input to statistical avalanche-threat models (instead of the
traditional method of using current/past observed meteorological variables as input); and
(2) to create another tool to help avalanche forecasters in their daily decision-making by
making true forecasts instead of ‘‘nowcasts’’. Therefore, verified weather-forecast model
output was used as input for the local avalanche-forecasting model at Kootenay Pass.
The resulting 24 hour avalanche forecast was compared to observed avalanche occur-
rences and to the 12 hour avalanche forecast with current weather observations. As a
result, the avalanche-model output for the test runs with numerically predicted weather
data is comparable in accuracy to the runs with observed weather data. The results also
suggest that avalanches may be predicted statistically for 24 hours into the future when
high-resolution NWP is used as input, weather- and avalanche-forecast errors taken into
account during operational use.

1. INTRODUCTION

The idea that predictive science can simplify the process of
making environmental decisions is deeply problematic in
practice, since it brings together a mix of strongly conflict-
ing interests and values (Sarewitz and others, 2000). Predict-
ing complex natural systems (like weather phenomena and
snow-avalanche occurrence) has immense theoretical and
technical difficulties and there are large uncertainties asso-
ciated with such predictions.

The motivation for this study was to develop methods to
help people make decisions based on environmental predic-
tions, i.e. snow-avalanche forecasters deciding whether to
close a highway section or a ski run, whether to trigger ava-
lanches artificially, and what precautions to take with pre-
dicted snowfall, which can have important economic
consequences. Avalanche forecasting is only one of many
applications of weather predictions that require high accu-
racy. Uncertainties are found by evaluating forecast output
against observed data.

Avalanche prediction is a problem of high uncertainty,
because avalanches occur over a wide range of conditions
and weather prediction is needed to make an avalanche
forecast. Many different parameters influence snowpack in-
stability. Most of these variables vary markedly over both
time and space.

The goal of snow-avalanche forecasting, defined as the
prediction of current and future snow instability in space

and time relative to a given triggering level (McClung,
2000), is tominimize the uncertainty about instability intro-
duced by the temporal and spatial variability of the snow
cover (including terrain influences), any incremental
changes in snow and weather conditions and any variations
in human perception. Although experienced avalanche
forecasters are skilled in evaluating current conditions and
making short-time forecasts (given the expected weather
conditions), modern forecasting is moving away from con-
ventional methods (unassisted by computers) toward par-
tially computerized systems (McClung and Schaerer,1993).
Computer-aided avalanche forecasting has three advan-
tages: (1) objectivity, (2) handling large organized datasets,
and (3) helping people with limited field experience in their
decision-making process (even though the computer models
developed up to this point should not be used by people
without field experience (McClung, 1995b)). Numerical
avalanche prediction refers to organization of a database of
previously measured parameters, including avalanche oc-
currences, for use with a computer to help compare current
conditions with past ones. The main emphasis is on mete-
orological data (McClung and Schaerer,1993). Software de-
velopments range from simple databases to numerical
avalanche-forecasting models (AFMs).

Snow-avalanche forecasting is a multi-scale problem
(LaChapelle,1980; McClung and Schaerer,1993; McClung,
2000), ranging from entire mountain ranges to local slopes.
Due to the great variety of climate zones in Canada, the
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demand for numerical avalanche prediction is at the meso-
scale, which implies more accurate prediction than for sy-
noptic-scale forecasts (McClung, 1995a). The combination
of weather forecast and avalanche prediction requires the
combination of two different scales, which seriously limits
on the accuracy of avalanche forecasting due to extrapola-
tions and simplifications (Fo« hn,1998).

The comparison of output variables from numerical
weather prediction (NWP) models and input variables for
AFMs shows that many of the NWP variables can be dir-
ectly applied into an AFM or can easily be derived.The re-
maining AFM variables (usually measured in the field and
not directly received from weather forecasts) can be esti-
mated or approximated with empirical relationships.When
weather forecasts are reasonably accurate on the local scale
and they are included in AFMs, the two fields may be com-
bined successfully, allowing the prediction of future instabil-
ities and hence, avalanches.

McClung and Tweedy (1994) developed a numerical
AFM, which is used operationally at Kootenay Pass,
Canada, out to 12 hours into the future, based on current
observations.With meteorological forecast data that are suf-
ficiently accurate, it might be possible to predict avalanches
out to 24 hours into the future. The AFM features para-
metric discriminant analysis using Bayesian statistics to pre-
dict avalanche occurrences. Cluster techniques are then
employed in multidimensional discriminant space to ana-
lyze avalanche occurrences by the method of nearest neigh-
bors. The model calculates the probability of overall
avalanche occurrence and avalanche type (dry or wet). In
addition, the 30 nearest neighbors to the data input, to-
gether with the magnitude and frequency of avalanching
(avalanche-activity index (AAI); see section 2) and theMa-
halanobis distance, are displayed. Detailed information
such as avalanche location, size and trigger mechanism is
available for each neighbor. Both output avalanche prob-
ability and nearest neighbors are analyzed with the meth-
ods described in section 4.

Two forecast output datasets have been used as input for
the AFM: (1) Mesoscale Compressible Community (MC2)
2 km 24 hour forecast, and (2) combination Non-hydrostatic
Modeling System (NMS) 10 km and MC2 2 km 24 hour
forecast. These forecast outputs have been proven to show

the best overall results for Kootenay Pass, which was deter-
mined by weather-forecast verification (Roeger and others,
2001, 2003; see section 4).This true avalanche forecast for 24
hours was tested against observed avalanche occurrence
and against the avalanche ‘‘nowcast’’ with current weather
observations.

The idea of developing separate models for predictions
of physical processes was formed long ago. A model chain
of weather data, snowpack structure and avalanche-risk
forecasting has been developed in France (Giraud and
others, 1998). The combination of actual weather-forecast
data from high-resolution NWPmodels and numerical ava-
lanche prediction has now been carried out in Canada with
the tools available for the specific problems here.

2. CHARACTERISTICS OF VARIABLES INAVALANCHE
FORECASTING

The variables used in the AFM developed byMcClung and
Tweedy (1994) are given in Table 1. These variables have
been determined using significance tests (McClung and
Tweedy,1993). Significant variables have a high correlation
with the AAI, which is the sum of avalanche sizes recorded
in each time period. It is a simple index of the magnitude
and frequency of avalanching within a time period. Table 1
indicates whether the value for this variable can be directly
obtained from weather-forecast output (indicated with D)
or if it has to be estimated with numerical, empirical
methods (E), as described below and in section 3c.

All empirically estimated variables inTable 1depend on
new-snow density �. Therefore, a comprehensive analysis of
new-snow density was performed to determine � from me-
teorological data (section 3c). The height of new snow HN
was then calculated:

HNW ¼ �HN

a�L
; ð1Þ

where HNW is the equivalent liquid-water depth of the new
snow (given as part of the standard weather-forecast out-
put), �L ¼ 1000 kgm^3 is the density of liquid water, and
a ¼ 0:1 (cmmm^1) is used to convert between the typical
units used for snow and liquid-water depth (seeTable 1).

With the value for HN (cm), snowfall rate was cal-
culated as an average rate since the last observation (6 or
18 hours).The total snow depth HS and the rampenetration
depth PR were estimated with the observed snow depth or
ram penetration, respectively, from the last observation plus
the new-snow height HN. Ram penetration is a measure of
vertical depth of penetration into the snow with a standard
ram penetrometer (CAA,1995).

Storm total was calculated by adding up the estimated
new-snow height since the beginning of the storm. The
weight of new snow is calculated from the predicted water
equivalent new snow HNW (mm) using the density for
water (1000 kgm^3). The water equivalent of new snow is
predicted by the weather-forecast models.

Potential rain instead of snow as precipitation is recog-
nized by the avalanche model through temperature
(>0‡C), and height of new snow being equal to zero
(HN ¼ 0) in combination with the water equivalent of new
snow not being zero (HNW 6¼ 0).

Table 1. Variables used for AFM. D: directly gained from

NWP; E: empirically estimated

Parameter for numerical avalanche prediction Source

Weight new snow (g) D
Height new snow HN (cm) E
Water equivalent new-snow HNW (mm) D
New-snow density � (kgm^3) E
Snow depth HS (cm) E
Storm total (cm) E
Snowfall rate (cmh^1) E
Ram penetration PR (cm) E
Wind speed (km h^1) D
Wind direction (‡) D
Maximum air temperature (‡C) D
Present air temperature (‡C) D
Minimum air temperature (‡C) D
Trend maximum air temperature (‡C) D
Trend present air temperature (‡C) D
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3. DATA

a. Meteorological forecasts

The two research NWP models used here were the MC2
version 4.8 model, refined by Recherche en Pre¤ vision Nu-
me¤ rique (RPN) in Canada, and the University ofWisconsin
(U.S.A.) NMS. Both were run real-time for this verification
study, making daily forecasts on multiple grids out to
48 hours into the future. To simulate operational forecast
conditions, no manual tuning was done after the forecast.
Both models and their verification results are described in
detail in Roeger and others (in press).

The MC2 model (Benoit and others,1997) was run with
horizontal gridpoint spacing of 90, 30,10, 3.3 and 2 km.The
NMS model was developed primarily by G. Tripoli at the
University of Wisconsin (Tripoli, 1992), and is run at the
University of British Columbia for two-way interactive nests
with 90, 30 and 10 km grid spacing. For each weather sta-
tion, forecast values from the surrounding four or nine grid-
points were interpolated to calculate the forecast for the
exact location. For the verification, the forecasts were
divided into two forecast time periods: 0^24 and 24^48
hours into the future.

b. Snow and weather observations

The highway operation Kootenay Pass (49.05‡N,117.0‡W),
in the southern Selkirk Mountains of southeastern British
Columbia, consists of two weather stations for collecting
manual and remote data: Kootenay Pass and Stagleap.The
manual observation site at the summit of Kootenay Pass is
located at 1780ma.s.l. in an open area surrounded by trees.
It is fairly sheltered, so wind observations may be biased.
Precipitation measurements are expected to be representa-
tive for the area, and temperatures are typical for this eleva-
tion.Temperature is measured at shelter height (2m) above
the ground or snow surface. Stagleap is a remote weather
station at the top of a ridge (2140ma.s.l.) and well exposed
to the wind. Therefore, wind speeds are typical for this
mountain ridge and elevation, but are not representative
for some avalanche starting zones at mid-mountain eleva-
tion, especially on the lee side. At this station, winds are
measured remotely (anemometer) atop a 10m high tower.
Data are gathered according to the guidelines from the
Canadian Avalanche Association (CAA, 1995). The morn-
ing observation is between 0500 and 0800 h (local time),
the afternoon observation between 1500 and 1700 h. The
observation periods thus differ in length. They have been
approximated into categories of 6 and 9 hours (morning to
afternoon) and15 and18 hours (afternoon to next morning).

Measurement problems, especially related to winter
weather (e.g. stalled anemometers due to significant riming
effects), may occur at all weather stations. At Kootenay
Pass, information about the working condition of the instru-
ments and a first check of the measured value (within a cer-
tain range depending on the variable) is obtained
automatically with the measurements (true/false signal).
For this project, all measured data were again examined in
detail and only data that were correctly measured (within
the range of uncertainty related to the measurement itself)
were retained for verification.

Precipitation rate was relatively complicated to assess.
Observed precipitation data at Kootenay Pass were col-
lected hourly in mmh^1 from gauge measurements (remote

observations). Solid precipitation (snow) was measured
with snow measurement boards (CAA,1995), and total pre-
cipitation (solid and liquid) with a precipitation gauge
(bothmanually twice a day).These manual observations in-
clude total snow height on the ground (HS), snowfall during
the last 9 and 18 hours using the standard observation
board, and 24 hours using the new-snow observation board.
Snowfall during the last storm event is measured with the
storm observation board. All observations are measured ac-
cording to the CAA guidelines (CAA,1995).

The forecast from both NWP models was given in mm
(or mmw.e., respectively) as 3 hour total (sum of solid and
liquid) and 3 hour solid precipitation. Total precipitation
was verified by readings from the precipitation gauge at
Kootenay Pass. Three 1hour remote measurements were
summed to a 3 hour value for comparison to the 3 hour fore-
cast. Solid precipitationwas compared with the 9 or18 hour
measurements from the standard observation board; 3 hour
forecasts were added up to 9 or 18 hours.

c. New-snow density analysis

In order to estimate new-snow density and new-snow height
in cm�when the water equivalent of new snow is given in
mm� it was necessary to analyze the characteristics of
new-snow density as a function of air temperature andwind
speed.

Similar analyses have been performed in the European
Alps by Pahaut (1975) and Meister (1985). Meister suggests a
quasi-linear relationship or a power function for density de-
pendent on air temperature. For the quasi-linear relation-
ship, he separates air temperature into ranges <^1‡C and
�^1‡C. Pahaut (1975) found a function for new-snow den-
sity, which includes a linear dependence of temperature
and a square-root function for wind.

We considered several relationships between new-snow
density and temperature. A detailed description of the
analysis can be found in Roeger (2001).We found that new-
snow density does not depend on wind speed but depends
significantly on air temperature at the Kootenay Pass study
plot. The relation is optimal when air temperature is aver-
agedwith the former observation in a 2:1ratio (e.g.Meister,
1985). The best fit for new-snow density based on averaged
air temperature was an exponential function as in Equation
(2).The values for the constants b, m and c are130,1.2 and 30,
respectively. The Pearson correlation coefficient (r ¼ 0:59)
and standard error (ME ¼ 0:34) suggest that the new-snow
density is only approximate.

� ¼ bðmT þ cÞ: ð2Þ

4. AVALANCHE-FORECAST VERIFICATION METHODS

TheAFM (McClung andTweedy,1994) was run with three
different weather-data sources. First, the input came from
weather observations equivalent to the operational use of
the avalanche model at Kootenay Pass. Second, it was run
with weather input from the forecast output of the MC2
2 km-grid 24 hour forecast for all parameters and their de-
rived parameters as described in section 2.Third, input data
were combined from the output of the MC2 and NMS
models, in order to find optimal values for the numerical
avalanche model. For this combination, the MC2 2 km-grid
24 hour forecast gave temperatures and winds, and the
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NMS 24 hour forecast gave precipitation (water equivalent
new snow). Since density is estimated based on air tempera-
ture, these values come from the MC2 model as well, but
calibrated from records at Kootenay Pass. All input para-
meters that are based on both density and precipitation are
therefore derived using a combination of both weather
models.

The AFM has an option to allow the forecaster to speci-
fy an a priori probability for avalanche occurrence and ava-
lanche type, but this was not used. Instead, the a priori
probabilities were kept at the default value of 0.5 for all three
test scenarios so that the results are easily comparable. Also,
this choice allows the model prediction of avalanche type
(dry or wet) to be unbiased.

Two methods of comparison were used when different
input data were tested. First, each run was tested against
observed avalanche data. The second method was a
comparison of model output statistics of the different input
datasets.

a.Verification with avalanche observation data

Verification of model results against observed avalanche
data was done with contingency table analysis to assess ac-
curacy (seeTable 2, illustrating a 2� 2 contingency table).
Our measurements include the hit rate (H), the percentage
of forecasts correct (PFC), the probability of detection
(POD), the false-alarm ratio (FAR) and the bias ratio
(BIAS). These quantities are given as Equations (A.1^A.5)
in the Appendix.

The hit rate (or the percentage of forecasts correct) is
the ratio of correct forecast events to the total number of
events. The lowest (worst) possible hit rate is zero. A value
of 1would represent a perfect forecast.

The bias ratio is the comparison of the average forecast
with the average observation. It is the ratio of the ‘‘yes’’ fore-
casts to the number of ‘‘yes’’ observations. The value
BIAS ¼ 1 indicates that the event was forecast correctly
the same number of times that it was observed. Bias ratios
>1 indicate that the event was forecast more often than it
was observed (over-forecasting). Conversely, bias ratios <1
indicate under-forecasting.The bias ratio is not an accuracy
measure because it contains no information about the corre-
spondence between the forecasts and observations of the
event on particular occasions (Wilks,1995).

Equations (A.6) and (A.7) show the Heidke skill score
(HSS) and the true skill score (TSS). They are derived by
contingency table analysis as well.

TheHeidke skill score is based on the hit rate as the basic
accuracy measure, but also takes into account the random
nature of forecasts. The hit rate expected for random fore-
casts is taken as the reference accuracy measure. Forecasts
equivalent to the reference forecasts receive zero scores.

Negative scores represent forecasts that are worse than the
reference forecasts. Perfect forecasts receive a Heidke score
of 1 (Wilks,1995).

TSS is a measure of true forecast skill. In short, the true
skill score is the POD, adjusted by the POFD (probability of
false detection). It was originally proposed by Peirce (1884),
then known as the Hanssen^Kuipers discriminant or Kui-
pers’ performance index (Murphy and Daan, 1985), or
referred to as the true skill score as discussed in Flueck
(1987) (Wilks, 1995). It is similar to the Heidke skill score,
but the random forecast that is taken into account is con-
strained to be unbiased. A value of 1 represents a perfect
forecast, 0 is random/neutral, and TSS <0 are inferior to a
random forecast.

The categorial variables in the contingency table
analysis are moisture type of avalanche (dry^wet), ava-
lanche event prediction, and avalanche event prediction
separated into dry and wet avalanches.

For the avalanchemoisture type, the observed avalanche
type was compared with the predicted moisture type.
Therefore, the total numberN is fairly small, since only days
with avalanche occurrence could be used.

Avalanche events are predicted (i.e. the model output is
an avalanche warning) when the probability of dry ava-
lanching is�0.6 and the probability of moist^wet avalanch-
ing is �0.7, based on the empirical results of McClung and
Tweedy (1994). This was tested for all avalanches as well as
for dry and wet avalanches separately.

b. Comparison of model-output statistics

Themodel output was analyzed (1) statistically by using the
results of cluster analysis, and (2) with general numerical in-
dicators of similar performance. Cluster analysis gives the
fraction of nearest neighbors with avalanches (historical
data) in the first 10 or 30 neighbors, respectively. A descrip-
tion of the method of nearest neighbors can be found in
McClung andTweedy (1994).

Numerical indicators of similar performance are the
numbers of same nearest neighbors in the first 10 and 30,
the magnitude of avalanching of the nearest neighbors
(AAI) and the relative distance of neighbors 1,10 and 30 to
the day predicted. The magnitude of each day is the AAI
defined by McClung andTweedy (1994) as the sum of ava-
lanche sizes using the Canadian size classification system
(McClung and Schaerer,1993, p.252).

5. RESULTS

a.Verification with avalanche observation data

For avalanche moisture type (i.e. the model predicts the
type of avalanche likely to occur), the run with observed

Table 2. Contingency table definition, where A^D are the

counts of events in each category, out of N total events

Observation

Yes No

Yes A B
Forecast

No C D

Table 3. Results from contingency table analysis for avalanche

moisture type (Fig. 1) (obs: observed data; fcst: forecast)

AFMinput PFC Bias ratio (wet) TSS HSS

%

Weather obs 92 1.25 0.89 0.83
MC2 fcst 80 1.67 0.71 0.60
MC2 + NMS fcst 85 1.50 0.78 0.68
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weather data (Wx obs) achieves the best results in all cate-
gories (Table 3). Figure 1 shows a histogram of results from
contingency table analysis. The run with combined data
from MC2 and NMS gives better results than the run with
MC2 forecast data in all categories. A bias can be seen to-
wards wet avalanches, which are over-forecast with all three
input sets. This means that the avalanche model misclassi-
fied some dry avalanches as wet avalanches. For the hit rate
and the skill scores (TSS and HSS), the runs with forecast
data produce slightly lower values than the run with obser-
vation data.

Figure 2 shows results for overall avalanche occurrence.
Values are listed inTable 4. Here, the MC2 model achieves
the best results in all categories. The test run with
MC2þ NMS model output also has better results than the
run with weather observations, except for one category
(POD). The PFC is 61% with the MC2 model. The MC2^
NMS combination achieves 52% whereas the measured
weather observations achieve only 38%.The latter value is
lower than the success rate reported byMcClung andTwee-
dy (1994), who used Bayesian statistics in order to allow fore-
caster judgment to enter. All three datasets over-forecast
avalanche occurrence (bias ratio >1). The FAR is 0.77 from
weather observations, 0.73 from the combined MC2^NMS

forecast and 0.57 from theMC2 forecast. All three input sets
show low skill statistics (HSS and TSS). However, the run
with MC2 model output achieves much better values than
the other two test scenarios.

Separation into dry andwet avalanches improves the hit
rate. For dry avalanches (contingency table results are
shown in Figure 3 and listed inTable 5), the run with MC2
model input achieves 85% PFC, a very good result. It is al-
most unbiased towards over-forecasting dry avalanches
(bias ratio = 1.14) and has a relatively low FAR (0.38). It
has significantly higher hit-rate and skill scores than the
results fromweather observations and theMC2^NMS com-
bined forecast. Only for POD does the run with weather
observations achieve a higher value (0.89 compared to 0.71
with the MC2 model). The MC2^NMS combination is
slightly better than the weather observation output, except
for POD. Its hit rate is 0.69 (compared to a value of 0.52
achieved by the run with observation data).

The results for wet avalanches (Fig. 4; Table 6) do not so
clearly favor one type of input. The run with observed
weather data has the highest hit rate (0.85) and the lowest
bias ratio (with over-forecasting of wet avalanches by
slightly more than 100%). But it also shows the lowest skill
score values and POD.

The MC2 model performs worst for hit rate (0.70) and
bias ratio (4.33), but has relatively high skill and POD.The
test run with MC2þ NMSmodel input mostly shows aver-
age performance. Its hit rate is 0.83.

b. Comparison of model output statistics

Figure 5 shows results from cluster analysis: median values
and upper and lower quartile of the difference between the
AFM output with weather observation input and the AFM

Fig. 1. Results from contingency table analysis for avalanche

moisture type, prediction vs observation, Kootenay Pass, Jan-

uary^April 2000. A value of 1.0 is best in all categories.

Fig. 2. Results from contingency table analysis for overall ava-

lanche occurrence (wet and dry avalanching), Kootenay Pass,

January^April 2000. Perfect forecasts achieve zero for FAR

and 1.0 in all other categories.

Table 4. Results from contingency table analysis for avalanche

prediction (wet and dry avalanching) (Fig. 2) (obs:

observed data; fcst: forecast)

AFMinput PFC Bias ratio TSS HSS POD FAR

%

Weather obs 38 3.38 0.05 0.02 0.77 0.77
MC2 fcst 61 2.10 0.38 0.29 0.90 0.57
MC2 + NMS fcst 52 2.54 0.16 0.10 0.69 0.73

Fig. 3. Results from contingency table analysis for dry ava-

lanches, Kootenay Pass, January^April 2000. Perfect fore-

casts achieve zero for FAR and 1.0 in all other categories.
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output with weather-forecast model input. Ideally, the me-
dian difference in avalanche occurrence should be 0% with
minimized upper and lower quartile.Themedian difference
of 0% is achieved from both test runs except for the 30 day
results with MC2 input. The spread of the difference is
plotted as the interquartile range (IQR; line that combines
the upper and lower quartile).The values for IQR should be
small, but are about as large as, or even larger than, the
median values of the avalanche occurrence for each run
(given inTable 7).

The MC2 median value of ^3 (30 nearest neighbors)
shows that the avalanche model predicts, on average, one
more nearest neighbor with avalanches when MC2 wea-
ther-forecast data are used as input imposed to measured
weather-input data. The error of 20% in the direction of
forecasting more nearest neighbors with avalanches (lower
quartile: ^20%) underlines this general trend of the MC2
input dataset. The MC2^NMS combination shows the op-
posite trend. The error for forecasting fewer days with ava-
lanches (upper quartile) is 20% and13% for the first 10 and
30 neighbors, respectively. This trend of the MC2^NMS
combination could be hazardous in operational use if the
error is not accounted for.

The historical database of the AFM contains 2138
weather and avalanche observation datasets. It is therefore
fairly good when the same nearest neighbors (same days/
same observations) are shown for the observation and fore-
cast mode. For the MC2 input dataset, 49% of the test runs
give at least 1 common nearest neighbor out of 30, and 27%
of the first 10. The MC2^NMS combination achieves 51%
and 23% of 30 and10 nearest neighbors, respectively.

Figure 6 andTable 8 give the difference toweather obser-
vation input data of the average AAI per day for 10 and 30
nearest neighbors, respectively, which represents the magni-
tude of avalanching. Again, themedian difference should be
zero, which is only achieved by theMC2 input dataset of the
10 nearest neighbors.TheMC2^NMS combination shows a
trend towards under-forecasting the average avalanche ac-
tivity, which is shown by the positive median value and
higher absolute values of the upper quartile compared to
the lower quartile.This shouldbe carefully consideredwhen
the avalanche model is used operationally. The mean error
of 2.1 and 1.5 for the first 10 and all 30 nearest neighbors,
respectively, is relatively high, compared to the mean value
forAAI (averaged per day) of the 71analyzed days:1.8.

Figure 7 shows the comparison of the relative distance

Table 5. Results from contingency table analysis for dry ava-

lanche prediction (Fig. 3) (obs: observed data; fcst: forecast)

AFMinput PFC Bias ratio TSS HSS POD FAR

%

Weather obs 52 4 0.34 0.15 0.89 0.78
MC2 fcst 85 1.14 0.60 0.57 0.71 0.38
MC2 +NMS fcst 69 2.33 0.36 0.23 0.67 0.71

Table 6. Results from contingency table analysis for wet ava-

lanche prediction (Fig. 4) (obs: observed data; fcst: forecast)

AFMinput PFC Bias ratio TSS HSS POD FAR

%

Weather obs 85 2.25 0.38 0.24 0.50 0.78
MC2 fcst 70 4.33 0.67 0.27 1.00 0.77
MC2 +NMS fcst 83 3.00 0.58 0.30 0.75 0.75

Table 7. Values according to Figure 5: upper and lower quar-

tile and IQR of difference toAFM^weather observation com-

bination and median values ofavalanche occurrence (%) for

each AFM^weather-forecast combination, 10 or 30 nearest

neighbors (nn)

MC2 MC2 +NMS

fcst input fcst input

10 nn 30 nn 10 nn 30 nn

Median difference (%) 0 ^3 0 0
Upper quartile of difference 10 3 20 13
Lower quartile of difference ^20 ^20 ^10 ^7
IQR difference 30 23 30 20
Median of avalanche occurrence 24.9 25.6 19.0 19.6

Fig. 4. Results from contingency table analysis for wet ava-

lanches, Kootenay Pass, January^April 2000. Perfect fore-

casts achieve zero for FAR and 1.0 in all other categories.

Fig. 5. Results from cluster analysis: neighbors with ava-

lanche occurrence in %. Difference to results with weather

observation input. Median, lower and upper quartile. A value

of zero is best.
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(Mahalanobis distance) to each nearest neighbor. This dis-
tance fromboth forecast combinations is increasingly larger
with higher nearest neighbors than the distance calculated
with weather observation. For neighbor 1, the difference in
relative distance as well as the IQR fromboth forecast com-
binations is fairly small, which represents a good result
(values are listed inTable 9). The MC2 input shows higher
median differences and spread than the MC2^NMS com-
bination, which suggests that the results of the latter are
closer to the weather observation dataset.

6. SUMMARYAND CONCLUSIONS

Input datasets from two numerical weather-forecast real-
time models at the University of British Columbia and
measured weather data were combined with a local AFM
running at Kootenay Pass. Output from theMC2 2 km grid
24 hour forecast for all parameters and their estimations
was chosen for the first test run for the numerical AFM.

For the second test runwith the AFM, input datawere com-
bined from the output of two forecast models. for this second
case, theMC22 km grid 24 hour forecast gave temperatures
and winds, and the NMS 24 hour forecast gave precipita-
tion (water equivalent new snow), which has fairly good
results for this parameter.

The combination of NWP and numerical avalanche
forecasting gave promising results.The AFMoutput for the
model runs with numerically predicted weather data is very
similar to the run with observed weather data. All three
datasets over-forecast avalanche occurrence, which means
that avalanchewarnings are issued too often.TheMC2 trial
achieved the best results in all categories for overall ava-
lanche occurrence. The large values for false-alarm rates
are potentially troublesome for the operational use of the
model since they tend to cause avalanchewarnings to be dis-
believed. The median differences of cluster-analysis results
between the test runs with weather-forecast input and the
run with weather observations are ideal with 0% (except
for one case). The MC2 dataset is more conservative than
the MC2^NMS combination. It shows not only more near-
est neighbors with avalanches than the weather observation
data, but also a higher AAI on average. The MC2^NMS
combination shows a trend towards lower average AAI and
fewer nearest neighbors with avalanches than the weather
observation data. Hence, theMC2 seems to be better for op-
erational use, but the mean error should be accounted for as
well. Relative distances suggest that the MC2^NMS results
are closer to the weather observation results than the results
with the MC2.

This combination and its verification results indicate
that avalanches may be statistically predicted out to
24 hours into the future with high-resolution NWPas input.

Fig. 6. Average AAI per day: difference to results with wea-

ther observation input. Median, lower and upper quartile. A

value of zero is best.

Fig.7. Relative distance at neighbors1, 10 and 30: difference to

results with weather observation input. Median, lower and

upper quartile. A value of zero is best.

Table 8. Values according to Figure 6: median, upper and

lower quartile and IQR of difference toAFM^weather obser-

vation combination of AAI for each AFM^weather-forecast

combination, 10 or 30 nearest neighbors (nn)

MC2 MC2 +NMS

fcst input fcst input

10 nn 30 nn 10 nn 30 nn

Median difference 0 ^0.35 0.2 0.43
Upper quartile of difference 1.4 0.6 2.1 1.5
Lower quartile of difference ^1.45 ^1.48 ^0.4 ^0.92
IQR difference 2.85 2.08 2.5 2.42

Table 9. Values according to Figure 7: median, upper and

lower quartile and IQR of difference toAFM^weather obser-

vation combination of relative distance at neighbors 1, 10, and

30 for each AFM^weather-forecast combination

MC2 MC2 +NMS

fcst input fcst input

1 10 30 1 10 30

Median difference ^0.19 ^0.56 ^0.77 ^0.08 ^0.19 ^0.27
Upper quartile of difference 0.12 0.55 1.01 0.09 0.17 0.28
Lower quartile of difference ^1.03 ^2.63 ^3.18 ^0.41 ^2.13 ^3.56
IQR difference 1.15 3.18 4.19 0.5 2.3 3.84
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However, the weather-forecast errors should be taken into
account during operational use.

Overall, these results show that the accuracyof theAFM
withweather-forecast data input is in the same order as with
measured weather data input, and short-time high-reso-
lutionNWPoutput is already sufficiently accurate tobe used
foroperational avalanche forecasting. But it shouldbekept in
mind that data from only one season have been tested so far.
The next step would be to test the model in daily use with
short-time NWPas input for several seasons, in order to find
out how themodel canbe used operationally.
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APPENDIX

EQUATIONS FORCONTINGENCY TABLE ANALYSIS

Measurement Equation Range Perfect

forecast

Equation No.

Hit rateH H ¼ AþD

N
0^1 1 (A.1.1)

Percentage of forecast correct PFC PFC ¼ Hð100%Þ 0^100% 100% (A.1.2)

Threat scoreTS TS ¼ A

AþBþ C
0^1 1 (A.2)

Probability of detection POD POD ¼ A

Aþ C
0^1 1 (A.3)

False-alarm ratio FAR FAR ¼ B

Aþ B
0^1 0 (A.4)

Bias ratio BIAS ¼ AþB

Aþ C
1 to þ 1 0 (A.5)

Heidke skill score HSS HSS ¼ 2ðAD�BCÞ
ðAþ CÞðC þDÞ þ ðAþ BÞðBþDÞ �1 to þ 1 1 (A.6)

True skill scoreTSS TSS ¼ AD�BC

ðAþ CÞðBþDÞ ¼ Aþ C � B

BþD
�1 toþ 1 1 (A.7)
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