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We investigate the effect of mass transfer on the evolution of a thin, two-dimensional,

partially wetting drop. While the effects of viscous dissipation, capillarity, slip and uniform

mass transfer are taken into account, other effects, such as gravity, surface tension gradients,

vapour transport and heat transport, are neglected in favour of mathematical tractability.

Our focus is on a matched-asymptotic analysis in the small-slip limit, which reveals that the

leading-order outer formulation and contact-line law depend delicately on both the sign and

the size of the mass transfer flux. This leads, in particular, to novel generalisations of Tanner’s

law. We analyse the resulting evolution of the drop on the timescale of mass transfer and

validate the leading-order predictions by comparison with preliminary numerical simulations.

Finally, we outline the generalisation of the leading-order formulations to prescribed non-

uniform rates of mass transfer and to three dimensions.

Key words: Thin films, surface-tension driven flows, evaporation, condensation, matched

asymptotic expansions.

1 Introduction

Mathematical formulations for, or equivalent to those for, the evaporation and con-

densation of a sessile liquid drop are of practical importance in numerous geophysical,

biomedical and industrial applications including the water cycle, DNA mapping and gene-

expression analysis, biofilm growth, the manufacturing of semiconductor and micro-fluidic

devices, cooling, coating, patterning and condensing; see, for example, [3, 6, 29–32, 35, 41]

and references therein. The free-boundary problem is complicated because of the need to

consider the transport of mass, momentum and energy within and between the substrate,

the liquid drop and the atmosphere around the drop [31]. If the drop is partially wetting,

the problem is compounded by the singularities that may arise in the state variables at

the contact line, notably the stress singularity in the liquid [22] and a singularity in the

evaporative flux when evaporation is limited by the diffusion of vapour into the surround-

ing atmosphere [8, 9]. Theoretical efforts have focussed most extensively on numerical

simulations in the thin-film regime in which it is possible to derive tractable models

that incorporate many of the pertinent thermo- and hydro-dynamical effects; see, for
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example, [1,2,4,10–12,15,20,27,33,38] and references therein. However, the simplifications

and physical insight afforded by a systematic asymptotic analysis are less prevalent in the

literature. For example, [28] states that: “New asymptotic methods will also need to be de-

veloped to connect the nano-scale of relevance to the contact line physics and the macro-scale

of a drop.” A particularly well-studied regime is the “one-sided” model in which vapour is

transported away from the drop sufficiently rapidly that it does not affect the evaporative

flux [4,6,28]. In the resulting thin-film models [28] describe how the evaporative flux may

be weakly dependent on the film thickness, i.e. nearly constant. This work motivates the

present study, though we emphasise that in most practical applications the evaporative

flux is much smaller than the values considered in this paper, so that our analysis fo-

cusses on putting in context the physically relevant case and developing the methodology

required to analyse such challenging thin-film problems. We note that larger rates of mass

transfer may be relevant under extreme conditions in the evaporation or condensation of

a sessile liquid drop, and are relevant in other related applications, including the spreading

of a viscous liquid on a porous substrate described in, for example, [7] and references

therein. They are also relevant in other contexts, such as in thin-film models for cell

motility and biofilm growth of the type described in, for example, [25, 41].

In this paper, we consider the effect of the simplest possible mass-transfer mechanism

on the simplest possible two-dimensional model for the contact-line dynamics of a thin

drop of viscous liquid partially wetting a rigid, flat, impermeable substrate. We consider

the isothermal regime in which the density, viscosity, surface tension, static contact angle

and mass transfer flux are constant and the liquid slips on the substrate according

to a generalised Navier slip law. We neglect the effects of, inter alia, gravity, surface

tension gradients, vapour recoil and vapour transport. In Section 2, we formulate and

nondimensionalise the thin-film problem. In Sections 3–4, we use the method of matched

asymptotic expansions to analyse the small-slip limit in the two pertinent distinguished

limits, which can be viewed as corresponding to the rate of mass transfer being small

and large, respectively. In Sections 5–6, we use a combination of analytical and numerical

methods to investigate the leading-order formulations that are selected in the small-slip

limit. In Section 7, we summarise our results, discuss directions for future work and

outline the straightforward generalisation of the small-slip asymptotics to non-uniform

rates of mass transfer and to three dimensions.

2 Formulation

We consider the motion of a two-dimensional viscous drop partially wetting a rigid,

flat, impermeable substrate. Introducing Cartesian coordinates (x∗, y∗) measuring distance

tangential and normal to the substrate, respectively, we denote by y∗ = h∗(x∗, t∗) the

free surface of the drop, where t∗ is time. Here and hereafter, starred variables denote

dimensional quantities. For simplicity, we assume that the flow is symmetric about x∗ = 0

and consider the evolution of the liquid in 0 < y∗ < h∗(x∗, t∗), 0 < x∗ < s∗(t∗), where

x∗ = s∗(t) denotes the a priori unknown location of the right-hand contact line at which

the drop thickness h∗ = 0. In addition we assume that: the liquid flow is incompressible

and governed by the Stokes equations, with constant viscosity μ and no external body

forces; the drop loses mass through its free boundary at a constant area flux J∗ per unit
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length per unit time; the traction on the free surface is due to a constant surface tension

γ only; the liquid slips on the substrate according to a slip law with slip length Λ(h∗)n−2,

where Λ and n are parameters (we shall see that n < 3 is required for contact line motion);

the microscopic contact angle Φ between the free boundary and substrate is constant and

small; there is no flux of liquid through the contact line; the initial drop profile is smooth

and has a small aspect ratio of the order of Φ.

Denoting the liquid velocity and pressure by (u∗, v∗) and p∗, respectively, a standard

lubrication analysis in the small-Φ limit results at leading order in the lubrication equations

(see, for example, [29, 30])

μ
∂2u∗

∂y∗2
=

∂p∗

∂x∗ ,
∂p∗

∂y∗ = 0,
∂u∗

∂x∗ +
∂v∗

∂y∗ = 0 for 0 < y∗ < h∗(x∗, t∗),

together with the generalised-slip and no-flux boundary conditions on the substrate,

u∗ = Λ(h∗)n−2 ∂u∗

∂y∗ , v
∗ = 0 on y∗ = 0,

and the kinematic and dynamic boundary conditions on the free surface,

v∗ =
∂h∗

∂t∗
+ u∗ ∂h∗

∂x∗ + J∗, p∗ = −γ
∂2h∗

∂x∗2
,

∂u∗

∂y∗ = 0 on y∗ = h∗(x∗, t∗).

We then obtain in the usual way the expressions

∂h∗

∂t∗
=

∂

∂x∗

((
h∗3

3μ
+

Λh∗n

μ

)
∂p∗

∂x

)
− J∗, p∗ = −γ

∂2h∗

∂x∗2
for 0 < x∗ < s∗(t∗),

governing the evolution of the film thickness h∗(x∗, t∗) and the pressure p∗(x∗, t∗).

Denoting by 2L the initial width of the drop, so that s∗(0) = L, we nondimensionalise

by scaling x∗ = Lx, t∗ = 3μLt/(Φ3γ), s∗ = Ls, p∗ = γΦp/L and h∗ = ΦLh to obtain the

dimensionless thin-film equation

∂h

∂t
+

∂

∂x

((
h3 + λ3−nhn

) ∂3h

∂x3

)
= −J for 0 < x < s(t), (2.1)

where we have eliminated the pressure p = −∂2h/∂x2, and the dimensionless slip length λ

and mass transfer flux J are given by

λ =
(3Λ)1/(3−n)

ΦL
, J =

3μJ∗

Φ4γ
,

with mass loss and gain corresponding to J > 0 and J < 0, respectively. As described by,

for example, [17,18,24,40], slip laws with n = 1 and n = 2 have been widely used to both

facilitate and study contact-line motion.

The modelling assumptions listed above imply that the pertinent boundary conditions

for equation (2.1) are given by

∂h

∂x
= 0,

∂3h

∂x3
= 0 at x = 0; h = 0, − ∂h

∂x
= 1, hn

∂3h

∂x3
= 0 at x = s(t)−. (2.2a − e)
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Near to the line of symmetry, equations (2.1) and (2.2a,b) imply that the local expansion

is given by h ∼ A1 + A2x
2 as x → 0, where A1(t) and A2(t) are degrees of freedom in

the sense that they are globally, rather than locally, determined. Near to the contact line

a local analysis of equation (2.1) subject to the boundary conditions (2.2c,d) in a frame

moving with the contact line implies that h ∼ (s − x) + ĥ as x → s−, with

−ṡ(s − x) + λ3−n(s − x)n
∂3ĥ

∂x3
∼ J(s − x)+Q as x → s−, (2.3)

where Q(t) is the flux of liquid through the contact line and we have integrated once with

respect to x. However, at this stage we have not yet applied the no-flux condition (2.2e)

to set Q = 0 in order to make the following technical point: it follows from equation (2.3)

that, for 2 � n < 3, the local expansion for h can only be asymptotic (with ĥ = o(s − x)

as x → 0−) if Q = 0; thus, the no-flux condition (2.2e) is in fact redundant for 2 � n < 3

and need only be imposed for n < 2. Setting Q = 0 for all n < 3, we can now use

equation (2.3) to deduce that the local expansion is given by

h ∼ (s − x) +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A3(s − x)2 + C(s − x)4−n for n < 2,(

− 1

2λ
(̇s + J) ln(s − x) + A3

)
(s − x)2 for n = 2,

C(s − x)4−n + A3(s − x)2 for 2 < n < 3

(2.4)

as x → s−, where A3(t) and s(t) are the only degrees of freedom and C(t) is given by

C =
ṡ + J

(n − 2)(n − 3)(n − 4)λ3−n
. (2.5)

It follows that the free-boundary problem (2.1)–(2.2) is correctly specified because the

order of equation (2.1) is equal to the total number of degrees of freedom in the local

expansions of h at x = 0 and x = s(t) (namely A1(t), A2(t), A3(t) and s(t)). Moreover,

the local expansion (2.4) at the contact line gives two important results: firstly, a moving

boundary condition for s(t) can be expressed in the form

ṡ = −J + lim
x→s−

λ3−nhn−1 ∂3h

∂x3
; (2.6)

and, secondly, the pressure gradient at the contact line is zero for n < 1, finite for n = 1

and unbounded for 1 < n < 3. We shall take general n < 3 in our asymptotic analysis of

the small-slip limit of equations (2.1)–(2.2) in Sections 3–4 and n = 1 in our numerical

simulations of equations (2.1)–(2.2) in Sections 5–6.

The problem is closed by prescribing an initial condition of the form

h(x, 0) = H(x) on 0 < x < s(0) = 1, (2.7)

and we shall only consider those initial profiles H(x) that are smooth and positive for

0 � x < 1 and satisfy the boundary conditions (2.2). We note that integrating equation

(2.1) from x = 0 to x = s(t) and applying the zero flux conditions (2.2b,e) implies that the
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expression representing global conservation of mass is given by

dm

dt
= −Js, m(t) =

∫ s(t)

0

h dx, (2.8)

where m(t) is the cross-sectional area of the drop in x > 0 at time t, and we shall donate

by M the initial area at time t = 0, so that m(0) = M.

For J > 0 the cross-sectional area of the drop decreases monotonically with time t

until it vanishes at the extinction time, which we denote by tc. We aim to determine in

the small-slip limit the dependence of the extinction time tc on the value of J > 0 and

on the initial profile H, as well as any universal scaling behaviour exhibited by the drop

profile h(x, t) and half-drop width s(t) as t → t−c . For J < 0 the cross-sectional area of the

drop increases monotonically with t, and we aim to determine in the small-slip limit any

universal scaling behaviour exhibited by h(x, t) and s(t) as t → +∞. We begin in the next

section with the small-slip asymptotics in the distinguished limit corresponding to small

mass transfer.

3 Small-slip asymptotics with small mass transfer

In the regime in which J = 0 and n = 2, both Hocking [19] and Lacey [26] show that, at

leading order on the slow timescale T = εt = O(1), where ε ≡ 1/ ln(1/λ) → 0 as λ → 0,

surface tension drives the drop toward a quasi-stationary steady state in which the mean

curvature, and hence the pressure, are uniform (at leading order in the thin-film limit).

While this result is shared by both [19] and [26], their matched-asymptotic analyses in

the limit λ → 0 are different: the spatial asymptotic structure comprises three regions

in [19] and two regions in [26]. In both analyses there is an outer region in which

x, h = O(1) and an inner region of size of O(λ) near the contact line, while [19] introduces

an intermediate region between the inner and outer regions (as illustrated in Figure 1) in

order to accomplish more efficiently the matching of the contact angles between them (as

described in the caption to Figure 1 and about which more shortly).

In this section, we consider the distinguished limit in which mass transfer occurs on

the same slow timescale by setting J ≡ J/ε = O(1) as λ → 0. In the small-slip limit it

is remarkable that the spatial asymptotic structure is exactly the same as when J = 0

and n = 2. We will begin by generalising [26] to take account of mass transfer and the

generalised slip law, before moving on to reconcile this analysis with the appropriate

generalisation of that in [19].

3.1 Outer region

We begin with the outer region by setting s(t) = S(T ), the leading-order outer balance

in equation (2.1) then being quasi-steady on the timescale T = εt = O(1) as λ → 0:

expanding h ∼ h0 and S ∼ S0 as λ → 0 gives

∂2h0

∂x2
= −P0 for 0 < x < S0, (3.1)
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1

s(t)

Intermediate

Inner

h

0

Outer

x

Θ0

Θ0

K0

Figure 1. Schematic of the free-surface profile showing the outer, intermediate and inner regions in

the small-slip limit in which λ → 0; Θ0, K0 and 1 are the leading-order “macroscopic” (outer region),

“mesoscopic” (intermediate region) and “microscopic” (inner region) contact angles, respectively;

see text for details of the scalings.

with

∂h0

∂x
= 0 at x = 0; h0 = 0, −∂h0

∂x
= Θ0 at x = S −

0 , (3.2)

where the leading-order pressure P0(T ) and macroscopic contact angle Θ0(T ) have yet

to be determined. Integrating equation (3.1) and applying the boundary conditions (3.2)

then gives

h0 =
P0

2

(
S2

0 − x2
)
, P0 =

Θ0

S0
. (3.3)

Substituting these expressions into the leading-order version of the expression (2.8) rep-

resenting global conservation of mass gives

d

dT

(
S2

0Θ0

3

)
= −JS0, (3.4)

an ordinary differential equation that may also be derived as the solvability condition

for the O(ε) outer problem. A second ordinary differential equation relating S0 and Θ0 is

determined by matching with the inner region, as we shall now describe.

3.2 Inner region

In the inner region the scalings x = s + λX, h = λH are required both to retain slip and

to match with the outer solution. The thin-film equation (2.1) becomes

λε
∂H

∂T
− εṠ

∂H

∂X
+

∂

∂X

((
H3 + Hn

) ∂3H

∂X3

)
= −εJ for X < 0, (3.5)

where we recall that ε = 1/ ln(1/λ) → 0 as λ → 0. Expanding

H(X,T ) ∼
∞∑
i=0

εiHi(X,T ), S(T ) ∼
∞∑
i=0

εiSi(T ) as λ → 0, (3.6)
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the thin-film equation (3.5) implies that the evolution of H0 is quasi-steady, with

(
H3

0 + Hn
0

) ∂3H0

∂X3
= 0 for X < 0, (3.7)

where we have integrated once with respect to X and applied the leading-order version

of the no-flux boundary condition (2.2e). Applying the boundary conditions (2.2c,d) and

matching below with the outer region results in the boundary conditions

H0 = 0, −∂H0

∂X
= 1 at X = 0−; H0 ∼ A0(T ) (−X) as X → −∞, (3.8)

where A0(T ) is a degree of freedom belonging to the leading-order inner problem (3.7)–

(3.8) whose unique solution is simply given by H0 = −X, so that A0 = 1.

At O(εi), where i is a positive integer, the thin-film equation (3.5) and no-flux boundary

condition (2.2e) imply that Hi is governed by the quasi-steady thin-film equation

−
i−1∑
j=0

ṠjHi−j−1 +

i∑
j=1

Mi−j

∂3Hj

∂X3
= −Jδi1X for X < 0, (3.9)

where δi1 = 1 for i = 1, δi1 = 0 for i � 2, and the generalised-binomial and multinomial

theorems imply that the mobility Mm for integer m � 0 may be expressed in the form

Mm =

m∑
k1 , k2 , k3 = 0 :

k1 + k2 + k3 = m

Hk1
Hk2

Hk3

+

∞∑
k=0

k∑
k1 , . . . , km = 0 :

k1 + k2 + · · · + km = k,
k1 + 2k2 · · · + mkm = m

(
n

k

)(
k

k1, . . . , km

)
Hn

0

(
H1

H0

)k1

· · ·
(
Hm

H0

)km

;

we note that M0 = H3
0 + Hn

0 . Applying the boundary conditions (2.2c,d) and matching

below with the outer region results in the boundary conditions

Hi = 0, −∂Hi

∂X
= 0 at X = 0−; Hi ∼ Ai(T ) (−X) lni(−X) as X → −∞, (3.10a − c)

where Ai(T ) will shortly be determined by matching.

For n < 3, we find that the far-field expansions (3.10c) are consistent with the quasi-

steady thin-film equations (3.9) for non-negative integers less than or equal to i provided

−Ṡ0Ai−1 +

i∑
j=1

⎛⎜⎜⎜⎝
i−j∑

k1 , k2 , k3 = 0 :
k1 + k2 + k3 = i − j

Ak1
Ak2

Ak3

⎞⎟⎟⎟⎠ jAj = Jδi1. (3.11)

Continuing to follow closely [26], we multiply equation (3.11) by ξi−1 and sum the
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resulting expressions from i = 1 to ∞ to find that the generating function,

K0(ξ, T ) =

∞∑
k=0

Ak(T )ξk, (3.12)

satisfies the first-order nonlinear differential equation

−Ṡ0K0 + K3
0

∂K0

∂ξ
= J, (3.13)

as well as the boundary condition

K0(0, T ) = A0(T ) = 1. (3.14)

Writing the inner solution in outer variables and expanding as λ → 0 with S − x = O(1)

gives

λH
(
(S − x)/λ, T

)
∼

∞∑
k=0

εkAk(T )(S − x) lnk

(
S − x

λ

)
∼ (S0 − x)

∞∑
k=0

Ak(T ),

an infinite number of terms jumping order because ε = 1/ ln(1/λ). Since the local

expansion of the leading-order outer solution (3.3) is given by h0 ∼ Θ0(S0 − x) as

x → S−
0 , matching implies that the generating function K0(ξ, T ) also satisfies the boundary

condition

K0(1, T ) =

∞∑
k=0

Ak(T ) = Θ0(T ). (3.15)

We note that it is this matching that identifies ε = 1/ ln(1/λ) as the correct choice in the

expansions (3.6), the analysis in this section holding up until equation (3.14) for any small

parameter ε satisfying the condition that λ � εN as λ → 0 for each positive integer N.

We will show in Section 3.3 that the generating function K0(ξ, T ), and hence its coef-

ficients Ai(T ), are uniquely determined by the two point boundary value problem (3.13)–

(3.15) whose associated consistency condition determines uniquely, but not explicitly, the

leading-order contact-line velocity Ṡ0 as a function of the leading-order macroscopic con-

tact angle Θ0 and the rate of mass transfer J. We denote the resulting contact-line law

by

Ṡ0 = V(Θ0,J), (3.16)

where V is determined in Section 3.3 via the transcendental equation (3.21).

First, however, we note that an understanding of the physical significance of the

generating function K0(ξ, T ) may be gained by observing that the expansion of the inner

solution as λ → 0 with

ξ = ε ln

(
S − x

λ

)
= O(1), (3.17)

is given by

λH
(
(S − x)/λ, T

)
∼

∞∑
k=0

εkAk(T )(S − x) lnk

(
S − x

λ

)
≡ (S − x)K0(ξ, T ). (3.18)
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Since equation (3.17) is equivalent to the scaling S − x = λ1−ξ , it follows from equation

(3.18) that the generating function K0(ξ, T ) is the leading-order mesoscopic contact angle

in the intermediate region that spans (for 0 < ξ < 1) all length scales between those

of the inner region (corresponding to ξ = 0) and of the outer region (corresponding

to ξ = 1). Moreover, that K0 depends on S − x through the variable ξ defined in

equation (3.17) implies that the leading-order mesoscopic contact angle is a slowly varying

function of distance from the contact line on all such length scales. It is these observations

that motivate the combination of the scaling (3.17) with the change of variable h =

(S − x)K(ξ, T ) under which it is readily shown that the thin-film equation (2.1) becomes

−λ1−ξ ∂K

∂T
− Ṡ

(
K + ε

∂K

∂ξ

)
+

(
1 + ε

∂

∂ξ

)(
K3 ∂K

∂ξ
− ε2K3 ∂3K

∂ξ3

)

+λ(3−n)ξ

(
n − 2 + ε

∂

∂ξ

)(
K3 ∂K

∂ξ
− ε2K3 ∂3K

∂ξ3

)
= J.

For n < 3, it follows that the differential equation (3.13) may be recovered dir-

ectly from the thin-film equation (2.1) upon expanding K ∼ K0(ξ, T ) as λ → 0 with

0 < ξ < 1. Likewise, the boundary conditions (3.14) and (3.15) may be recovered directly

by matching with the leading-order solution in the inner region (as ξ → 0+) and the outer

region (as ξ → 1−), respectively. This route to the boundary value problem (3.13)–(3.15)

for K0 was taken by [19] for the case in which J = 0 and n = 2 (see also [23]) and by [7]

for the case in which n = 2 and J ∝ T−1/2 (though [7] does not analyse analytically

the functional form of the contact-line law (3.16), a straightforward analysis that we

shall report in Section 3.3). That the intermediate problem (3.13)–(3.15) may be derived

without proceeding to higher order in the inner region expedites the matched-asymptotic

analysis, and we shall therefore make use of intermediate regions with these properties

in this paper. The identification of a mesoscopic contact angle satisfying the intermediate

problem (3.13)–(3.15) allows us to extract through its analysis valuable physical insight

into the effect of uniform mass transfer on the contact-line motion, as we shall now

describe.

3.3 Analysis of the contact-line law

In the absence of mass transfer, (3.13)–(3.14) implies K0 = (1 + 3Ṡ0ξ)1/3 and hence, by

equation (3.15), Tanner’s law in the conventional form (see, for example, [39])

Ṡ0 = V(Θ0, 0) =
1

3

(
Θ3

0 − 1
)
. (3.19)

Thus, the contact-line law (3.16) generalises Tanner’s law to account for the effects of

uniform mass loss (J > 0) or mass gain (J < 0) near the contact line. In this section, we

establish the functional form of the contact-line law (3.16) for J� 0.

We begin by noting that we require Θ0 > 0 and K0(ξ, t) > 0 for 0 < ξ < 1 in order

for the film thickness to remain positive at leading order. For J� 0 and Ṡ0 � 0, a local
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analysis of equation (3.13) implies that

∂K0

∂ξ
∼ − Ṡ4

0

J 3

(
K0 +

J
Ṡ0

)
as K0 → − J

Ṡ0

.

Hence, either K0 ≡ −J/Ṡ0 for 0 � ξ � 1 or K0 � −J/Ṡ0 for 0 � ξ � 1. In the first

case, the boundary conditions (3.14)–(3.15) imply that K0 = 1 for 0 � ξ � 1, and hence

that V(1,J) = −J. In the second case, ∂K0/∂ξ cannot change sign for 0 � ξ � 1, and

we can separate the variables in equation (3.13) and apply equation (3.14) to deduce that

K0(ξ, T ) is uniquely determined by∫ K0

1

η3

J + Vη dη = ξ. (3.20)

Evaluating the integral on the left-hand side of equation (3.20) and applying the boundary

condition (3.15) implies that V(Θ0,J) is given by the transcendental equation

Θ3
0 − 1

3V − J(Θ2
0 − 1)

2V2
+

J 2(Θ0 − 1)

V3
− J 3

V 4
ln

∣∣∣∣J + VΘ0

J + V

∣∣∣∣ = 1, (3.21)

provided (i) Θ0 � 1, (ii) V � 0 and (iii) −J/V is not equal to, or between, 1 and Θ0

(so that K0 is positive for 0 < ξ < 1 and we avoid integrating over the non-integrable

singularity in the integrand in equation (3.20)). Under conditions (i)–(iii), the integrand in

equation (3.20) is either positive (giving Θ0 > 1) or negative (giving Θ0 < 1) throughout

the range of integration, so that V is uniquely determined in terms of Θ0 and J by the

transcendental equation (3.21). Thus, condition (iii) selects the physically relevant root V
of equation (3.21) away from the two special cases in which condition (i) or (ii) is violated.

Condition (i) is violated when Θ0 = 1, in which case the solution is simply given by K0 = 1

for 0 � ξ � 1, so that V(1,J) = −J. Condition (ii) is violated when V = 0, in which case

the solution is given by K0 = (1 + 4Jξ)1/4 for 0 � ξ � 1, so that V((1 + 4J)1/4,J) = 0,

provided J � −1/4. We note that the relationship V((1 + 4J)1/4,J) = 0 with J > 0 arises

in the corresponding slow-time analysis of a pinned contact line in [20].

Having established that V is uniquely determined in terms of Θ0 and J, we are now

in a position to characterise the contact-line law (3.16). Instead of prescribing J and Θ0

and using a root-finding algorithm to determine V from equation (3.21) subject to the

conditions (i)–(iii), we prescribe Ṡ0 = V and solve the initial value problem (3.13)–(3.14)

(using ode15s in matlab with stringent error tolerances) and subsequently read off Θ0

from the end condition (3.15). We plot some typical results in Figure 2(a), which illustrates

that there are two qualitatively distinct classes of contact-line law corresponding to the

regimes in which there is mass loss (J > 0) and mass gain (J < 0), the borderline case

in which J = 0 corresponding to Tanner’s law (3.19). For all J, the plots in Figure 2(a)

suggest that the contact-line velocity V is a continuous increasing function of Θ0 and

a continuous decreasing function of J, facts that may be verified by consideration of

elementary properties of the integrand in equation (3.20).

For J � 0, the contact-line velocity V(Θ0,J) is bounded below by V(0,J). Since

V(0,−1/4) = 0, V(0, 0) = −1/3 and V(0,J) decreases with J, it follows that −1/3 <

V(0,J) < 0 for −1/4 < J < 0 and V(0,J) > 0 for J < −1/4, as illustrated in
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J(b)(a)

J increasing
V(

Θ
0
,J

)

Θ0

V(
0,
J)

Figure 2. (a) Plot of the leading-order contact-line law Ṡ0 = V(Θ0,J) (solid lines) for J = −1,

−0.8, . . . 0.8, 1 (J increasing down the page); the dashed line is Tanner’s law (3.19) corresponding

to J = 0; the dotted line is the asymptote Ṡ0 = −J/Θ0 for J = 1. (b) Plot of the minimum

contact-line velocity V(0,J) (solid line), which exists for J � 0, and the leading-order term in the

asymptote (3.22) (dashed line).

Figure 2(b). Thus, while the contact line can both advance and retreat for J � −1/4, it

can only advance for J < −1/4. A standard asymptotic analysis of equation (3.21) gives

V(Θ0,J) ∼ −J + J(1 − Θ0) exp

(
J +

Θ3
0 − 1

3
+

Θ2
0 − 1

2
+ Θ0 − 1

)
, (3.22)

as J → −∞ for Θ0 � 0, so that, in particular, V(0,J) approaches rapidly its asymptote

−J as J → −∞, as illustrated in Figure 2(b). The leading-order term in the asymptote

in equation (3.22) follows from the expansion K0 ∼ 1 as J → −∞ pertaining except in

a boundary layer at ξ = 1 in which K0 ∼ K00 as J → −∞ with ξ = |J|(1 − ξ) = O(1),

whereby

K3
00

∂K00

∂ξ
= 1 − K00 for ξ > 0; K00(0, T ) = Θ0, K00(∞, T ) = 1, (3.23)

a boundary value problem that may readily be solved by separation of variables. The

expansion (3.22) and corresponding matched-asymptotic analysis of K0 hold so long as

1 � |J| � 1/ε, the boundary layer then being much narrower than the outer region in

Section 3.1. When |J| = O(1/ε), mass gain is of order unity and the relevant distinguished

limit is the one considered in Section 4.

For J > 0, the plots in Figure 2(a) suggests that V(Θ0,J) is unbounded below as

Θ0 → 0+. This is confirmed by a standard asymptotic analysis of equation (3.21),

revealing that

V(Θ0,J) ∼ − J
Θ0

− J(1 − Θ0)

Θ2
0

exp

(
− J
Θ4

0

+
1

3Θ3
0

+
1

2Θ2
0

+
1

Θ0
− 11

6

)
, (3.24)
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as J → ∞ or Θ0 → 0+, so that, in particular, V approaches rapidly its asymptote −J/Θ0

as Θ0 → 0+, as illustrated in Figure 2(a) for J = 1. It follows from equation (3.24) that,

if a root-finding algorithm were used to determine V from equation (3.21) as mentioned

above, then it would be necessary to address the numerical issues that may arise when the

root is exponentially close to a singularity when J is large or Θ0 small. The leading-order

term in the asymptote in equation (3.24) follows from the expansion K0 ∼ Θ0 as J → ∞
or Θ0 → 0+ pertaining except near ξ = 0, though the spatial asymptotic structure near

ξ = 0 is different depending on which limit is taken, as we shall now describe.

If Θ0 = O(1) as J → ∞, there is a boundary layer at ξ = 0 in which K0 ∼ K00 as

J → ∞ with ξ = Jξ = O(1), whereby

K3
00

∂K00

∂ξ
= 1 − K00

Θ0
for ξ > 0; K00(0, T ) = 1, K00(∞, T ) = Θ0. (3.25)

The expansion (3.24) and corresponding matched-asymptotic analysis hold so long as

1 � J � 1/ε, the boundary layer then being much wider than the inner region in Section

3.2. When J = O(1/ε), mass loss is of order unity and the relevant distinguished limit is

once again the one considered in Section 4.

If J = O(1) as Θ0 → 0+, there is a boundary layer at ξ = 0 in which K0 ∼
(1 − 3Jξ/Θ0)

1/3 for 0 < 3Jξ/Θ0 < 1 (corresponding to a balance between the two terms

on the left-hand side of equation (3.14)), an intermediate layer then being required to match

the two leading-order solutions via the expansion K0 ∼ Θ0K00 with 3Jξ/Θ0 = 1 + 3Θ3
0 ξ,

whereby

K3
00

∂K00

∂ξ
= 1 − K00 for ξ > 0; K00(ξ, T ) ∼

(
− 3ξ

)1/3
as ξ → −∞, K00(∞, T ) = 1.

The expansion (3.24) and corresponding matched-asymptotic analysis hold so long as

ε � Θ0 � 1, the boundary layer at ξ = 0 then being much wider than the inner region in

Section 3.2. As Θ0 decreases to O(ε), the leading-order contact-line velocity, εṠ0, increases

to O(1), breaking the dominance of capillarity in both the outer region in Section 3.1 and

the inner region in Section 3.2.

Since the leading-order solution K0 ∼ Θ0 as Θ0 → 0+ or J → ∞ corresponds to the

balance ∂h/∂t ∼ −εJ holding in the intermediate region except near the contact line,

the asymptote V ∼ −J/Θ0 represents physically the contact-line motion being dominated

by the removal of liquid near the contact line. Thus, as Θ0 → 0+ or J → ∞, mass loss

dominates over capillarity and produces, in particular, the singularity in the contact-line

law at Θ0 = 0 illustrated in Figure 2(b). That such a singularity does not arise as Θ0 → 0+

for J < 0 implies that, loosely speaking, surface tension is able to combat mass gain (see

also the discussion in Section 4.2).

The story is much simpler for large Θ0, for which equation (3.21) implies

V ∼ Θ3
0 − 1

3
− 3J

2Θ0
as Θ0 → ∞, (3.26)

so that, for all J, the contact-line law asymptotes to Tanner’s law (3.19) at large macro-

scopic contact angles Θ0, as indicated in Figure 2(a).

https://doi.org/10.1017/S0956792515000364 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000364


On contact-line dynamics with mass transfer 683

Finally, we note that, while [7] derives an expression equivalent to (3.21) in a small-slip

slow-timescale analysis of equations (2.1)–(2.2), with n = 2 and J ∝ T−1/2, and present a

numerical analysis pertinent to their particular problem, they do not report an analysis

of the contact-line law (3.16) and hence, in particular, the existence of a singularity at

Θ0 = 0 for J > 0. This singularity plays an important role in the evolution of the drop,

as we shall describe in Section 5.

3.4 Early-time evolution

At leading order as λ → 0, the problem has been reduced to the solution of the pair of

nonlinear ordinary differential equations (3.4) and (3.16) for S0(T ) and Θ0(T ). In order to

derive the relevant initial conditions, it is necessary to consider the early time evolution.

On the timescale t = O(1) as λ → 0 with J = O(1), the spatial asymptotic structure is

the same as on the slow timescale T = O(1) because the contact-line velocity is of O(ε),

though the details in each region are different, as we shall now describe.

Expanding s ∼ 1 + εs1 and h ∼ h0 as λ → 0 , we find that the leading-order outer

problem is given by

∂h0

∂t
+

∂

∂x

(
h 3

0

∂3h0

∂x3

)
= 0 for 0 < x < 1. (3.27)

Applying equation (2.2a, b) and matching with the intermediate region below gives the

boundary conditions

∂h0

∂x
= 0,

∂3h0

∂x3
= 0 at x = 0; h0 = 0, −∂h0

∂x
= θ0(t) at x = 1−, (3.28)

where the leading-order macroscopic contact angle θ0(t) is determined as part of the

solution to the correctly specified boundary-value problem (3.27)–(3.28) (there being a

total of four degrees of freedom in the local expansions of h0 at x = 0, 1, namely the

film thickness and curvature at x = 0 and the contact angle θ0(t) and curvature at x = 1;

we note that the local analysis of equation (3.27) at x = 1 also implies that there is no

flux of liquid out of the outer region at leading order). As described in [26], for example,

equations (3.27)–(3.28) govern the relaxation of the profile under surface tension from

its prescribed initial value, h0(x, 0) = H(x) for 0 < x < 1, to the stationary-steady-state

profile in which the curvature, and hence the pressure, is constant, so that the large-time

attractor is given by

h0(x, t) → 3M

2
(1 − x2), θ0(t) → 3M as t → ∞. (3.29)

The scalings in the inner and intermediate regions are the same as in Section 3.2,

with ṡ1, θ0 and t replacing Ṡ0, Θ0 and T , respectively. It follows that the leading-order

contribution to the contact-line velocity is determined as part of the leading-order solution

in the intermediate region, with equation (3.16) being recovered in the form ṡ1 = V(θ0,J).

Since θ0(t) is determined as part of the solution to the leading-order outer problem

(3.27)–(3.28), s1(t) is determined by integrating ṡ1 = V(θ0,J) (in practice using quadrature)

subject to the initial condition s1(0) = 0. Since θ0(t) → 3M as t → ∞, it follows that

s1(t) ∼ V(3M,J)t as t → ∞. Thus, the expansion for s becomes non-uniform when
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t = O(1/ε) as λ → 0 for 3M � (1 + 4J)1/4; for 3M = (1 + 4J)1/4, a non-uniformity

must arise at higher order in the expansion of s because the drop begins to lose or

gain an order-unity amount of mass on the timescale in which t = O(1/ε). Finally, we

match the fast and slow timescales to deduce that the initial conditions for the coupled

nonlinear ordinary differential equations (3.4) and (3.16) for S0(T ) and Θ0(T ) are given

by

S0(0) = 1, Θ0(0) = 3M. (3.30a , b)

In Section 5 we will analyse the resulting evolution of the two-dimensional drop.

4 Small-slip asymptotics with order-unity mass transfer

In this section, we consider the second distinguished limit, namely J = O(1) as λ → 0. The

contact-line motion is now on the timescale t = O(1) and the spatial asymptotic structure

consists of two regions: an outer region away from the contact line and an inner region

of size of O(λ) at the contact line. In contrast to the asymptotic analysis in the case of

small mass transfer in Section 3, for mass transfer of order unity, the leading-order outer

and inner solutions may be matched directly, i.e. it is not necessary to proceed to higher

order in the inner region or to introduce an intermediate region.

4.1 Inner region

We begin with the inner region in which the scalings x = s+ λX, h = λH are the same as

in Section 3.2. Expanding H ∼ H0 and s ∼ s0 as λ → 0, equation (3.7) becomes

(
H3

0 + Hn
0

)∂3H0

∂X3
= ṡ0H0 + J(−X) for X < 0. (4.1)

Thus, mass transfer is now so strong that it balances the effects of viscous dissipation and

capillarity in the inner region. Applying the boundary conditions (2.2a, b) and matching

with the outer region below results in the boundary conditions (cf. equation (3.8))

H0 = 0, −∂H0

∂X
= 1 on X = 0−; H0 ∼ θ0(−X) as X → −∞, (4.2a − c)

where θ0(t) is the leading-order outer macroscopic contact angle. We note that a similar

inner problem involving mass loss with n = 2 arises in the asymptotic analyses of [2, 7];

however, in both of these papers the corresponding outer balance is different from that

in Section 4.2.

We next need to check whether the inner problem (4.1)–(4.2) is correctly specified and

in particular whether θ0 is determined by its solution or must be imposed: as we now

show, the former applies when J < 0 and the latter when J > 0.
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At the contact line, the local expansion is given by (cf. (2.4))

H0 ∼ (−X) +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B1(−X)2 + C(−X)4−n for n < 2,

− (̇s0 + J)

2
(−X)2 ln(−X) + B1(−X)2 for n = 2,

C(−X)4−n + B1(−X)2 for 2 < n < 3,

(4.3)

as X → 0−, where B1(t) is the only degree of freedom and C(t) is given by equation

(2.5) with λ = 1 and ṡ0 replacing ṡ. In the far field, equation (4.2c) demands that

H0 ∼ θ0(−X) + Ĥ , where Ĥ = o(−X) as X → −∞. Substituting this expansion into

equation (4.1) implies that (cf. equation (2.3))

θ3
0(−X)3

∂3Ĥ

∂X3
∼ (̇s0θ0 + J)(−X) + ṡ0Ĥ as X → −∞. (4.4)

Hence, equation (4.2c) is incompatible with equation (4.1) unless

ṡ0 = − J

θ0
. (4.5)

We note that this novel contact-line law is consistent with equation (3.22) upon setting

θ0 = 1, as well as with equation (3.24) but with no such restriction on θ0. This raises a

question concerning the self-consistency of the distinguished limits considered here and

in Section 3 that we shall resolve shortly.

We proceed with the far-field expansion by using the scaling properties of equation

(4.4) subject to equation (4.5) to deduce that the leading term in Ĥ is proportional to

(−X)p as X → −∞, where p is a complex constant and we require that Re(p) < 1 (so that

Ĥ = o(−X) as X → −∞). Substitution gives

p(p − 1)(p − 2) = − ṡ0

θ3
0

=
J

θ4
0

. (4.6)

The cubic equation (4.6) proves crucial in the analysis of both the inner and outer regions:

as we now show, for J > 0 it has two roots with Re(p) < 1 (admissible in the far field

of equation (4.1) but not in the near field as x → s−
0 of the outer region governed by

equation (4.11)) and one with Re(p) > 1 (inadmissible in equation (4.1) but admissible in

equation (4.11)); this count reverses for J < 0, with important macroscopic consequences

in terms of the differences in the respective outer formulations.

To establish the structure of the roots of equation (4.6), it is perhaps simplest to plot the

left- and right-hand sides as a function of p, as illustrated in Figure 3(a). The left-hand side

of equation (4.6) is zero for p = 0, 1, 2, has a local maximum of 2/
√

27 at p = 1 − 1/
√

3

and a local minimum of −2/
√

27 at p = 1+1/
√

3. Hence, equation (4.6) has three distinct

real roots if |J/θ4
0 | < 2/

√
27, two distinct real roots (one repeated) if |J/θ4

0 | = 2/
√

27 and

one real root and two complex-conjugate roots if |J/θ4
0 | > 2/

√
27. We plot in Figures 3(b)

and (c) the real and imaginary parts of the roots as a function of J/θ4
0.
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J/θ4
0

R
e(

p
)

Im
(p

)

p

p(p − 1)(p − 2)

J/θ4
0

J/θ4
0

(a) (b) (c)

Figure 3. (a) Plot of p(p − 1)(p − 2) (solid line) and J/θ4
0 (dashed line), with solid circles labelling

the three distinct real roots of equation (4.6) that exist for |J/θ4
0 | < 2/

√
27; see text for details. Plot

of (b) the real part and (c) the imaginary part of the roots of the cubic equation (4.6) for p given

J/θ4
0 .

For J > 0, it follows that the far-field expansion is given by

H0 ∼ θ0(−X) +

⎧⎪⎪⎨⎪⎪⎩
B2(−X)p1 + B3(−X)p2 for 0 < J/θ4

0 < 2/
√

27,

(B2 ln(−X) + B3)(−X)pc for J/θ4
0 = 2/

√
27,

B2(−X)pr cos(pi ln(−X) + B3) for J/θ4
0 > 2/

√
27,

(4.7)

as X → −∞, where B2(t) and B3(t) are the only degrees of freedom; p1 and p2 are the

real roots of equation (4.6) satisfying 0 < p1 < 1 − 1/
√

3 < p2 < 1 for 0 < J/θ4
0 < 2/

√
27

(corresponding to the red-dotted and blue-dashed curves, respectively, in Figures 3(b) and

(c)); pc = 1 − 1/
√

3 is the double root of (4.6) for J/θ4
0 = 2/

√
27 (corresponding to the

highest intersection point of the blue-dashed and red-dotted curves in Figure 3(b)); and

pr ± ipi are the complex conjugate roots of equation (4.6) satisfying 0 < pr < 1 − 1/
√

3 for

J/θ4
0 > 2/

√
27 (corresponding to the blue-dashed and red-dotted curves in Figures 3(b)

and (c)). Hence, given θ0(t), the order of (4.1) is equal to the total number of degrees of

freedom in equations (4.3) and (4.7) (namely, B1(t), B2(t), B3(t)), implying that the inner

problem (4.1)–(4.2) subject to the contact-line law (4.5) is correctly specified for J > 0.

The far-field expansions in equation (4.7) reveal the sensitive dependence of the film

profile near to the contact line on both θ0 and J . There is a transition from monotonic

behaviour to weak capillary ripples as θ0 increases through (
√

27J/2)1/4. We note a similar

transition in the local analysis of Stokes flow in a wedge driven by evaporation in the

diffusion-dominated limit (in which there is a singularity in the evaporative flux at the

contact line) is observed by [16].

For J < 0, the far-field expansion is given by

H0 ∼ θ0 (−X) + B1 (−X)p as X → −∞, (4.8)

where B2(t) is the only degree of freedom and p is the negative root of equation (4.6) for

J/θ4
0 < 0 (corresponding to the red-dotted line in Figures 3(b) and (c)). Thus, for J < 0,

the inner problem (4.1)–(4.2) subject to the contact-line law (4.5) can only be correctly

specified if θ0(t) is taken to be a degree of freedom belonging to the inner problem. Since
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the solution is then given by H0 = −X, it follows that

for J < 0, θ0 = 1, (4.9)

which fixes both the leading-order macroscopic contact angle (to be equal to the micro-

scopic one) and contact-line velocity, with

for J < 0, ṡ0 = −J, (4.10)

reducing thereby the leading-order outer problem from a free-boundary problem to one

on a prescribed expanding domain. We note that the novel contact-line law (4.10) is

consistent with equation (3.22).

4.2 Outer region

In the outer region we expand h ∼ h0 as λ → 0 to obtain

∂h0

∂t
+

∂

∂x

(
h3

0

∂3h0

∂x3

)
= −J for 0 < x < s0. (4.11)

Applying equation (2.2a, b) and matching with the inner region results in the boundary

conditions

∂h0

∂x
= 0,

∂3h0

∂x3
= 0 at x = 0; h0 = 0, −∂h0

∂x
= θ0 at x = s−

0 . (4.12a − d )

In addition, for J > 0, we must impose the contact-line law (4.5), while for J < 0, we

must impose the constraint (4.9) and the contact-line law (4.10).

For J > 0, the leading-order macroscopic contact angle θ0(t) is not determined as part

of the leading-order inner problem, so that our asymptotic analysis can only be self-

consistent if equations (4.11)–(4.12) subject to equation (4.5) is correctly specified, with

θ0(t) determined as part of the solution. In contrast, for J < 0, the inner problem imposes

the additional constraint (4.9), so that our asymptotic analysis can only be self-consistent

if equation (4.11)–(4.12) subject to both equations (4.9) and (4.10) is correctly specified.

We shall now verify that this is indeed the case.

We begin with the degree-of-freedom count for the outer problem (4.11)–(4.12) subject

to equation (4.5), with J > 0. Near the line of symmetry, equations (4.11) and (4.12a,b)

imply that the pertinent local expansion, namely

h0 ∼ A1 + A2x
2 as x → 0, (4.13)

contains only two degrees of freedom, namely A1(t) and A2(t). Near to the contact line,

a local analysis of equation (4.11) subject to equations (4.12c,d) and the contact-line law

(4.5) implies that the local expansion is given by

h0 ∼ θ0(s0 − x) − θ̇0

2ṡ0
(s0 − x)2 + · · · + A3(s0 − x)p, (4.14)

where θ0(t) and A3(t) are the only degrees of freedom and p is the only root of equation
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(4.6) for J/θ4
0 > 0 satisfying the constraint Re(p) > 1 (corresponding to the solid line in

Figure 3(b) and in fact satisfying Re(p) > 2); we note that the dots · · · in equation (4.14)

indicate that terms of the form (s0 − x)q intrude for all integer q between 3 and �p� − 1

for p > 3, as does a term of the form (s0 − x)p ln(s0 − x) for integer p � 3. It follows

that the order of equation (4.11) is equal to the total number of degrees of freedom in

equations (4.13) and (4.14) (namely A1(t), A2(t), A3(t), θ0(t)). We conclude that equations

(4.11)–(4.12), together with the contact-line law (4.5), is correctly specified for J > 0, the

leading-order macroscopic contact angle θ0(t) being determined as part of the solution.

The local expansion (4.14) ensures that there is no flux of liquid out of the outer region

at leading order. We note that, since p ∼ 2 + J/(2θ4
0) as J → 0+ in equation (4.14), there

is a non-uniformity in the local expansion of h0 for ln(1/(s0 − x)) = O(1/J) as J → 0+;

similarly, since p1 ∼ 1 − J/θ4
0 as J → 0+ in equation (4.7), there is a non-uniformity

in the far-field expansion of H0 for ln(1/(−X)) = O(1/J) as J → 0+. We resolve these

non-uniformities in Section 6.1.1 via a singular perturbation analysis of the limit in

which J → 0+. We reconcile thereby the asymptotic structure of the distinguished limit

considered in Section 3 as J → ∞ with the one considered here as J → 0+.

We now consider the degree-of-freedom count for the outer problem (4.11)–(4.12)

subject to equations (4.9) and (4.10), with J < 0. Near the line of symmetry, (4.13)

pertains. However, for J < 0 and θ0 = 1, the local expansion at the contact line is given

by (cf. equation (4.14))

h0 ∼ (s0 − x) +

⎧⎪⎪⎨⎪⎪⎩
A3(s0 − x)p1 + A4(s0 − x)p2 for − 2/

√
27 < J < 0,

(A3 log(s0 − x) + A4)(s0 − x)pc for J = −2/
√

27,

A3(s0 − x)pr cos (pi log(s0 − x) + A4) for J < −2/
√

27,

(4.15)

as x → s−
0 , where A3(t) and A4(t) are the only degrees of freedom; p1 and p2 are the

real roots of equation (4.6) satisfying 1 < p1 < 1 + 1/
√

3 < p2 < 2 for −2/
√

27 < J < 0

and θ0 = 1 (corresponding to the solid and blue-dashed curves, respectively, in Figures

3(b) and (c)); pc = 1 + 1/
√

3 is the double root of equation (4.6) for J = −2/
√

27

and θ0 = 1 (corresponding to the lowest intersection point of the solid and blue-dashed

curves in Figure 3(b)); and pr ± ipi are the complex-conjugate roots of equation (4.6)

satisfying pr > 1 + 1/
√

3 for J < −2/
√

27 and θ0 = 1 (corresponding to the solid and

blue-dashed curves in Figures 3(b) and (c)). We conclude that there are a total of four

degrees of freedom (A1(t), A2(t), A3(t), A4(t)), so that equations (4.11)–(4.12), together

with the constraints (4.9) and (4.10), is correctly specified for J < 0. The local expansions

(4.15) ensure that there is no flux of liquid out of the outer region at leading order and

again reveal the sensitive dependence on J of the film profile near to the contact line:

there is a transition from monotonic behaviour to weak capillary ripples as J decreases

through −2/
√

27. We note that, since the leading-order version of equation (2.2) is satisfied

automatically, the leading-order solution h0 is in fact uniformly valid throughout the half-

contact set 0 < x < s0(t) for J < 0, J = O(1) as λ → 0, consistent with the leading-order

inner solution being H0 = −X in this regime. However, since p1 ∼ 1 − J as J → 0− in

(4.15), there is a non-uniformity in the local expansion of h0 for ln(1/(s0−x)) = O(1/|J|) as

J → 0−. We shall resolve this non-uniformity in Section 6.2.1 via a singular perturbation
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analysis of the sub-limit in which J → 0−. We reconcile thereby the asymptotic structure

of the distinguished limit considered in Section 3 as J → −∞ with the one considered

here as J → 0−.

With regard to the physical interpretation of the contact-line law (4.5) for J > 0 and

equation (4.10) for J < 0, we note that differentiating h0(s(t), t) = 0 and applying equations

(4.12d) and (4.5) gives

∂h0

∂t
= −ṡ0

∂h0

∂x
= ṡ0θ0 = −J at x = s−

0 ,

the local expansion (4.14) for J > 0 and the local expansion (4.15) for J < 0 ensuring the

existence of ∂h0/∂t(s−
0 , t). Thus, at leading order the contact-line motion is driven entirely

by the addition or removal of liquid near the contact line. The following comments are

intended to give some physical insight into the differences in boundary condition count

for J > 0 and J < 0: when adding liquid, the material equilibrates at θ0 = 1 as it is

deposited at the contact line; in the case of mass loss, the material at the contact line at a

given time was in the drop interior at previous times and the out-of-equilibrium contact

angle θ0(t) is able to adjust itself as the droplet contracts.

In each regime the relevant initial conditions are simply given by

h0(x, 0) = H(x) for 0 < x < s0(0) = 1, (4.16)

there being no need to introduce a temporal boundary layer in order to satisfy at

leading order the initial conditions (2.7). For future reference we note that it follows from

equations (4.11)–(4.12) that at leading order the condition for global conservation of mass

is given by

d

dt

(∫ s0

0

h0 dx

)
= −Js0, (4.17)

the existence of the integral in this expression being ensured by the local expansion (4.14)

for J > 0 and the local expansion (4.15) for J < 0. In Section 6 we analyse the evolution

of the drop in each regime.

5 Evolution with small mass transfer

We now consider the leading-order evolution of the drop in the distinguished limit

considered in Section 3. We begin in Section 5.1 with an analysis of the leading-order

outer problem (3.4), (3.16) and (3.30) for S0(T ) and Θ0(T ). In Section 5.2 we compare our

leading-order asymptotic predictions with numerical simulations of the thin-film problem

(2.1)–(2.2) with n = 1 and λ � 1.

5.1 Analysis of the leading-order problem

5.1.1 Evolution without mass transfer

In order to put in context the effect of mass transfer on the evolution of the drop, we

begin with a brief review of the borderline case in which mass transfer is absent, a case

that has been analysed by, amongst others, [19, 26]. In the absence of mass transfer, the
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expression (3.4) representing global conservation of mass may be integrated subject to the

initial conditions (3.30) to obtain Θ0S
2
0 = 3M. Since the contact-line law (3.16) reduces

to Tanner’s law in the form (3.19) when J = 0, it follows that S0(T ) is governed by the

single nonlinear ordinary differential equation

Ṡ0 =
1

3

(
(3M)3

S 6
0

− 1

)
, (5.1)

with S0(T ) ≡ 1. Thus, S0 → (3M)1/2 and Θ0 → 1 as T → ∞, with S0(T ) ≡ 1 for M = 1/3

(consistent with the solution on the fast timescale in Section 3.4). We plot in Figure 5(a)

Tanner’s law and some typical trajectories, illustrating the relaxation of the drop back to

its equilibrium configuration for comparison below with similar plots for J� 0.

5.1.2 Regime diagram for evolution with mass transfer

For J� 0, we write the conservation-of-mass condition (3.4) in the form

Θ̇0 = −3J + 2Θ0Ṡ0

S0
, (5.2)

to deduce that at any point of intersection of the curve Ṡ0 = −3J/2Θ0 and the contact-

line law Ṡ0 = V(Θ0,J) in the (Θ0, Ṡ0)-plane there is a solution in which Θ0, and hence

Ṡ0, is constant. To establish the existence of such a solution, we substitute V = −3J/2Θ0

into the implicit expression (3.21) for the contact-line velocity V to obtain the expression

J = F(Θ0) ≡ 2Θ0

81

(
3(1 − Θ0)(3 + 6Θ0 + 10Θ2

0 ) + 8Θ3
0 ln

∣∣∣∣2 − 3

Θ0

∣∣∣∣) , (5.3)

any roots of which must satisfy the conditions (i)–(iii) stated after equation (3.21) in order

to be physically relevant. With −J/V = 2Θ0/3, condition (iii) demands that any roots

of equation (5.3) satisfy 0 < Θ0 < 3/2. We plot the curve (5.3) in the (J, Θ0)-plane in

Figure 4(a) for 0 < Θ0 < 3/2 and note that F(Θ0) has a maximum at Θc ≈ 0.71517, with

Jc = F(Θc) ≈ 0.22781, and is unbounded below as Θ0 → 3/2−. As illustrated in Figure

4(a), we denote by Θ0 = Θ−(J) the root of (5.3) satisfying 0 < Θ0 � Θc for 0 < J � Jc

and by Θ0 = Θ+(J) the root satisfying Θc < Θ0 < 3/2 for J < Jc.

Since Θ̇0 is negative for sufficiently large Θ0 (by (3.26) and (5.2)) and can only vanish

when Θ0 = Θ−(J) for 0 < J � Jc or Θ0 = Θ+(J) for J < Jc, we deduce that Θ̇0 < 0

(Θ̇0 > 0) in the open shaded (unshaded) region of the (J, Θ0)-plane shown in Figure 4(a).

Combining this result with the fact that the cross-sectional area of the drop decreases

(increases) with time for J > 0 (J < 0), we deduce that the evolution of the drop is

different in each of the three regimes I, II and III illustrated by the open shaded regions of

the (J,M)-plane shown in Figure 4(b), as we shall now describe qualitatively. In regime I

both the cross-sectional area and macroscopic contact angle decrease with time. In regime

II the cross-sectional area decreases with time, while the macroscopic contact angle may

increase or decrease with time depending on whether Θ0 is less than or greater than

Θ+(J), respectively. In regime III the cross-sectional area increases with time, while the

macroscopic contact angle may increase or decrease with time, once again depending
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Figure 4. (a) The dashed and solid lines form the curve (5.3) for 0 < Θ0 < 3/2; the dashed line

is the root Θ0 = Θ−(J); the solid line is the root Θ0 = Θ+(J); Θ̇0 < 0 (Θ̇0 > 0) in the shaded

(unshaded) region. (b) Regime diagram showing the regions corresponding to regimes I, II and III.

See text for details.

on whether Θ0 is less than or greater than Θ+(J), respectively. In regimes I and II the

solution pertains only up until the time, Tc say, at which the cross-sectional area of the

drop vanishes, the extinction time then being given by tc ∼ Tc/ε as λ → 0; we note that

Tc depends only on J and M. In regime III the evolution continues for all time, the

cross-sectional area of the drop growing without bound as T → ∞.

Before describing quantitatively the dynamics in each regime in Sections 5.1.3–5.1.5, we

note that in our numerical simulations we use the following algorithm in matlab. At each

time step, we use ode15s and fzero to shoot for Ṡ0 = V(Θ0,J) using the current value of

Θ0, except that we use the asymptote (3.24) for small Θ0 and J > 0 as soon as the relative

error between the numerical and asymptotic predictions is smaller than a threshold value

(we used 10−12); we then use equation (5.2) to read off the current value of Θ̇0 given the

current values of S0, Θ0 and Ṡ0; finally we step forward in time using ode15s. We checked

that there is no visible change to our plots when the error tolerances are reduced and we

took absolute and relative errors of 10−8 or smaller.

5.1.3 Evolution in regime I

In this regime either J > Jc or 0 < J � Jc and Θ0(0) = 3M < Θ−(J), as illustrated

in Figure 4(b). The macroscopic contact angle always decreases with time, as illustrated

by the arrows in the shaded region in Figure 4(a) and on the contact-line laws plotted

in Figures 5(b)(i)–(c)(i) for J = 0.5 and J = 0.1, respectively. As illustrated in Figure

5(b)(ii)–(iii) and (c)(ii)–(iii), our numerical simulations of equations (3.4) and (3.16) suggest

that Θ0(T ) → 0 and S0(T ) → 0 as T → T−
c . An asymptotic analysis consistent with these

observations using equations (3.4) and (3.24) gives

S0(T ) ∼ A(Tc − T )1/2, Θ0(T ) ∼ 2J
A

(Tc − T )1/2 as T → T−
c ,
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where the positive constants A and Tc are determined globally, rather than locally.

Our numerical simulations confirm this square-root scaling behaviour near extinction, as

illustrated by the plots of Θ0(T ) and S0(T ) in Figures 6(a) and (b) in which Θ0(0) = 3M

is slightly smaller than Θ−(J) and J = 0.1.

We plot in Figure 6(e) the computed extinction time on the slow timescale, Tc, for

0 < J < 1 and for Θ0(0) = 3M = 0.2, 0.4, . . ., 1.8, 2.0. As expected, Tc increases with M

and decreases with J. We note that there is a very small change in the curvature of the

lines in Figure 6(e) when passing through the borderline between regimes I and II.

For large J, we use the leading term in equation (3.24), i.e. the asymptote Ṡ0 ∼ −J/Θ0

as J → ∞, together with the differential equation (3.4) and the initial conditions (3.30),

to deduce that

S0 ∼
(

1 − T

Tc

)1/2

, Θ0 ∼ 3M

(
1 − T

Tc

)1/2

, Tc ∼ 3M

2J as J → ∞. (5.4)

That Ṡ0 + J/Θ0 is exponentially small as J → ∞ or Θ0 → 0+ by equation (3.24) is

consistent with the excellent agreement of the leading-order prediction for Tc in equation

(5.4) with our numerical simulations, even for moderate values of J, as illustrated in

Figure 6(f).

5.1.4 Evolution in regime II

In this regime 0 < J < Jc and Θ0(0) = 3M > Θ−(J), as illustrated in Figure 4(b), with

Θ̇0 > 0 for Θ−(J) < Θ0 < Θ+(J), Θ̇0 = 0 for Θ0 = Θ+(J) and Θ̇0 < 0 for Θ0 > Θ+(J), as

illustrated by the arrows in Figure 4(a) and on the contact-line law plotted in Figure 5(c)(i)

for J = 0.1. It follows that the macroscopic contact angle is always driven toward Θ+(J).

Our numerical simulations suggest that for all Θ0(0) = 3M > Θ−(J), Θ0(T ) → Θ+(J)

as T → T−
c , as illustrated in Figure 5(c)(ii)–(iii). A standard asymptotic analysis of (5.2)

consistent with this observation gives

S0 ∼ 3J
2Θ+(J)

(Tc − T ) as T → T−
c .

Our numerical simulations confirm the linear scaling behaviour in the width and thickness

of the drop near extinction. For example, the plots of Θ0(T ) and S0(T ) in Figures 6(c) and

(d) show that, for Θ0(0) = 3M slightly larger than Θ−(J) and J = 0.1, the macroscopic

contact angle rapidly approaches Θ+(J) and the half-drop width scales linearly with the

time until extinction in a small window just before the drop vanishes.

For small J there are two distinct timescales. On the slow timescale in which T = O(1)

as J → 0+, mass loss is absent at leading order and the drop spreads at leading order

according to the drop spreading model in Section 5.1.1. Mass loss sets in on the slow-

slow timescale in which T = JT = O(1) as J → 0+. Expanding Θ0 ∼ Θ00(T ) and

S0 ∼ S00(T ) as J → 0+, the contact-line law (3.16) gives Θ00(T ) = 1, the macroscopic

contact angle equilibrating on the slow-slow timescale, and thence from equation (3.4) that

S00 = 3(Tc − T )/2, where Tc is the leading-order extinction time on the slow-

slow timescale. Matching the slow and slow-slow timescales gives the initial condition
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S00(0) = (3M)1/2, and we deduce that the extinction time on the slow timescale has the

expansion

Tc ∼ Tc

J =
2(3M)1/2

3J as J → 0+,

which is in excellent agreement with our numerical simulations, as illustrated in Figure

6(g).

5.1.5 Evolution in regime III

In this regime J < 0, as illustrated in Figure 4(b), with Θ̇0 > 0 for Θ0 < Θ+(J), Θ̇0 = 0

for Θ0 = Θ+(J) and Θ̇0 < 0 for Θ0 > Θ+(J), as illustrated by the arrows in Figure 4(a)

and on the contact-line law plotted in Figure 5(d)(i) for J = −0.1. Since the solution

continues indefinitely, the drop growing in size for all T , it follows that Θ0(T ) → Θ+(J)

as T → ∞, equation (5.2) then giving

S0 ∼ − 3JT
2Θ+(J)

as T → ∞.

Hence, the drop grows at large times with constant macroscopic contact angle Θ+(J) ∈
(1, 3/2) and with constant contact-line velocity −3J/(2Θ+(J)) > 0. We note that Θ+(J) →
1 and Ṡ0 ∼ −3J/2 as J → 0−, while Θ+(J) → 3/2 and Ṡ0 ∼ −J as J → −∞, the limiting

contact-line velocity for large mass gain being set by the rate at which liquid is supplied

near the contact line.

The long-time linear scaling behaviour of the drop profile is consistent with our

numerical simulations of equations (3.4) and (3.16), e.g. some typical trajectories for

J = −0.1 are plotted in Figures 5(d)(ii)–(iii). We note that our numerical simulations are

also consistent with the analytical results derived in Section 3.3 that the drop contracts

initially before spreading for −1/4 < J < 0 and Θ0(0) = 3M < (1 + 4J)1/4, but spreads

throughout its evolution for J < −1/4.

For small J < 0 there are two distinct timescales as in regime II. The evolution is

exactly the same as in regime II on the slow timescale in which T = O(1) as J → 0−,

mass gain being absent at leading order during the early relaxation of the drop to its

equilibrium position without mass transfer. Mass gain sets in on the slow-slow timescale

in which T = |J|T = O(1) as J → 0−, with an analysis similar to that for regime II

giving Θ0 ∼ 1 and S0 ∼ 1 + 3T/2 as J → 0−.

For large J < 0, we use equation (3.22) in the form of the asymptote Ṡ0 ∼ −J as

J → −∞, together with the differential equation (3.4) and the initial conditions (3.30), to

deduce that the evolution is on the fast timescale in which T = |J|T = O(1), with

S0 ∼ 1 + T , Θ0 ∼ 3

2

(
1 +

2M − 1

(1 + T )2

)
as J → −∞; (5.5)

we note that the macroscopic contact angle Θ0 → 3/2 as T → ∞.
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Figure 5. Plots for (a) J = 0, (b) J = 0.5, (c) J = 0.1 and (d) J = −0.1. The first column contains

plots of the contact-line law and the curve Ṡ0 = −3J/2Θ0 (dashed line) in the (Θ0, Ṡ0)-plane. The

second column contains plots of the (S0, Θ0)-phase plane showing the trajectories beginning at

Θ0(0) = 3M = 0.2, 0.4, . . . , 1.8, 2.0, with S0(0) = 1. The third column contains plots of Θ0(T )

and S0(T ) for Θ0(0) = 1.5 (solid line) and Θ0(0) = 0.5 (dashed line), with S0(0) = 1. In the

first and second columns, the arrows indicate the direction of motion as T increases. Note that

Θ+(0.1) ≈ 0.94002, Θ+(−0.1) ≈ 1.04387 and Θ−(0.1) ≈ 0.32013. See text for details.
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Figure 6. Plots of (a) Θ0(T ) and (b) S0(T ) for Θ0(0) = 3M = 0.32012 < Θ−(0.1) ≈ 0.32013, with

S0(0) = 1 and J = 0.1; note that Θ0(T ) → 0 as T → T−
c , where the extinction time Tc ≈ 2.12821.

Plots of (c) Θ0(T ) and (d) S0(T ) for Θ0(0) = 3M = 0.32014 > Θ−(0.1) ≈ 0.32013, with S0(0) = 1 and

J = 0.1; note that Θ0(T ) → Θ+(0.1) ≈ 0.94002 as T → T−
c , where the extinction time Tc ≈ 2.14107.

Plots of (e) Tc, (f) 3JTc/(2(3M)1/2) and (g) 2JTc/(3M) for Θ0(0) = 3M = 0.2, 0.4, . . ., 1.8, 2.0 and

0 < J < 1; for each value of M, we computed Tc for 370 values of J carefully distributed over

the interval (0, 1); on each line the square indicates the borderline between regimes I and II, with

regime I above and regime II below. See text for details.
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5.2 Numerical simulations

5.2.1 Description of the numerical scheme

We begin by mapping the contact set 0 < x < s(t) to a fixed computational domain

0 < ξ < 1 by setting x = s(t)ξ. We then write the resulting version of the thin-film

equation (2.1) as a system of two second-order partial differential equations by setting

h(x, t) = η(ξ, t)/s(t), p(x, t) = P (ξ, t)/s(t)3 to obtain

∂η

∂t
− ∂

∂ξ

[(
η3

s7
+

λ3−nηn

s4+n

)
∂P

∂ξ
+

ṡξη

s

]
= −Js,

∂2η

∂ξ2
= −P for 0 < ξ < 1. (5.6)

The boundary conditions (2.2) give

∂η

∂ξ
= 0,

∂P

∂ξ
= 0 at ξ = 0; η = 0, −∂η

∂ξ
= −s2 at ξ = 1−, (5.7)

while the moving-boundary condition (2.6) becomes

ṡ = −J − λ3−nηn−1

s3+n

∂P

∂ξ
at ξ = 1−. (5.8)

As noted in Section 2, at the contact line the pressure gradient is zero for n < 1, finite

for n = 1 and unbounded for 1 < n < 3. In order to avoid the numerical issues that may

arise when there is a removable singularity in the moving-boundary condition (5.8), we

take n = 1 in our numerical simulations. We emphasise that in both of the distinguished

limits considered in Sections 3–4, the leading-order outer formulations are independent

of n.

In our numeral simulations we attempted first to implement a finite-difference scheme

using the method described by [42], having eliminated P from equations (5.6)–(5.8). The

spatial discretisation uses second-order accurate finite differences on a uniform mesh.

The resulting system of nonlinear ordinary differential equations for the drop thickness

at the spatial mesh points and for s(t) is integrated using ode15s in matlab, with the

Jacobian being evaluated using complex-step differentiation as described in [37]. That the

spatial mesh is uniform implies that a large number of grid points is required to resolve

the inner regions described in Sections 3–4. For example, demanding there to be 100 grid

points within a distance of λ of ξ = 1 would require of the order of 100/λ grid points in

total. For λ = 10−3 and 105 grid points, the scheme converges rapidly for s(t) � 0.1, but

fails to converge in reasonable time for smaller values of s(t).

In order to compute the evolution for smaller values of λ, we concluded that it would

be necessary to use a non-uniform spatial grid. It is for this reason that we chose to use

an implicit-in-time finite-element method to discretise the partial differential equations

(5.6) with n = 1 subject to the boundary conditions (5.7); see, for example, [14]. Our

finite-element solution uses a linear approximation to the solution on each element and a

non-uniform spatial mesh with a high concentration of nodes in a neighbourhood of ξ = 1

in order to obtain sufficient spatial resolution of the inner regions described in Sections

3–4. We use an implicit approximation to the time derivative in the moving-boundary

condition (5.8) with n = 1. On each time step our discretisations are fully coupled and we
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use Newton’s method to solve the resulting system of nonlinear algebraic equations. We

check that our simulations have converged in the usual way by refining the spatial mesh

and shortening the time step. We note that, when they both converge, our finite-difference

and finite-element schemes are in excellent agreement.

In our numerical simulations, we impose the candidate initial conditions

h(x, 0) = H(x) = A(1 − x2) + B(1 − x4) for 0 < x < s(0) = 1, (5.9)

where the constants A = 3(5M − 1)/4 and B = 5(1 − 3M)/8 for M > 1/15 are chosen so

that H(x) > 0 for 0 � x < 1 and

∫ 1

0

H(x) dx = M, H′(1) = −1, (5.10)

where, here and hereafter, a prime ′ denotes the derivative with respect to the argument.

We note that the rate of change of the curvature of the initial profile (at leading order

in the thin-film limit), namely H′′′(x) = −45(M − 1/3)x, varies substantially even for

moderate values of M − 1/3, i.e. away from the special case in which the initial profile is

a parabola.

In the case of small mass transfer our asymptotic analysis is based on a small parameter,

namely ε = 1/ ln(1/λ), that depends logarithmically on λ, so the correction terms not

captured by the above analysis will be only logarithmically smaller than those we have

derived. Moreover, in this case the leading-order predictions are unchanged upon replacing

λ by any order-unity multiple of itself, so it would be necessary to proceed to second-

order in the asymptotic analysis if an attempt were to be made to fit λ by comparing the

asymptotic predictions with experimental data, as described in [21] for a closely related

spreading problem without mass transfer. Since it is in this context that it would be best

to undertake an error analysis to ascertain the accuracy of our asymptotic predictions as

λ → 0, our aims in this paper are much less ambitious. We shall present evidence for the

validity of the leading-order asymptotic analyses in Sections 3 and 4 by comparing their

predictions with our preliminary numerical simulations, and extract thereby the physical

insight afforded by the leading-order analysis with some confidence that it describes the

main features of the flow. In this sense our results extend previous analyses in the absence

of mass transfer, which have demonstrated the utility of the leading-order analysis; see,

for example, [29, 30] and references therein. In our preliminary numerical simulations

(presented in Sections 5.2.2, 6.1.5 and 6.2.4), we use the values M = 1 or M = 1/3

and a value of λ that is toward the lower bound of what may be expected physically,

namely λ = 10−5, so that ε = 1/ ln(1/λ) ≈ 0.087 (except in Section 6.2.4 for reasons given

there). We emphasise that an important direction for future research may be to ascertain

the accuracy of our asymptotic predictions for λ � 10−5 with a variety of values of M.

However, in doing this, the above caveat concerning the importance of the second-order

analysis should be borne in mind.
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5.2.2 Comparison of asymptotic and numerical predictions

In Figures 7(a)–(d) we plot the numerical and leading-order asymptotic solutions for

s(t), m(t) and h(x, t) in the four cases corresponding to an absence of mass transfer

(J = 0), regime I (J = 0.5), regime II (Θ0(0) = 3M > Θ−(J), J = 0.1) and regime III

(J = −0.1). In all of these cases the numerical and asymptotic predictions are in excellent

visual agreement, providing quality control for the validity of the small-slip asymptotics

in Section 3. It is notable that, as illustrated in Figures 7(a)–(d), in each regime the

rapid surface-tension-driven relaxation of the initial profile causes the drop profile at time

t = 1 to be visually indistinguishable from that of the parabolic profile predicted by the

leading-order outer solution (3.2). This is despite the rate of change of the curvature of

the initial profile, H′′′(x) = −30x, being moderately large for M = 1.

We plot in Figure 8(a) the numerical and leading-order asymptotic predictions of

the extinction time for M = 1 and various values of J > 0, revealing excellent visual

agreement for those values plotted. However, for the value J = 0.4, the extinction time

is not plotted in Figure 8(a) because positivity is lost before extinction occurs, as we

shall now describe. (We shall discuss shortly the range of intermediate values of J for

which this unexpected phenomenon occurs.) As illustrated in Figure 8(b), for J = 0.4,

our numerical simulations predict that the drop profile develops a local minimum in

the interior of the contact set near to the contact line, forming thereby a small rim of

liquid whose extent and thickness are both much larger than the slip length, but much

smaller than the outer length scale. The rim proceeds to shrink, the local minimum at

x = xm(t) moving downward and inward before rapidly touching down at an interior

point x = xm(tr) near to the contact line at time t = tr . Our numerical simulations fail to

converge when positivity is lost. Nevertheless, we find through careful refinement of the

spatial and temporal meshes that both the horizontal and vertical distances of the interior

minimum from the point of touchdown on the substrate scale linearly with the time until

touchdown over at least three decades near to touchdown, as illustrated in Figures 8(c)–

(d). As touchdown is approached, Figure 8(e) suggests that the pressure at the interior

minimum tends to a constant, consistent with the dense clustering of the appropriately

scaled free-surface profiles in Figure 8(f), which suggest that in the neighbourhood of

the interior minimum the free surface is approximately a parabola of constant curvature,

moving with constant velocity downward and inward, at least during a window of time

before touchdown. We note that the free-surface profiles begin to deviate from this

configuration in the very final stages before touchdown, perhaps due to slip becoming

important (the film thickness becoming comparable to the slip length sufficiently near

to touchdown) or perhaps because our numerical scheme is losing accuracy (despite our

careful refinement of the spatial and temporal meshes).

We emphasise that touchdown occurs outside of the region of validity of the small-slip

asymptotics in Section 3 because the half-drop width and mass at touchdown are of order

ε and ε3, respectively (taking the values s(tr) ≈ 0.122285 and m(tr) ≈ 1.09186 × 10−3),

which would require Θ0(tr) to be of order ε. We do not pursue further in this paper this

unexpected touchdown phenomenon for which we do not have a convincing explanation,

but remark that our numerical simulations suggest that, with λ = 10−5 and the initial

conditions given above, touchdown occurs for a range of intermediate values of the rate
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Figure 7. Plots for (a) J = 0, (b) J = 0.5, (c) J = 0.1 and (d) J = −0.1. The first, second and third

columns contain plots of s(t), m(t) and h(x, t), respectively. In the third column Δt indicates the time

between the profiles (we note that Δt is not the time step in our numerical simulations, which is

much smaller). The solid lines are extracted from our numerical simulations of equations (5.6)–(5.8)

with n = 1 and λ = 10−5 subject to the initial conditions (5.9)–(5.10) with M = 1; m(t) is calculated

using the trapezium rule. The red-dashed lines are the leading-order asymptotic predictions s ∼ S0,

m ∼ Θ0S
2
0 /3, h ∼ Θ0(S

2
0 − x2)/(2S0) with t = T/ε.
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Figure 8. (a) Extinction time tc ∼ Tc ln(1/λ) obtained using the leading-order model in Section

3 (solid line) and the numerical simulations of the thin-film problem (5.6)–(5.8) with n = 1 and

λ = 10−5 subject to the initial conditions (5.9)–(5.10) with M = 1 (solids circles). The other

plots are for J = 0.4 showing that the free surface touches down at time t = tr ≈ 29.906066 at

x = xm(tr) ≈ 0.122002 < s(tr) ≈ 0.122285: (b) film profiles h(x, t) at time intervals of Δt = 10−4

beginning at t = 29.904123; (c) the film thickness hm(t) = h(xm(t), t) at the interior minimum at

x = xm(t); (d) |xm(tr) − xm(t)|/|xm(t)|; (e) |pm(tr) − pm(t)|/|pm(t)|, where pm(t) = −∂2h/∂x2(xm(t), t) is

the pressure at the interior minimum; (f) film profiles h(x, t) at time intervals of Δt = 10−4 beginning

at t = 29.904123.
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of mass transfer J strictly between 0.3 and 0.5, and that the range of intermediate values

of J for which touchdown occurs appears to decrease with λ. It may be interesting

to establish whether or not touchdown is eradicated for sufficiently small values of λ,

for other choices of the slip exponent than n = 1 and for other initial conditions than

equations (5.9)–(5.10). We note that the formation of a rim is reported by [12] in a much

more sophisticated axisymmetric model for the evaporation of a liquid drop.

6 Evolution with order-unity mass transfer

We now consider the leading-order evolution of the drop in the distinguished limit

considered in Section 4. For J > 0, the leading-order outer problem for h0(x, t) and s0(t)

is given by equations (4.11)–(4.12) subject to the contact-line law (4.5) and the initial

condition (4.16), while for J < 0 we must impose the additional constraint (4.9), so that

the contact-line law becomes equation (4.10). Since the evolution for both J > 0 and

J < 0 is governed by equation (4.11), i.e. the thin-film equation sans slip, in general it

is necessary to solve numerically the leading-order outer problems. This task is severely

hampered by the singularities in the drop profile at the contact line, which are quantified

by the local expansion (4.14) for J > 0 and the local expansion (4.15) for J < 0. In

particular, the leading-order outer problems are more difficult to solve numerically than

the full thin-film problem (2.1)–(2.2) with n = 1 and λ � 1. It is for this reason that we

do not pursue here the numerical solution of the leading-order outer problems, though

this may be a worthwhile task for future research. We shall consider instead the singular

parameter limits J → 0± and J → ±∞ of both the leading-order outer and inner problems,

reconciling thereby the analyses in Sections 3 and 4, as well as self-similar or intermediate

asymptotic self-similar solutions of the leading-order outer problems for J = O(1). We

shall compare thereby our asymptotic predictions with numerical simulations of the full

problem with n = 1 and λ � 1.

6.1 Analysis of the leading-order problems with mass loss

6.1.1 Small mass loss J → 0+

On the slow timescale of contact-line motion and mass loss, namely t = Jt = O(1) as

J → 0+, we expand h0 ∼ h00, θ0 ∼ θ00 and s0 ∼ s00 as J → 0+ to find that the leading-

order balance in the outer problem is quasi-steady, with equations (4.11)–(4.12) subject to

equation (4.5), as well as equation (4.17), giving

h00 =
θ00

2s00

(
s 2
00 − x2

)
,

ds00

dt
= − 1

θ00
,

d

dt

(
θ00s

2
00

3

)
= −s00. (6.1a − c)

In the inner region governed by equations (4.1)–(4.2), we find H0 ∼ −X as J → 0+

except in an exponentially large region in the far field in which the appropriate scalings are

given by X = − exp( ξ/J), H0 ∼ (−X)K00( ξ, t ) as J → 0+ for ξ > 0, whereby we recover

the boundary-value problem (3.25) with t and θ00 replacing T and Θ0, respectively.

The initial conditions for the differential equations (6.1b,c) are obtained by match-

ing with the solution on the fast timescale in which t = O(1) as J → 0+ using a
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matched-asymptotic analysis similar to that in Section 3.4: the contact line is pinned and

mass transfer absent at leading order as J → 0+, surface tension driving the drop toward

a state of constant mean curvature, giving θ00(0) = 3M and s00(0) = 1, so that

θ00 =
(
6M( tc − t )

)1/2
, s00 =

(
2

3M
( tc − t )

)1/2

, tc =
3M

2
. (6.2)

Thus, the local attractor of the leading-order solution as J → 0+ takes the form of a self-

similar solution in which distances scale with the square-root of the time until extinction

on the timescale of mass loss.

The small-J expressions (6.1) and (6.2) are in agreement with the corresponding large-J
expressions (3.3), (3.24) and (5.4) upon identifying t/J with T/ε. The matched-asymptotic

analysis above pertains so long as the sub-inner region is much smaller than the outer

region, i.e. provided ε � J � 1. As J decreases to O(ε), the sub-inner region grows in size

until it merges into the intermediate region in Section 3.2 when J = O(ε).

6.1.2 Large mass loss J → +∞

The contact-line motion and mass loss occur on the fast timescale in which t = Jt = O(1)

as J → +∞. Expanding h0 ∼ h00 and s0 ∼ s00 as J → +∞, the leading-order balance in

the thin-film equation (4.11) becomes

∂h00

∂t
= −1 for 0 < x < s00,

so that an application of the initial condition (4.16) gives the solution

h00(x, t ) = H(x) − t for 0 < x < s00( t ). (6.3)

By the boundary condition (4.12b), s00( t ) is uniquely determined by the constraint that

H
(
s00( t )

)
= t, (6.4)

provided the smooth initial profile H(x) is strictly decreasing with x. Since the leading-

order solution (6.3) corresponds to a rigid-body motion of the free surface with speed J

normal to, and toward, the substrate, it satisfies automatically the leading-order versions

of the boundary conditions (4.12) provided the initial profile H(x) satisfies them. The

macroscopic contact angle satisfies θ0 ∼ θ00 as J → +∞, where θ00 = −H′(s00( t )) by

equation (6.3). It follows from differentiation of equation (6.4) that

ds00

dt
=

1

H′(s00)
= − 1

θ00
, (6.5)

so that the leading-order version of the contact-line law (4.5) is also satisfied automatically.

The solution (6.3)–(6.4) serves thereby as a concrete illustration of the physical significance

of the contact-line law (4.5), as discussed in Section 4.

As J → +∞ in the inner region governed by equations (4.1)–(4.2), H0 ∼ θ00(−X) except

in an algebraically small sub-inner region at the contact line in which the appropriate
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scalings are given by X = J−1/(3−n)X, H0 ∼ J−1/(3−n)H00, whereby

Hn
00

∂3H00

∂X
3

= −H00

θ00
− X for X < 0, (6.6)

with

H00 = 0, −∂H00

∂X
= 1 on X = 0−; H00 ∼ θ00

(
−X

)
as X → −∞. (6.7)

A degree-of-freedom count reveals that the sub-inner problem (6.6)–(6.7) is correctly

specified, there being two oscillatory exponentially decaying contributions in the far field.

For future reference, we note that, if H(x) ∼ tc −
(
x/α

)m
as x → 0, where tc, α and m

are prescribed positive constants, with m = 2 or m > 3 being required for there to be no

flux through the line of symmetry, then s00 ∼ α( tc − t )1/m as t → t
−
c and the extinction

time tc ∼ tc/J as J → +∞. It follows that, since the case m = 2 is for the usual reasons

the generic one, in general the local attractor of the leading-order solution as J → +∞
takes the form of a self-similar solution in which distances scale with the square-root of

the time until extinction on the timescale of mass loss.

6.1.3 Non-existence of self-similar solutions for J = O(1)

Motivated by the existence of self-similar scaling behaviour near extinction for both small

and large J , we now seek a self-similar solution of equations (4.11)–(4.12) subject to

equations (4.5) for J > 0 with J = O(1). We find, however, that the only candidate takes

form

h0 = τJf(η), s0 = η0τ, η =
x

η0τ
, τ = tc − t, (6.8)

where η0 is a positive constant that we define below and tc is the extinction time. We

obtain thereby the nonlinear fourth-order ordinary differential equation

−f + ηf′ +
1

α

(
f3f′′′)′

= −1 for 0 < η < 1, (6.9)

with

f′(0) = 0, f′′′(0) = 0, f(1) = 0, f′(1) = −1, (6.10)

where α > 0 is to be determined as part of the solution to equations (6.9)–(6.10), the

constants η0 and θ0 then being determined in terms of J and α by the expressions

η0 =
(
αJ3

)1/4
and θ0 =

(
J/α

)1/4
. We note that it would follow from equations (6.9)–(6.10)

that ∫ 1

0

f(η) =
1

2
, (6.11)

an expression representing global conservation of mass. The local expansions of f(η) near

the line of symmetry and contact line may be extracted from equations (4.13) and (4.14).

They contain three degrees of freedom in addition to α, giving a total of four degrees of

freedom, so that the problem (6.9)–(6.10) for f(η) and α appears to be correctly specified.

However, we have been unable to find a solution numerically. That equations (6.9)–(6.10)

do not appear to have a solution is consistent with the small- and large-J analyses in
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Sections 6.1.1–6.1.2 and with our numerical simulations of the full thin-film problem with

n = 1 and λ � 1 in Section 6.1.5.

6.1.4 Asymptotically self-similar behaviour for J = O(1)

Motivated by the apparent non-existence of a self-similar solution in Section 6.1.3 and the

large-J analysis in Section 6.1.2 in which the balance ∂h0/∂t ∼ −J pertains in the outer

region, we now seek for J > 0 an intermediate-asymptotic solution of the leading-order

outer problem of the form

h0 ∼ τF(η), s0 ∼ η0τ
1/m, η =

x

τ1/m
,

as τ = tc − t → 0+, where, on physical grounds, η0 and m are expected to be positive

constants. Since

∂h0

∂t
∼ −F +

η

m
F ′,

∂

∂x

(
h3

0

∂3h0

∂x3

)
∼ τ4(m−1)/m(F3F ′′′)′ as τ → 0+,

we deduce that, provided m > 1,

−F +
η

m
F ′ = −J for 0 < η < η0, (6.12)

at leading order as τ → 0+. It is readily shown that the solution of equation (6.12) subject

to the leading-order version of the boundary condition (4.12c), namely F(η0) = 0, is given

by

F(η) = J

(
1 − ηm

ηm0

)
. (6.13)

This solutions satisfies the leading-order versions of the boundary conditions (4.12a,d)

and the contact-line law (4.5), but the flux condition (4.12b) only if m = 2 or m > 3. Since

m is thus far indeterminate in this sense, it is essential to analyse the boundary layer near

x = 0 in which the scalings h0 ∼ Jτ + τmG(ξ), ξ = x/τ pertain as τ → 0+, whereby

J3G′′′′ + ξG′ − mG = 0 for ξ > 0, (6.14)

with

G′(0) = G′′′(0) = 0, G(ξ) ∼ −Jξm

ηm0
as ξ → ∞. (6.15)

An application of the Liouville–Green (JWKB) method as ξ → ∞ identifies the only

acceptable exponentially decaying contribution to G to have lnG ∼ −3ξ4/3/4J as ξ →
∞ (this relates to the variable τ being of backward time, in contrast to the forward

similarity solution addressed Section 6.2.3 in which two oscillatory exponentially decaying

contributions are admissible); a boundary-condition count then implies that m should be

viewed as an eigenvalue (with η0 an arbitrary constant corresponding to the eigenfunction

being of arbitrary amplitude), whose values can readily seen to be given by the positive
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Figure 9. Plots of s(t) and m(t) for (a) M = 1/3 and (b) M = 1. The solid lines are extracted

from the numerical solution of equations (5.6)–(5.8) with n = 1 and λ = 10−5 subject to the initial

conditions (5.9)–(5.10). The red-dashed lines in (a) are extracted from the exact solution (6.16).

even integers, with

m = 2 G(ξ) = −Jξ2/η2
0 ,

m = 4 G(ξ) = −Jξ4/η4
0 − 6J4/η4

0 ,

etc.

The case m = 2 is the generic one and corresponds to the exact solution

h0(x, t) = J

(
tc − t − x2

α2

)
, s0(t) = α(tc − t)1/2, (6.16)

of the leading-order outer problem (4.11)–(4.12) subject to the constraint (4.5), which is

valid for all tc > 0 and α > 0. In the exact solution (6.16) the film profile is a parabola

moving with speed J normal to, and toward, the substrate, corresponding in the thin-film

limit to the mean curvature, and hence the pressure, being constant.

6.1.5 Comparison of asymptotic and numerical predictions

The plots of s(t) and m(t) in Figure 9(a) show excellent visual agreement between the exact

solution (6.16) and the numerical solution of equations (5.6)–(5.8) with J = 1, λ = 10−5

and the initial condition given by equations (5.9)–(5.10) with M = 1/3 (corresponding to

A = 1/2, B = 0). This agreement provides further quality control for the validity of the

small-slip asymptotics in Section 4. For other initial conditions of the form (5.9)–(5.10)

with B � 0, in which the initial profile is not a parabola, we find that our numerical

predictions for the scaling behaviour near extinction of both s(t) and m(t) are consistent

with those corresponding to the exact solution (6.16). For example, we plot the numerical

predictions for M = 1 (corresponding to A = −3/14, B = 10/7) in Figure 9(b), showing

agreement over at least four decades near to the extinction time, tc.
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6.2 Analysis of the leading-order problems with mass gain

6.2.1 Small mass gain J → 0−

On the slow timescale of contact-line motion and mass gain in which t = |J|t = O(1)

as J → 0−, we expand h0 ∼ h00 and θ0 ∼ θ00 as J → 0− to find that the leading-order

outer balance is again quasi-steady, with the governing equations (4.11)–(4.12) subject to

the constraint (4.5) giving equation (6.1a) with s00 = 1+ t. The leading-order macroscopic

contact angle θ00 is then determined by the leading-order version of the expression (4.17)

representing global conservation of mass, namely

d

dt

(
θ00s

2
00

3

)
= s00. (6.17)

In order to satisfy the leading-order version of the boundary condition (4.12c) subject to

the constraint (4.9) that θ0 = 1, it is necessary to introduce an exponentially narrow region

near to the contact line in which the appropriate scalings are given by s0 − x = exp(ξ/J),

h0 ∼ (s0 − x)K00(ξ, t) as J → 0− for ξ > 0, whereby we recover the boundary-value

problem (3.23) with t and θ00 replacing T and Θ0, respectively.

The initial condition for the differential equation (6.17) with s00 = 1 + t is obtained

by matching with the solution on the fast timescale in which t = O(1) as J → 0− using

a matched-asymptotic analysis similar to that in Sections 3.4 and 6.1.1, revealing that

θ00(0) = 3M, and hence that θ00 is given by equation (5.5) upon replacing Θ0 and T

with θ0 and t, respectively. Thus, the small J < 0 and large J < 0 predictions for the

drop profile, the macroscopic contact angle and the contact-line velocity are in agreement,

and the long-time attractor of the leading-order solution as J → 0− takes the form of a

self-similar solution in which distances scale linearly with time.

The matched-asymptotic analysis above pertains so long as ε � |J| � 1, the sub-outer

region then being much larger than the inner region in Section 4.1. As −J decreases to

O(ε), the sub-outer region shrinks in size until it merges into the intermediate region in

Section 3.2 when −J = O(ε).

6.2.2 Large mass gain J → −∞

On the fast timescale in which t = |J|t = O(1) as J → −∞, we expand h0 ∼ h00 and

θ0 ∼ θ00 as J → −∞ to find that the thin-film equation (4.11) becomes

∂h00

∂t
= 1 for 0 < x < 1 + t.

The boundary condition (4.12c) and the initial condition (4.16) imply that the pertinent

boundary data are given by h00(x, 0) = H(x) for 0 < x < 1 and h00(1 + t, t ) = 0 for t > 0,

so that the leading-order solution is given by

h00(x, t ) =

{
H(x) + t for 0 < x < 1,

1 + t − x for 1 < x < 1 + t.
(6.18)
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Since this solution corresponds to a rigid-body motion of the free surface, it satisfies

automatically the leading-order versions of the boundary conditions (4.12) subject to the

constraint (4.9) that θ0 = 1 (again assuming the initial profile H(x) to satisfy (4.12) with

θ0(0) = 1). If H(x) ∼ (1 − x) + α(1 − x)m as x → 1−, where α and m are prescribed real

constants with m > 1, then there is a boundary layer at x = 1 in which the scalings

x = 1+ |J|−1/4X, h0 ∼ t− |J|−1/4X + |J|−m/4t
m
F(η), η = X/t pertain as J → −∞, whereby

mF − ηF ′ + F ′′′′ = 0 for − ∞ < η < ∞,

with

F(η) ∼ α(−η)m as η → −∞, F(η) → 0 as η → +∞,

a boundary-value problem that may be readily solved using a Fourier transform. The

boundary layer grows in size until its length is of order unity, and hence this asymptotic

structure breaks down when t = O(|J|1/4).
On the timescale in which T = |J|−1/4t = O(1) (corresponding to t being of O(|J|−3/4)),

we scale x = |J|1/4X and h0 = |J|1/4H0 to deduce that

H0 ∼ T − X for 0 < X < T as J → −∞, (6.19)

except in a boundary layer near the origin in which h0 ∼ |J|1/4T + H00(x, T ), whereby

∂H00

∂T
+ T 3 ∂4H00

∂x4
= 0 for 0 < x < ∞,

with

∂H00

∂x
= 0,

∂3H00

∂x3
= 0 at x = 0; H00 ∼ −x as x → ∞.

Matching with the fast timescale above implies that the initial condition is given by

H0(x, 0) =

{
H(x) for 0 < x < 1,

1 − x for x > 1.

A standard application of Fourier-transform techniques to the even extension of H00

into x < 0 reveals that the solution may be written in the form

H00(x, T ) = TF
( x

T

)
+ 1 +

1

π

∫ ∞

0

∫ 1

0

(
H(u) − (1 − u)

)
cos(uv) cos(vx)e−v4T 4/4 dudv,

where

F(ζ) = − 2

Γ (1/4)
− 2

π

∫ ∞

0

(
1 − cos(uζ)

u2

)
e−u4/4 du. (6.20)

An application of Laplace’s method then gives

H00(X,T ) ∼ TF
( x

T

)
+ 1 +

(2M − 1)

4T
P

( x

T

)
as T → ∞ with

x

T
= O(1), (6.21)

where

P(ζ) = −F′′(ζ) =
2

π

∫ ∞

0

cos(uζ)e−u4/4 du; (6.22)
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for future reference we note that P(ζ) is a solution of the third-order Airy-type equation

P′′′ = ζP that decays exponentially in the far-field, the method of steepest descents giving

P(ζ) ∼
√

2

3π
|ζ|−1/3 exp

(
−3

8
|ζ|4/3

)
cos

(√
27

8
|ζ|4/3 − π

6

)
as |ζ| → ∞. (6.23)

It follows from equations (6.19) and (6.21) that, as for small mass loss in Section 6.2.1,

the long-time attractor of the leading-order solution as J → −∞ takes the form of a

self-similar solution in which distances scale linearly with time.

6.2.3 Self-similar solution for J = O(1)

Motivated by the large-time linear scaling behaviour for both small and large J in Sections

6.2.1–6.2.2, we now seek a self-similar solution of the first kind of the moving-boundary

problem (4.11)–(4.12) subject to the constraints (4.9) and (4.10), which is readily shown to

take the form

h0 = τ|J|f(η), s0 = |J|τ, η =
x

|J|τ , τ = t + t0,

where t0 is an arbitrary constant. We obtain thereby the nonlinear fourth-order ordinary

differential equation

f − ηf′ +
1

|J|
(
f3f′′′)′

= 1 for 0 < η < 1, (6.24)

with

f′(0) = 0, f′′′(0) = 0, f(1) = 0, f′(1) = −1. (6.25)

We note that the expression representing global conservation of mass is again given by

equation (6.11). The local expansions of f(η) near the line of symmetry and contact line

may be extracted from equations (4.13) and (4.15). They contain a total of four degrees

of freedom, so that the problem (6.24)–(6.25) for f(η) is correctly specified. The numerical

solution of equations (6.24)–(6.25) is hindered by the singularities at the contact line

implicit in equation (4.15). One method to deal with these singularities involves truncating

the domain to η ∈ [0, 1 − ε] and using the local expansion (4.15) to impose appropriate

boundary conditions at η = 1−ε, where 0 < ε � 1. We found it easier to solve numerically

the regularised problem

2gε − ηg′
ε +

1

|J|
(
(g′

ε)
3 + ε3

)
g′′′′
ε = η for 0 < η < 1, (6.26)

with

gε(0) = 0, g′′
ε (0) = 0, g′

ε(1) = 0, g′′
ε (1) = −1. (6.27)

A formal asymptotic analysis implies that g′
ε ∼ f as ε → 0 except in a boundary layer at

η = 1 in which g′
ε(η) ∼ 1 − η as ε → 0 with 1 − η = O(ε). We note that it is advantageous

to work with gε because it has a weaker singularity than g′
ε at η = 1.

We use bvp5c in matlab to solve equations (6.26)–(6.27) using continuation in the

parameter ε, with absolute and relative error tolerances of 10−12. Figure 10(a) illustrates
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Figure 10. (a) Plot of g′
ε(η) for J = −1 and ε = 10−m/3, m = 0, 1, . . . , 9 (the lines are indistinguishable

for m � 6). Plot of (b) E(ε) for J = −10n, n = −1, 0, 1, 2, 3, 4 (calculated from the discrete version

of (6.28) using 1000 uniformly spaced grid points). Plot of (c) f(η) ≈ g′
ε(η) and (d) f′(η) ≈ g′′

ε (η)

for J = −10n, n = −1, 0, 1, 2, 3, 4, with E(ε) < 10−4 for each J; (c) also contains plots of 1 − η

(red-dashed line) and 3(1 − η2)/4 (blue-dashed line). (e) Plot of f′(η) ≈ g′′
ε (η) for ε = 10−5 (solid

line), of −3η/2 (blue-dashed line) and of −G(ξ) − JG′(ξ), η = 1 − exp(ξ/J) obtained from the

solution of (6.29) (red-dashed line) for J = −0.1. (f) Plot of f′(η) ≈ g′′
ε (η) for ε3 = 10−5 (solid line)

and of F′(ζ), η = ζ/|J|1/4 obtained from (6.20) (red-dashed line) for J = −104.
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the convergence of g′
ε as ε → 0 for J = −1, while Figure 10(b) shows that the relative

error,

E(ε) :=
maxη∈[0,1] |g10ε(η) − gε(η)|

maxη∈[0,1] |gε(η)|
, (6.28)

decreases with ε at a rate that increases with −J . For each J we decrease ε until the relative

error is no larger than 10−4 and plot the resulting predictions for f ≈ g′
ε and f′ ≈ g′′

ε in

Figures 10(c) and (d), which illustrates that as −J increases the drop profile undergoes

a transition from having constant non-zero curvature as J → 0− to being almost linear

as J → −∞. This behaviour is consistent with the leading-order outer behaviour on the

timescale of mass loss in Section 6.2.1 (as J → 0−) and Section 6.2.2 (as J → −∞), and

can be confirmed by a similar matched-asymptotic analysis of equations (6.24)–(6.25), as

we shall now briefly describe.

As J → 0−, f ∼ 3(1 − η2)/4 except in an exponentially narrow boundary layer at η = 1

in which the appropriate scalings are given by 1 − η = exp(ξ/J), f(η) ∼ (1 − η)G(ξ) for

ξ > 0, whereby

G3G′ = 1 − G for ξ > 0; G(0+) =
3

2
, G(∞) = 1. (6.29)

The resulting predictions for the profile and slope are in good agreement with our numer-

ical simulations of equations (6.26)–(6.27) even for moderate values of J , as illustrated in

Figures 10(c) and (e) for J = −0.1. We note that our numerical simulations are consistent

with our regularisation, with f′(η) ≈ g′′
ε (η) ∼ −1 as ε → 0 with 1 − η = O(ε) in Figure

10(e).

As J → −∞, f ∼ 1 − η except in a boundary layer at η = 0 in which the appropriate

scalings are given by η = |J|−1/4ζ, f(η) ∼ 1 + |J|−1/4F(ζ), whereby

F − ζF′ + F′′′′ = 0 for ζ > 0; F′(0) = 0, F′′′(0) = 0, F(ζ) ∼ −ζ as ζ → ∞.

A standard application of Fourier-transform techniques to the even extension of F into

ζ < 0 reveals that the solution is given by equation (6.20). Hence, we recover in the

limit J → −∞ exactly the long-time attractor of the leading-order solution as J → −∞
found in Section 6.2.2. The resulting predictions for the profile and slope are in good

agreement with our numerical simulations of equations (6.26)–(6.27) for large values of

−J , as illustrated in Figures 10(c) and (f) for J = −104. We note that in the boundary

layer the pressure

p0 = −∂2h0

∂x2
= − 1

|J|τf
′′(η) ∼ 1

|J|3/4τ
P(ζ) as J → −∞,

where P(ζ) is given by equation (6.22), the far-field behaviour (6.23) being consistent with

the presence of weak capillary ripples in Figure 10(f).

That the boundary layer is exponentially narrow and located at the contact line for

small −J , but only algebraically narrow and located on the line of symmetry for large

−J , explains why our numerical simulations converge more rapidly for large −J than for

small −J , as illustrated in Figure 10(b).
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6.2.4 Comparison of asymptotic and numerical predictions

The plot in Figure 11(a)(i) shows that the appropriately scaled drop profiles obtained

from the numerical solution of equations (5.6)–(5.8), with J = −1, λ = 10−5 and the initial

condition given by equations (5.9)–(5.10) with M = 1/3, tend at large times to the film

profile predicted by the numerical solution of equations (6.26)–(6.27), with J = −1 and ε

selected as in Section 6.2.3. The plot in Figure 11(a)(ii) of the contact-line velocity predicted

by the numerical simulations of the thin-film problem are in excellent agreement with the

prediction of the small-slip asymptotics that ṡ = −J + O(λ) as λ → 0. This agreement

provides further quality control for the validity of the small-slip asymptotics in Section 4.

We find good agreement for other initial conditions of the form (5.9)–(5.10) with M � 1/3

provided the initial rate of change of curvature, H′′′(x) = −45(M − 1/3)x, is not too

large. For M = 1, we find that, while the drop profiles tend at large times to those

of the similarity solution, as illustrated in Figure 11(b)(i), the leading-order prediction

for the contact-line velocity is violated between approximately t = 10−2 and t = 1, and

it appears that the rapid surface-tension-driven relaxation of the initial profile causes

the velocity to deviate substantially from −J in an oscillatory manner, as illustrated in

Figure 11(b)(ii). Our numerical simulations suggest that the amplitude and duration of

the oscillations both decrease with λ, as illustrated in Figure 11(b)(iii), though we do not

have a convincing explanation for this deviation and do not pursue it further here.

7 Discussion

In this paper, we have investigated the effects of mass transfer on a moving contact

line. The aim was to gain the physical insight afforded by an asymptotic analysis of the

effect of the simplest possible mass-transfer mechanism on the simplest possible model

of contact-line motion. In Section 2, we formulated the dimensionless thin-film problem

(2.1)–(2.2) governing the evolution of a two-dimensional drop of thickness h(x, t) and

drop half-width s(t). The model contains only three dimensionless parameters: the slip

coefficient, λ; the slip exponent, n, with n < 3 being required for contact-line motion; and

the rate of mass transfer J , with J > 0 corresponding to mass loss and J < 0 to mass

gain. We emphasise that the modelling assumptions leading to equations (2.1)–(2.2) are

gross simplifications of the complex physics governing the evaporation or condensation

of a sessile liquid drop. In particular, we have assumed the drop to be partially wetting,

the contact-line motion to be regularised by a generalised slip law and the mass transfer

to be large, uniform and restricted to the contact set in the cases of both mass loss and

mass gain (we note that the model is relevant in other contexts, as described in Section

1). However, consideration of such a simple possible model facilitates an almost complete

understanding of the (surprisingly rich) dynamics governing the evolution of the drop

on the timescale of mass transfer and, perhaps more importantly, of the asymptotic and

numerical methodologies required to understand them. Our hope is that such insight may

be helpful in more sophisticated models, as has been the case for thin-film models of

drop spreading in the absence of mass transfer. (There the contact-line motion depends

at leading order only weakly on the choice of regularisation provided the length scale of

the regularisation is much smaller than that of the drop (in the sense that Tanner’s law
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Figure 11. Plot showing the scaled drop profile (solid lines) tending at large times to the similarity

solution (red-dashed line) for (a)(i) M = 1/3 and (b)(i) M = 1, with λ = 10−5 and τ = t+ s(10)−10;

(a)(ii) plot showing ṡ = −J + O(λ) for M = 1/3 with λ = 10−5; plot of ṡ for (b)(ii) λ = 10−5

and (b)(iii) λ = 10−3, 10−4 and 10−5. The solid lines are extracted from the numerical solution

of equations (5.6)–(5.8) with n = 1 and J = −1 subject to the initial conditions (5.9)–(5.10). The

similarity solution is extracted from the numerical solution of equations (6.26)–(6.27).

depends only logarithmically on the ratio of these length scales); see, for example, [23]).

There is a burgeoning field seeking to understand the effects of mass transfer on contact-

line motion within the thin-film framework, and, in particular, how the hydrodynamics

of contact-line motion (embodied in Tanner’s law) is modified by the presence of mass

transfer and whether or not there are any universal aspects to the dynamics as in the

absence of mass transfer. We used the method of matched asymptotic expansions to

analyse systematically the thin-film problem (2.1)–(2.2) in the small-slip limit in which

λ → 0. Our analysis revealed that the leading-order outer formulation and contact-line

law that are selected in the small-slip limit depend delicately on both the size and sign

of the rate of mass transfer J , with the kinematics of mass transfer modifying the usual

hydrodynamics at sufficiently small values, but dominating it at sufficiently large values.

In Section 3 we showed that, in the distinguished limit in which mass transfer is small

in the sense that J = J ln(1/λ) = O(1) as λ → 0, the spatial asymptotic structure selected
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in the small-slip limit is the same in the presence of mass transfer as in its absence, the

timescale of contact-line motion being given by T = t/ ln(1/λ) = O(1) as λ → 0. We

showed that the leading-order outer formulation is quasi-steady and governed by the

pair of nonlinear ordinary differential equations (3.4) and (3.16) for the leading-order

half-drop width S0(T ) and macroscopic contact angle Θ0(T ), (3.4) representing global

conservation of mass and equation (3.16) being a generalisation of Tanner’s law that

takes into account mass transfer. In the case of mass gain (J < 0), we showed that the

contact-line law (3.16) has qualitatively the same shape as Tanner’s law. However, in the

case of mass loss (J > 0), we showed that the dominance of mass transfer near to the

contact line manifests itself in the form of a singularity at Θ0 = 0 in the contact-line law

(3.16), the leading-order contact-line velocity Ṡ0 being unbounded below as Θ0 → 0+. The

relevant initial conditions (3.30) were shown to depend only on the initial width and mass

of the two-dimensional symmetric drop, surface tension eradicating at leading order all

other details of the initial drop profile during its early-time evolution (over the timescale

t = O(1) as λ → 0) to a state in which the mean curvature, and hence the pressure, is

constant (at leading order in the thin-film limit).

In Section 4 we showed that, in the distinguished limit in which mass transfer is large in

the sense that J = O(1) as λ → 0, contact-line motion occurs on the order-unity timescale

t = O(1) as λ → 0, so that the leading-order outer evolution equation for the drop thickness

is the full thin-film equation (2.1) without the effects of slip. We note that it is unusual

in such thin-film formulations for the time derivative of h0 to enter the leading-order

balance on the timescale of contact-line motion. We showed that the leading-order outer

problem selected in the small-slip limit is markedly different depending on whether there

is mass loss (J > 0) or mass gain (J < 0). In the case of mass loss (J > 0), we recovered

equations (4.11)–(4.12) and showed that the dominance of mass loss at the contact line

results in the novel contact-line law (4.5), with the leading-order macroscopic contact

angle θ0(t) being determined as part of the solution to the leading-order outer problem

and with, remarkably, the leading-order outer solution being entirely independent of the

microscopic contact angle. However, in the case of mass gain (J < 0), we showed that the

dominance of mass gain at the contact line results in the additional constraint (4.9) that

the macroscopic contact angle be equal to the microscopic one; the resulting novel contact-

line law (4.10) reduces the leading-order outer problem from a free-boundary problem to

one in which the location of the moving boundary is known a priori, with s0 = 1 − Jt.

Thus, in both regimes, the usual hydrodynamics of contact-line motion (namely the one

in the absence of mass transfer) is dominated by the kinematic effects of mass transfer

near the contact line. We closed the leading-order outer formulations by imposing the

initial conditions (4.16) inherited from the full thin-film problem. The differences between

the leading-order outer problems for mass loss and mass gain were shown to result from

the degree of freedom θ0(t) being transferred from the outer to the inner region when

J changes from positive to negative. We emphasise that the apparent discontinuity in

the contact-line law when J changes sign is resolved precisely by the small-J analysis

in Section 3 in the sense that the contact-line law (3.16) describes the smooth transition

from the contact-line law (4.5) valid for J > 0 to the contact-line law (4.10) valid for

J < 0. A manifestation of this smooth transition is that the contact-line laws in equations

(3.16), (4.5) and (4.10) may be combined into a uniformly valid contact-line law of
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the form

ṡ ∼ V(θ, J ln(1/λ))

ln(1/λ)
as λ → 0, (7.1)

where θ denotes here the relevant leading-order macroscopic contact angle. The contact-

line law (3.16) is universal in the same sense as Tanner’s law (depending only logarith-

mically on the ratio of the length scale of the regularisation of the contact-line singularity

to that of the drop), while the contact-line laws (4.5) and (4.10) are universal in an even

stronger sense (being independent of any details of the regularisation), each of them

holding for other regularisations provided mass transfer does not destroy the mechanism

that selects the microscopic contact angle on the length scale of the regularisation. We

have shown this to be the case for a generalised slip law, but it is not the case for, for

example, the regularisation introduced by [34], which utilises a disjoining pressure and a

precursor layer, unless mass transfer is ‘turned off’ in the precursor layer.

In Section 5 we presented in the case of small mass transfer an asymptotic and

numerical analysis of the system (3.4), (3.16) and (3.30) governing the evolution of the

drop on the timescale of mass transfer. We found that the evolution may be classified into

three regimes depending on the rate of mass transfer, J, and the initial cross-sectional

area of the drop in x > 0, M, as illustrated in Figure 4(b). For sufficiently large J or

sufficiently small M (regime I), both S0 and Θ0 tend to zero with the square-root of the

time until extinction. For sufficiently small J and sufficiently large M (regime II), however,

as extinction is approached both Θ0 and Ṡ0 tend to non-zero constants depending only

on J. Thus, there is a transition from square-root to linear scaling behaviour of the drop

width at extinction across the borderline between regimes I and II. For J < 0 (regime

III), the long-time attractor is a state in which distances scale linearly with time, with both

Θ0 and Ṡ0 tending to non-zero constants that depend only on J. Despite our leading-

order predictions having an error of O(1/ ln(1/λ)) as λ → 0, we obtained convincing

visual agreement with our preliminary numerical simulations of equations (2.1)–(2.2) with

n = 1 for λ = 10−5 over the timescale of validity of the small-slip asymptotics. For an

intermediate range of values of the rate of mass loss, J, that appears to shrink with λ,

our preliminary numerical simulations suggest that, when the drop is sufficiently small

that the small-slip asymptotics on the timescale of mass loss no longer pertain, the

free surface may form a rim and rapidly touch down at an interior point near to the

contact line. In order to gain some insight into the dynamics governing this touchdown

phenomenon, which appears to occur only in regime I when surface tension must cope

with the macroscopic contact angle tending to zero with the time to extinction on the

timescale of mass loss, it may be useful to investigate the evolution near to extinction via

more comprehensive numerical simulations and an asymptotic analysis in the small-slip

limit of the rapid evolution in the temporal boundary layer just before touchdown. It may

also be insightful to apply such methods to investigate the final stages of the evolution

just before extinction to establish whether the scaling behaviours exhibited in regimes I

and II on the timescale of mass loss pertain all the way up to extinction.

In Section 6, we presented in the case of large mass transfer an asymptotic and

numerical analysis of the systems governing the evolution of the drop on the timescale

of mass transfer. For both mass loss and gain, we began by reconciling the small-slip

asymptotics in Sections 3 and 4 by using a matched-asymptotic analysis to shown that the
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small-|J| predictions in Section 6 are in agreement with the corresponding large-|J| ones

in Section 5. In the case of mass loss (J > 0), we used the small- and large-J asymptotic

analyses in Sections 6.1.1–6.1.2, the near-extinction asymptotic analysis in Section 6.1.4

and our preliminary numerical simulations of (2.1)–(2.2) with n = 1 and λ � 1 in Section

6.1.5 to provide convincing evidence that, at leading order in the small-slip limit, the

local attractor near extinction is in general the exact solution (6.16) of the leading-order

outer problem in which distances scale with the square-root of the time until extinction.

In the case of mass gain (J < 0), we used the small- and large-|J| asymptotic analyses

in Sections 6.2.1–6.2.2 and our preliminary numerical simulations of equations (2.1)–(2.2)

with n = 1 and λ � 1 in Section 6.2.4 to provide convincing evidence that, at leading

order in the small-slip limit, the long-time attractor is the similarity solution in Section

6.2.3 in which distances scale linearly with time. We found that in the case of mass gain,

if the rate of change of the curvature of the initial profile is sufficiently large, then our

preliminary numerical simulations of equations (2.1)–(2.2) with n = 1 and λ � 1 deviate

substantially from the leading-order predictions of the small-slip asymptotics in a small

window of time near t = 0. It may be interesting to gain a better understanding of this

surface-tension-driven phenomenon by undertaking, for example, a matched-asymptotic

analysis of the regime in which λ � 1 and the rate of change of the curvature of the

initial profile is large in a neighbourhood of the contact line.

We note that the aim of our preliminary numerical simulations was rather modest

in the sense that we employed them largely to provide quality control for the leading-

order asymptotic analyses presented in Sections 3 and 4. We did this by choosing a

small value of λ, namely 10−5, and initial conditions that do not vary too dramatically.

An important direction for future research may be to ascertain the accuracy of our

asymptotic predictions for larger values of λ and for other initial conditions, especially

in the case of small mass transfer in which the relevant small parameter depends only

logarithmically on λ. However, in doing this it would perhaps be prudent both to refine

the modelling assumptions to be application specific and to proceed to second order in

the asymptotic analysis before an error analysis is undertaken and before asymptotic

predictions are compared with experimental data (the latter for the reasons given in

Section 5.2.1).

The generalisation of the small-slip asymptotics in Sections 3 and 4 to three dimensions

and to prescribed non-uniform rates of mass transfer of O(1/ ln(1/λ)) and of O(1) as

λ → 0 (in which the variation is slow in the sense that it is on the length scale of the

contact set and on the timescale of O(ln(1/λ)) and of O(1) as λ → 0, respectively) are both

straightforward, the leading-order inner problem near the contact line being of the same

size (i.e. of O(λ)) and quasi-two-dimensional in each plane perpendicular to the contact

line. In more sophisticated models for the evaporation of a sessile liquid drop, such as those

considered by [12, 28] and references therein, the mass transfer is coupled to a model for

the transport of the liquid vapour away from the drop and may vary on the length scale of

the regularisation of the contact-line singularity. The corresponding matched-asymptotic

analysis of such models is therefore expected to be significantly more complicated than

the one presented here and a worthwhile direction for future research that we hope to be

aided by the insight that we have gained. We shall therefore record the three-dimensional

leading-order outer formulations in the case of prescribed slowly-varying non-uniform
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rates of mass transfer, before commenting briefly on the axisymmetric case relevant to

the evaporation of a sessile liquid drop on a planar substrate.

Allowing the rate of mass transfer J to be a prescribed function of position x in the

planar substrate and of time t, the three-dimensional generalisation of the free-boundary

problem (2.1)–(2.2) in Section 2 is given by

∂h

∂t
+ ∇ ·

(
(h 3 + λ3−nhn)∇∇2h

)
= −J(x, t) in Ω(t), (7.2)

with

h = 0, −∂h

∂ν
= 1, hn

∂3h

∂ν3
= 0 on ∂Ω(t), (7.3a − c)

where Ω(t) is the contact set between the liquid and the substrate, whose boundary ∂Ω(t)

forms the contact line and has outward normal derivative ∂/∂ν and outward normal

velocity v. We note that the boundary condition (7.3c) is automatically satisfied for

2 � n < 3, but must be imposed for n < 2. The thin-film problem (7.2)–(7.3) is closed by

prescribing the initial drop profile and contact set, say h(x, 0) = H(x) for x ∈ Ω(0). We

note that the expression representing global conservation of mass is given by

d

dt

(∫∫
Ω(t)

h dS

)
= −

∫∫
Ω(t)

J dS. (7.4)

In the case of small mass transfer as in Section 3, i.e. for J(x, T ) = J ln(1/λ) = O(1),

on the slow timescale T = t/ ln(1/λ) = O(1) as λ → 0, the leading-order outer problem in

Section 3.1 becomes

∇2h0 = −P0 in Ω0(T ); h0 = 0, −∂h0

∂ν
= Θ0 on ∂Ω0(T ), (7.5)

the leading-order pressure P0(T ) and macroscopic contact angle Θ0(x, T ) being coupled

to the evolution of h0(x, T ) and Ω0(T ) by the condition for global conservation of mass,

namely

d

dT

(∫∫
Ω0(T )

h0 dS

)
= −

∫∫
Ω0(T )

J dS, (7.6)

as well as the contact-line law

V0 = V(Θ0(x, T ), J(x, T )) for x ∈ ∂Ω0(T ); (7.7)

here, V0 is the outward normal velocity of ∂Ω0(T ) (with v ∼ V0/ ln(1/λ) as λ → 0), V is

defined by equation (3.16) and the dependence of V on its arguments is analysed in Section

3.3. For the same reasons as in the two-dimensional problem, the problem (7.5)–(7.7) is

closed by the prescribing the initial location of the contact set to be given by Ω0(0) = Ω(0)

and the initial volume of the drop.

In the case of large mass transfer as in Section 4, i.e. for J(x, t) = O(1), on the order-

unity timescale t = O(1) as λ → 0, the leading-order outer problems for mass loss and

gain in Section 4.2 become

∂h0

∂t
+ ∇ ·

(
h 3

0 ∇∇2h0

)
= −J(x, t) in Ω0(t); h0 = 0, −∂h0

∂ν
= θ0 on ∂Ω0(t); (7.8)
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in the case of mass loss (J > 0), the contact-line velocity v ∼ v0 as λ → 0, with

for J < 0, v0 = − J(x, t)

θ0(x, t)
for x ∈ ∂Ω0(t), (7.9)

where the leading-order macroscopic contact angle θ0(x, t) is determined as part of the

solution; in the case of mass gain (J < 0), the macroscopic contact angle is equal to the

microscopic one and the contact-line velocity is equal to the local rate of mass gain, i.e.

for J < 0, θ0(x, t) = 1, v0 = −J(x, t) for x ∈ ∂Ω0(t). (7.10)

In both cases, the leading-order outer formulation is closed by imposing on Ω0 and h0

the same initial conditions as for Ω and h.

All of the analysis presented in this paper for a two-dimensional drop carries over in the

usual way to the case of a three-dimensional axisymmetric drop subjected to a uniform

rate of mass transfer. For example, in the case of small uniform mass transfer governed

by equations (7.5)–(7.7), the regime diagram is qualitatively the same as in Figure 4(b)

upon identifying M with the initial volume of the drop; while in the case of large uniform

mass loss governed by equations (7.8)–(7.9), the free surface in the axisymmetric version

of the two-dimensional exact solution (6.16) is a paraboloid moving with speed J normal

to, and toward, the substrate. We note that, more generally, in the three-dimensional case

of large uniform mass loss governed by equations (7.8)–(7.9), h0 = H(x) − Jt is an exact

solution in which the contact line is given by the level set H(x) = Jt for all profiles H(x)

with constant mean curvature (at leading order in the thin-film limit, so that ∇2H is a

negative constant). However, by analogy with the two-dimensional symmetric case (in

which surface tension drives the initial film profile toward a surface of constant mean

curvature), we expect the axisymmetric three-dimensional exact solution to be, at leading

order in the small-slip limit and in general, the local attractor near extinction. These

predictions are consistent with numerous experimental studies: for example, [5, 9, 32, 36]

report that, for a variety of liquids, the radius of the circular contact set of an evaporating

axisymmetric sessile liquid drop exhibits near to extinction an approximately square-root

scaling behaviour with the time to extinction. Usually the presence of this “D2-law” is

taken to be indicative of diffusion-limited kinetics [13]. Our analysis demonstrates that

the intricacies of contact-line motion coupled to mass loss can give similar behaviour,

albeit with dramatically simplified physics.
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