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§ 1. Introduction.

In classical mechanics Gauss' Theorem for a gravitational field
states that, if S is a closed surface and N the component of gravita-
tional force along the outward normal, then

f NdS = - 4TTPM , (1 1)
Js

where /? is the Newtonian constant of gravitation and M is the total
mass inside S. This result has recently been extended to general
relativity by E. T. Whittaker,1 who, however, considered only the
case of a statical gravitational field, the line-element of which is
given by2

ds2 = Udt2 - a^ dx»dx", Qu, v = 1, 2, 3) (1.2)

where the coefficients U and a^ are independent of t. It is not
immediately clear from his work whether the results are extensible
to more general space-times. It is the purpose of this paper to
elucidate this point, the problem being to find a formula for a general
space-time

ds2 = gutted** (i,j = 0, 1, 2, 3) (1.3)

which reduces to that obtained by Whittaker when (1.3) is of the
form (1.2). In doing so it is difficult to avoid an appearance of
artificiality, which is mainly due to the fact that the theorem
involves a definition of gravitational force, not relative to a single
observer, but to an infinite set whose world-lines are not geodesies;
these world-lines form, in fact, a congruence of curves in space-time
which is largely arbitrary. No claim is therefore made that the
general theorem of this paper is as interesting from the physical
point of view as the special case of it considered by Whittaker.

1 Proe. Boy. Soc. (A) 149 (1935), 384.
2 The summation convention for repeated suffixes is employed throughout this

paper, and the velocity of light in vacuo is taken as unity. Greek suffixes will take
the values 1 to 3 only. Latin suffixes, used below, take the values 0 to 3.
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GAUSS' THEOREM or A GENERAL SPACE-TIME 145

Indeed, it is described as an extension of Gauss' Theorem to general
relativity only because of its close formal resemblance to the classical
result; from the physical point of view it may not be the most
suitable generalisation of Gauss' Theorem.1 Nevertheless, it is hoped
that the following work may be of some interest in itself, since it;
expresses Whittaker's result in proper tensor form and throws light
on the geometrical basis of his theory. It will be seen that the
generalised Gauss' Theorem is a not uninteresting special case of
Green's Theorem in four dimensions.

§2. The fundamental observers : gravitational force.

As remarked by Whittaker, the gravitational force experienced
by any observer depends upon his velocity and acceleration as well
as upon his position. So in forming an integral of gravitational
force over a surface S it is necessary to specify at every point an
observer relative to whom the force is measured. In the statical
world (1.2) Whittaker defines these fundamental observers to be " a t
rest," that is, to have world-lines x1 = const., a;2 = const., xz = const.
Relative to them the four-dimensional world is partitioned into
space and time. The latter is measured by t, and, at any instant,
" space " is the hypersurface t = const. Now it is to be noticed
that the world-lines x* = const, of the observers are the orthogonal
trajectories of the spatial sections t = const, of the statical world.
In generalising to any space-time

ds2 = giidxidx> (2.1)

we therefore choose as fundamental observers those whose world-
lines are the orthogonal trajectories of a singly-infinite family of
hypersurfaces

f(x°, x\x2, x3) = const., (2.2)

which are then, relative to the observers, the spatial sections of the
four-dimensional world.

Let A* be the unit four-vector in the direction of the world-line
of the fundamental observer at any point (a;*). Since A* is unit and
necessarily time-like, we have

1 1 am indebted to a referee whose criticism of the physical aspect of this paper led
to the re-writing of the latter half of § 1.
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146 H. S.

and since A* is normal to that hypersurface / = const, which passes
through (z*), we also have

Ai=^g, (2.4)
where Af = g^ A3 and

U is thus the reciprocal of Beltrami's first differential parameter of /.
The factor Ui is inserted in (2.4) in order that \ should satisfy (2.3),
and the notation U is chosen because, as is shown in §5, Ax/ is
precisely the reciprocal of the coefficient U of dt2 when the metric is
of the form (1.2).

The differential equations of the world-lines of the fundamental
observers are

%=»• <2-6>

dxs being the element of proper-time. The gravitational force at any
world-point (a;*), relative to the fundamental observer whose world-
line passes through that point, is given by the four-vector1

Using (2.6), we at once get

(2.8)

where (A*)̂  is the covariant derivative of A\ Now equation (2.3) may
be written A*Aj = 1, and this, differentiated covariantly, gives
(X^jXi = 0. From (2.8) it follows that

9i^i = 0. (2.9)

So the four-vector gi representing the gravitational force is perpen-
dicular to the world-line of the observer, and is therefore tangent to
the hypersurface / = const. That is, gl is a vector in " space," and
in appropriate coordinates could be represented as a spatial three-
vector.

1 Whittaker, loc. cit., equation (2.2). Gf. Walker, page 173 of the present volume
of these Proceedings.
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§ 3. The surface of integration.

In the case of the statical space-time (1.2) the surface S of
integration at any instant t0 is a fixed surface lying in the instan-
taneous space t = t0. Four dimensionally1 it is the intersection of a
tubular hypersurface generated by oo 2 of the world-lines x» = const.
(fi = 1, 2, 3), and the hypersurface t = t0.

In generalising to the space-time ds2 = gijdxidxi we therefore
define the surface S of integration to be the intersection of a spatial
hypersurface / = const, with a hypersurface

which contains oo 2 of the fundamental world-lines. Since S is to be
a closed surface, j> = 0 is a hypercylinder with lines of the congruence
A* as (curvilinear) generators, cutting all the hypersurfaces / = const,
orthogonally. The covariant direction-ratios of the normals to
/ = const, and <f> = 0 are respectively \ and d<f>/dxi. Since these
directions are perpendicular, we have

*f*=0. (3.1)

Let ri1 be the unit outward four-vector normal at (xl) to the
hypersurface <f> = 0 and therefore tangent to the hypersurface
/ = const, passing through (xl). Then nl is a unit space-like
vector, so

rii^-l. (3.2)

Also, since it is normal to <f> = 0,

the negative of the Beltrami differential parameter appearing in the
denominator on account of the minus sign on the right-hand side of
(3.2). Hence by (3.1),

Xinl=0. (3.4)

1 A mental picture may be formed by imagining the number of dimensions of space-
time reduced to three. The spatial hypersurfaces / = const, are then represented by a
family of surfaces / = const., the observers' world-lines by the orthogonal trajectories
of the family, and the surface S at every instant by a closed curve in one of the surfaces
/. The orthogonal trajectories passing through this curve generate a surface which is
the three-dimensional analogue of the tubular hypersurface.
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148 H. S. RUSE

The ri1 are the components in four dimensions of the normal to
the surface S in the 3-space / = const. The component of gravita-
tional force along this normal is1 — nig

i, so it may be expected that,
in the generalisation of Gauss' Theorem, the surface-integral will be

f {-ni0
i)dVs, (3.5)

where dV2 is the element of area of S. Actually it will appear that
this is not the proper generalisation of Gauss' integral.

§4. Gauss' Integral.
gi is a vector-field defined at all points of space-time under

consideration. Consider any closed hyper surface Cl, and let vi be the
unit outward normal vector defined at all points of D. Let dV3 be
the element of surface-volume of Q, and let dF4 be the element of
volume of space-time, so that

f ° x 2 x 3 . (4.1)

Let Q be the 4-volume enclosed by Q. Then by Green's Theorem in
four dimensions

[ e»i0*dVs= f (g%dVit (4.2)

where e is the indicator2 of the vector vl, that is, a coefficient which
is equal to + 1 when vi is time-like and to — 1 when v1 is space-like.
The integrand (gr*̂  on the right-hand side is the contracted covariant
derivative of gi.

Take the hypersurface Q. to be tha t bounded by the hyper-
surfaces

f=t + dt,

where t, dt are constants and dt is small. Q then consists of three

1 The negative sign is taken because the vectors n' and g' are both space-like,
and the fundamental quadratic form should thus be taken negatively (ds2 = -gy dx' dx1).
That this is so is most easily seen by considering the angle 0( = O) which a unit space-
like vector such as n' makes with itself. Since n{ n' = — 1, we have cos 6= — m n' .

2 Synge, Trans. Roy. Soc. Canada, 28 (1934), 169 ; see also p. 134. Synge takes
the metric with signature (—I- + +) instead of (-1— — ), so that with him time-like
and space-like directions have respectively indicators —1 and +1. He is apparently
the first to have noticed the need for inserting the indicator e in one of the integrals of
Green's Theorem.
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parts, R, E and R'; R is that part of / = t interior to the surface S
which is the intersection of / = t and <f> = 0, and is therefore the
spatial 3-volume enclosed by 8; 2 is a narrow segment of the tubular
hypersurface (f> = 0, and R' is the 3-volume enclosed by the surface
S' in which <f> = 0 cuts / = t -f- dt.

Now over R the normal v* is vl = ± Af, since A* is the direction-
vector of the orthogonal trajectories of the hypersurfaces / = const.,
and R is a part of one of these. Similarly over R' the normal is
vi = TA*. Hence since Xig

i = O by (2.9), the part of the left-hand
side of (4.2) due to integrating over R and R' is zero, and we are left
with

Now over 2, which is a part of the hypersurface <f> = 0, vi is the
normal nl defined by (3.3). Also e = — 1 because w? is space-like, so
(4.2) becomes

f (-ni9<)dV3=\ (g'hdV,. (4.3)

Let now (z{) be a point on R, so that

/(**)='• (4-4)

Further, let eto be the normal distance from this point to R'. Then
cfo has the direction A* of the normal to R, so the world-point
(x* + A* dm) lies on R', that is, on the hypersurface / = t + dt. Hence

/
whence, using (4.4),

Xi?li*!ldv = dt. (4.5)

Now by (2.4) and (2.5),

dxi y dx* dx>
= U-K

so by (4.5),
<fcr= U*dt. (4.6)

In (4.3), dV3 is the element of surface-volume of the segment S
of the hypersurface <j> = 0, hence

cZy3 = <tedF2, (4.7)

where dVz is the element of area of the surface S, that is, of the
intersection of 2 with the hypersurface /' = t. Similarly

dV4 = drsdVz, (4.8)
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150 H. S. RUSE

where dVz is now the element of the spatial 3-volume R enclosed by
S. Substituting from (4.7) and (4.8) in (4.3), using (4.6) and dividing
by the constant dt, we get

f (-ntgi)V*dVt= \ (g%UidV3, (4.9)
JS JR

or by (2.5),

The left-hand integral may be compared with (3.5). It will be seen
that the appropriate generalisation of Gauss' integral is not simply
the surface-integral of the normal component of gravitational force1.
But if we write

(4.10) becomes

f {-n^)dWz=\ (g%dW3. (4.12)
Js JR

f
s

dW2 and dW3 may be called respectively the relative surface-element
and volume-element, and space may be thought of as contracted
(if Ax/>1) or expanded (if Aj/< 1) relative to the fundamental
observers. The left-hand side of (4.12) may then be called the
relative surface-integral of the normal component of gravitational
force.

§ 5. Gauss' Theorem.
It will be convenient to write

=f (~nigi
f

a = j a (g%dW3,

/ 5 f
j

so that (4.12) is simply
Is=IB. (5-2)

Substitute in IR the value of gl given by (2.8). The integrand
becomes

1 Unless, indeed, Aj/ = 1. But in this case the world-lines of the fundamental
observers are geodesies, and consequently g* =0, so that (4.10) reduces to the trivial
identity 0=0.
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by the permutation-formula

for covariant differentiation1. K\ik is the Riemann-Christoffel tensor.
But K*kji = — Kkj, where Kki is the gravitational tensor. So

(9% = - Mi (A*), - (A*) (A% + Kkj A* A*.

Hence, if the vector A* is such that

(A')«(A*),= O, (5.3)
we have

\ (5.4)IR=\
JR

The condition (5.3) imposes a limitation on the nature of the hyper-
surfaces / = const, which will be considered in § 7. It may be noticed
that the scalar Xi\'Kij in the integrand is the mean curvature2 of
space-time for the direction A'; or in other words, it is the sum of the
Riemannian curvatures determined by A* and any three mutually
orthogonal non-null vectors orthogonal to it.

Now if we neglect the cosmological constant, the field-equations
of general relativity are

Kq^-ZnPWij-faT), (5.5)

where j3 is the Newtonian constant of gravitation, Ttj is the energy-
tensor and T =giiTij. Substituting in (5.4) and using the fact that
A* is a unit vector, we get

IR= - 8TTJ8 f (A*A*Ttj - \T) dWs. (5.6)
JR

So the generalised Gauss' Theorem may be stated thus:
If S is a closed surface in a spatial section f {xl) = const, of space,

time, and if R is the spatial volume enclosed by S, then

f (-ni0t)dWa=-8vp\ WMTq-ffldW,, (5.7)
Js JR

where — n{ g
i is the outward normal component of gravitational force

relative to a set of fundamental observers whose world-lines have the

1 Veblen, Invariants of Quadratic Differential Forms (Cambridge Tract No. 24),
page 41 (16.1).

3 Eisenhart, Riemannian Geometry (1926), 113.
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152 H. S. RUSE

direction of the unit vector A% and dW2, dWs are respectively the elements
of area and volume relative (in the sense of §4) to the fundamental
observers.

Before proceeding further, it is perhaps desirable to show that
(5.7) reduces in the case of the statical space-time

ds2 = Udt2 - a^ dx* dx* (fi, v = 1, 2, 3; x° = t) (5.8)

to the formula given by Whittaker. In this case

000 = kT> guv = — a^, 0OM = 0, (5.9)
000 _ J / - l ; guv __ _ fjy-v ^ g0» _ 0, (5.10)

-g = aU, (5.11)

where (a*"") is the matrix reciprocal to (a^), so that a»vava = h*, and
o is the determinant | a ^ | . Also the function f(xi) is simply f=t.
Consequently

°J i "J n / . . l o *\ I K I O I

whence A1f=g00=U~1. (5.13)

Further, by (2.4) Xt = U^8f/8xi, so by (5.12) we have

Ao=J7», AM=0, ( ,1=1,2 ,3) , (5.14)

and from this and (5.10) we at once deduce that

A°=J7-*, A'i = 0, (/Lt = l ,2 ,3) . (5.15)

Hence by (2.9) and (3.4) it follows that
n0 i\ M 0 C\

g — u, n — u,gr0 = 0, n0 = 0.J

The remaining components gf, w of these vectors are those of
ordinary spatial 3-vectors.

Now the metric of the space t = const, is

dl2 = a^ dx" dx".

If the surface S is given parametrically, say by

sf = V (u\ u2), ( ,1=1,2 ,3)

its induced metric is

where a, b sum from 1 to 2 only, or

dl2 = aab dua dub,
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where a^ = a r . We denote the determinant I aab | by a, and
oua du"

suppose that the rotation from the curves u2 = const, to the curves
u1 = const, is along the outward normal to S. Then the unit out-
ward normal-vector is1

-»> = i^.-JL|Lf (5.17)

where e^ = ± aJ according as fxva is an even or odd permutation of
123, and is zero otherwise; and e"6 = ± <*~* according as ab = 12 or
21, and is zero if a and b are the same. Also

K '

Substituting from (5.13), (5.15), (5.16), (5.17) and (5.18) in (5.7), we
get on using (4.11) and (5.11),

f Lia(*2-

= - 877/3 [ (U
B

(To - \T) (-g)idx1dx2dx3

since T°o = g00 Too = U~x Too. This is the formula obtained by
Whittaker2.

§ 6. Gauss' Theorem for a material field.

Consider now a purely material field of zero pressure. For such
a field the energy-tensor is given by

where the £* are the coordinates of a particle at its proper-time T,
and a0 is the proper-density of matter defined by the invariant
condition that

f o0 (-g)idx°dx1dx2dx3, (6.2)

1 McConnell, Applications of the Absolute Differential Calculus (1931), 197. The
negative sign is taken on the left-hand side of (5.17) because n^ = g^v w = — a^ w.

2Loc. cit., page 388, equation (I). Gf. Walker, page 173.
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integrated over any region of space-time, is equal to the sum of the
lengths of the world-lines of material particles in that region, each
multiplied by the proper-mass of the particle to which it belongs1.

So \*X*Tii=Xi*iT
<i

= o0 cosh2 6,

where 9 is the angle between the directions in space-time of the
world-lines of the particle and local fundamental observer. The
hyperbolic cosine is chosen to make 6 real, the directions both being
time-like. Also

and (5.7) therefore becomes

f (— »t9*) dWz = — 4TTJ8 f a0 cosh 2ddW3. (6.3)
Js }R

Consider one of the particles, say that at the world-point (£')•
The world-line of one of the fundamental observers passes through
(£*) in the direction A* (£). Now in a sufficiently small neighbourhood
of (f) space-time is approximately galilean, so, taking A* as the
direction of the time-axis in this local galilean space, we quickly
deduce from special relativity that

tanh 0 = vie,

where, as above, 6 is the angle between the world-lines of the particle
and fundamental observer, and v is the instantaneous velocity of the
particle relative to the observer; c is the velocity of light, which we
are taking to be unity. Substituting in (6.3), we get

dW3. (6.4)

If v is small2, the right-hand integral is approximately

<r0dW3

= - 4 7 7 ) 8 f <ro[7*<ZF3
JR

1 1 am here quoting from Whittaker. Cf. Weyl, Space-Time-Matter (1922), p. 214
(71), or Eddington, Mathematical Theory of Relativity (1924), p. 126.

2 It is not legitimate to put v actually equal to zero. For if it were the world-lines
of the fundamental observers would coincide with those of the material particles and
would therefore be geodesies, so that (cf. second footnote of § 4) equation (4.10) would
reduce to the trivial identity 0 = 0 and (5.7) would not in general follow.
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by (4.11) and (2.5), dV3 being the true element of 3-volume.
Returning to the region Q of space-time considered in § 4, that is,
the region bounded by the hypersurfaces / = t, j> = 0, / = t + dt, we
get, using (4.6),

= -4TT)S[ <r0dV4
Q

by (4.8), dV4 being the element of 4-volume

dVi = {—g)idx° dx1 dx2 dx3.

By (6.2) we at once deduce that

IRdl = — <±TT{5 2 Mrdrsr
r

where the right-hand side denotes the sum of the proper-masses
Mr of particles in the 3-dimensional region B, each multiplied by the
length dvsr of the world-line of the particle inside the 4-dimensional
region Q. So

But by (4.6)

where Ur is the value of the function U at the world-point {x\) of the
particle MT in the region B enclosed by S. Substituting in (6.5), we
deduce that Gauss' Theorem gives the approximate relation

,Mr(Ur)* (6.6)

when the velocity of the particles relative to the fundamental
observers is small. The right-hand side denotes — 4TTJ8 times the
sum of the proper-masses of the particles inside S, each multiplied by
the corresponding value of Vi. In the terminology of Whittaker,
Mr{UT)* is the potential mass of the particle.

Equation (6.6) may be compared with the classical formula (1.1).

§ 7. Discussion of the limitation (5.3).
The congruence of curves defined by the vector-field A* was

subjected to the limitation

O. (7.1)

Since by (2.4) and (2.5) A{ = ^ ( ^ i / ) " * ' t n i s i s r e a % a partial
OX
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differential equation which must be satisfied by the hypersurfaces
/ = const, which define the spatial sections of space-time. In order
to investigate the meaning of this limitation, we transform to a new
system of coordinates t = u°, u1, u2, u3 defined in the following manner.
The differential equations of the world-lines of the observers are,
by (2.6),

Let fa (x{) = const., fa (a;*) = const., fa (a;*) = const, be three inde-
pendent solutions of these equations. Then for each choice of the
arbitrary constants the three equations fa (a;*) = const, represent
hypersurfaces which intersect in one of the world-lines, and which
therefore cut the hypersurfaces / = const, orthogonally.

Make the transformation of coordinates

J (X ) — I = U ,

fa (a;*) = u1,
fa (**) = u2,
fa (a;*) = u \

Then in the new system of coordinates the metric becomes

ds2 = yijdu* dvP (7.3)
with1 y0/1 =0 , 0* = 1, 2, 3). (7.4)
So (7.3) is of the form

ds2 = Udt2 — a^ du* dw, (7.5)

where U and the %„(= —y^J) are in general functions of t as well as
of u1, u2, us, so that (7.5) does not now necessarily represent a statical
line-element. The spatial hypersurfaces / = const, are now t = const,
and we have as before (§5),

Aif= V-K (7.6)

In the coordinate-system (ul) the vector A* has components

A«=(17-*,O, 0, 0), (7.7)

(c/. (5.15)). Now by the well-known formula for the contracted
covariant derivative of a vector,

1 8
(Al) i = — — _L[( - y ) iAn,

( — y)' 8ul

1 Eisenhart, Riemannian Geometry, p. 43 (14.13).
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where y is the determinant ] y(i | , that is,

— y = Ua
where a = j a^ \.
Using (7.7) we get

(A*)— 1 dai
( }t~ (Ua)i dt

So A'(A%=ff-»(A% by (7.7)

= m *><
since (A*)f is a scalar. So by (7.8),

This is the first term of equation (7.1). A similar calculation shows
that the second term is

^ a>« a°»^ - ^ (7.10)

where, as usual, (a'"') is the matrix reciprocal to (a^). Using the

fact that — log a = a"" — ^ , we therefore deduce that (7.1) is
dt at

1 d fa*"
2£7* dt \~ZJi dt J^ 4C/ at dt

(7.11)

in the coordinate-system (ul). This equation is obviously satisfied
when the space-time (7.5) is statical.

Now the second fundamental form b^ of the hypersurfaces
t = const, is easily shown to have the value1

b = - J _ ^ L
"* 2*7* dt

1 8a (7.12)
2E7* dt '

So (7.11) becomes

J/i dt " f

1 Eisenhart, op. dt., p. 179, § o2.
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Let now e^ be the third fundamental form of the hypersurfaces
t = const. Then1

hence (7.13) becomes

-1 |-(«^U-^V = 0. (7.14)

If we write b s a"" b^ and e = aT e^, then b is the mean curvature of
a hypersurface t — const., that is, the sum of its principal normal
curvatures2. We may call e the third fundamental scalar. Now
by (7.7),

W 8t Bu' '

and by (7.2) A* = — in the coordinate-system (%*), so
CTS

i d _ a
CM eF ~ to'

where dm is the element of arc of the world-lines of the fundamental
observers. So (7.14) gives finally

!=, „...,
This equation is, then, equivalent to (7.1). Evidently the value

of db/da at any world-point P is the rate of change, in the direction
of the world-line of the fundamental observer passing through P, of
the mean curvature of the spatial hypersurface which passes through
P ; that is, the rate of change of the mean curvature of " space " with
respect to the proper-time of the local observer. Our final conclusion
is therefore:

The generalised Gauss' Theorem (5.7) is true only if the spatial
hypersurfaces f = const, are so chosen that the rate of change of their mean
curvature with respect to the proper-time of the fundamental observers is
equal to the third fundamental scalar of the hypersurfaces.

' McConnell, op. cit., p. 202 (29); or Eisenharfc, op. cit., p. 219, examples 9 and 10 ;
or Levi-Civita, Absolute Differential Calculus (1927), pp. 259, 260.

2 Eisenhart, op. cit., p. 168.
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