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ABSTRACT.The flow of ice over a bump under steady-
state conditions has been studied both experimentally and
numerically. The experiments were performed with the ice
viscometer installed at the Laboratoire de Glaciologie et
Geophysique de l'Environnement du C.N.R.S. (LGGE) in
Grenoble, France. The flow was observed by means of a
marker network photographed at fixed time intervals. The
separation of the ice down-stream of the bump and the
non-linearity of the generally accepted Glen's flow law led
to the modelling of this flow using a finite-element method.
The results describe the velocity and stress fields in ice
moving over a bump and obeying Glen's flow law (until
now only relatively rough approximations of these fields
have been given in the literature). The comparison of the
observed and calculated network deformations shows that,
although ice flowing over a bump does not undergo steady
creep, the use of Glen's flow law with an exponent n = 3
remains justified when simulating the flow of a glacier over
its bed under steady-state conditions.

1. INTRODUCTION

Research on glacier sliding laws has been the subject
of considerable work and numerous controversies since
Weertman's first model (Weertman, 1957, 1964, 1971;
L1iboutry, 1968, 1975, 1979; Nye, 1969; Kamb, 1970). Even
if a very simple micro-scale model is used for the glacier
bed, several major difficulties remain in describing the flow
of ice over an isolated obstacle. For the small obstacles on
the glacier bed, two main phenomena are involved: (I)
sliding by "melting-refreezing", the simulation of which still
poses theoretical and experimental problems as the type of
surface in contact with the ice, its salt and air-bubble
contents, its permeability, and the way in which the Iiquid-
water inclusions migrate must be accounted for (Drake and
Shreve, 1973; Nye, 1973; Chadbourne and others, 1975;
L1iboutry, 1976; Morris, 1976; Shreve, 1984); (2) the defor-
mation of ice, difficult to integrate in a sliding law, mainly
because of the non-linearity of the generally adopted
constitutive law. These two processes are often accompanied
by separation of the ice down-stream of the obstacles
("cavitation") which complicates the problem even further
because: (1) the flow over an isolated bump can only be
calculated numerically, even if a Newtonian viscous law is
adopted for ice (Iken, 1981); (2) to account fully for
cavitation in a sliding law, a model giving the subglacial
water pressure is required (Rllthlisberger, 1972; Nye, 1976;
Iken and others, 1983; L1iboutry, 1983).

The present work, based on experiments carried out
with the "Penelope glacier simulator" located at LGGE-
Grenoble, is only a small contribution to the problems of
establishing a glacier-sliding theory and lies in the wake of
studies by Brepson (1979, 1980) and Hooke and Iverson
(1985). It consists of a localized study of the flow of ice
over a succession of identical bumps, showing a strong
separation down-stream of these bumps. The melting-
refreezing process is ignored and the down-stream cavity
water pressure is assumed to be known. We restrict
ourselves here to checking whether Glen's flow law, which

is generally accepted to describe the steady creep of ice,
can be used to simulate the flow of a glacier near its bed
under steady-state conditions. This requires the numerical
simulation of an experiment selected for its long duration.

2. DESCRIPTION OF THE EXPERIMENT

2.1. Apparatus
A detailed description of the "Penelope glacier

simulator" has been given by L1iboutry and Brepson (1963)
and Brepson (1979). Only the essential features of the
apparatus, as well as the modifications made to the original
device, are described here.

The ice flow takes place in a large-diameter Couette-
type viscometer (see Fig. I). The outer cylinder (I) is a

Fig. 1. Schematic diagram of the apparatus; (1) notched
driving ring. (2) bumps. (3) lower plate. (4) upper
transparent plate.

notched ring, made of an insulating material, which sets the
ice in motion. The inner cylinder (2), made of epoxy resin,
has an almost elliptical cross-section and represents two
identical smooth bumps placed symmetrically about the
minor axis. The sliding velocity of the ice relative to the
bumps can be set from I to 1000 m a-I. The inner cylinder
(2) is connected to the fixed frame of the machine by
means of a calibrated torsion rod, the rotation of which is
monitored using a LVTD. The lower part of the flow
chamber is delimited by an insulating plate (3) which turns
with the driving ring (1). The upper part of the apparatus,
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described by Brepson (1979), has been eliminated and
replaced by a thick Plexiglass plate (4) which showed
negligible deformation during the tests. The outer part of
this plate is fastened to the notched ring (1); its inner edge
rests against the top of the inner cylinder (2) via a flat
sliding pad. Contrary to the original design, the upper plate
(4) cannot move in a vertical direction. The ice sample is
cog-wheel shaped and has an outer diameter of 60 cm, a
mean inner diameter of 37 em and a thickness of 13 em.

The two horizontal plates (3) and (4), which grip the
ice and are rotated with it, have smooth surfaces and, since
they are lubricated by a thin water film, a frictionless
contact with the deforming ice can be assumed. Under these
conditions, plane flow is achieved.

Finally, a built-in cooling circuit allows the temp-
erature of the ice to be modified without changing the
cold-room setting.

2.2. Ice-sample preparation
The ice was made from a mixture of snow and water.

Snow was put in the flow chamber then soaked in de-
ionized water which was kept at O°C. This mixture, which
contained about 50% snow and 50% water by weight, was
stirred manually then refrigerated for several hours using
the internal cooling circuit. Ice obtained in this way has an
isotropic structure (Duval and Ie Gac, 1980). Its density,
calculated from the masses of snow and water used, was
about 0.83. The cooling system was then stopped and, when
the sample reached cold-room temperature, the machine was
set in rotation.

During the experiment described here, ice densification
was such that the bumps were completely cleared after one
revolution of the driving ring. The resulting cavities were
filled up with snow and water and the process was then
repeated. At the end of the experiment, the exact density
was found to be 0.89 ± 0.01 (average on four ice pieces
taken from the sample).
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2.3. Flow visualization
The flow was observed using an array of uniformly

distributed markers (see Fig. 2). The markers were poly-
ethylene rods, 3 mm in diameter and 7 em long, planted
vertically in the ice. The ice pressure exerted on their
lower section flattened their upper section against the
Plexiglass plate, making them easy to distinguish throughout
the whole experiment. A camera took photographs of the
network at regular intervals of 63 min. It was also possible
to follow the evolution of the cavities formed down-stream
of the bumps, from the beginning of the experiment (see
Fig. 3).

2.4. Experimental procedure
As said previously, physical modelling of the melting-

refreezing process remains difficult. On the other hand,
even using the classical simplified theory (i.e. heat transfer
by pure conduction through rock and ice; see, for example,
Lliboutry, 1975), the relatively small thickness of the
insulating material forming the bumps and the horizontal
plates (2-5 em), and the surrounding metal parts, would lead
to a three-dimensional coupled problem. The solution of
such a problem lies outside the scope of this study and thus
the influence of the melting-refreezing process must be
limited, if not eliminated. Consequently, the experiment was
carried out at a temperature between -0.5 ° and -1°C: the
ice must be slightly below the melting point corresponding
to the mean normal stress acting at the ice-bump interface
estimated from the torque measurements.

During the first few days the speed of rotation was set
very low to prevent the torque from reaching the
torsion-rod safety limit (Cmax = 5500 Nm). This period
corresponds to the opening phase of the cavities by ice
densification. Since the expansion of the cavities resulted in
a decrease of the torque, the speed of rotation was
increased progressively so that the torque reached 0.9Cmax
and then set to a fixed value of around 1/4 revolution/d
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until the end of the experiment. When the ice density
stopped increasing and the calorific balance was achieved,
the down-stream cavItIes stabilized and the ice-bump
contact area remained almost constant. Nevertheless, the
torque continued to oscillate slowly around its mean value
Cm, with a frequency of about 2 cycles/24 h and an
amplitude of 0.05Cm (see Fig. 4). Once this virtually steady

C (N.m)

~~-'I~'-~IJ
300a

a 5 la 15 t (days) 2a

Fig. 4. Measured torque versus time. (Steady state was
assumed at t = to" one revolution between to and tl• four
revolutions between to and t4.)

state was reached, the experiment was continued for as long
as possible to obtain a sufficient deformation of the marker
array. In all, the experiment lasted 29 d, of which only the
last 16 d showed acceptable steady-state conditions. Time to'
in Figure 4, which will be referred to as the "initial time",
corresponds to the beginning of this quasi-steady-state
period (and to the end of the first revolution at fixed
speed of rotation).

where r is the effective shear stress defined by;
r2 = tafjati' This constitutive law leads to the relation
known as Olen's flow law (Olen, 1955): 1= Brn, where 1
is the effective shear strain-rate given by 12 = 2Ei}ii'

The steady-creep law, Equation (3), was verirled by
Duval (1976) in torsion--compression tests on natural ices (n
was found equal to 3 for r in the range 0.1-0.4 MPa). It
was used in our computations, although when passing over a
bump a material particle does not undergo steady-creep
conditions (Paterson, 1981). The isothermal ice hypothesis
led to the use of a constant for B.

3.1.3. Coordinate systems. flow geometry, notation
The numerical solution is achieved using a Cartesian

reference frame with the x-axis joining the summits S-S'
of the bumps and the z-axis along the rotation axis of the
machine (see Figs I and 5). Plane flow is assumed in the
x-y plane. For easier reading, the results are shown in
polar coordinates (p,e) as defined in Figure 5.

The geometry of the flow domain D is simplified by
replacing the actual notched outer boundary with a circle of
equation p = Re (see Fig. 5). As steady flow is assumed,
the inner boundary formed by the two cavity roofs and
ice-bump interfaces is a stream line and a trajectory with
an equation p = po(e). In the following, the point at which
an ice particle moving along this trajectory loses contact
with a bump is named the "separation point", the point at
which it re-contacts the next bump is named the "rejoining
point".

The following notation and conventions are used:
3. NUMERICAL SIMULA nON

3.1. Description of the problem

3.1.1. Equations
The melting--refreezing process is ignored. The ice is

assumed to be a continuous, homogeneous, isotropic, incom-
pressible, isothermal medium. Disregarding the effects of
gravity and inertia, the equations of equilibrium and mass
conservation are:

Velocity vector.
Velocity components in rectangular coordinates.
Velocity components in polar coordinates.
Unit normal to the boundary of D, pointing
outward from the ice.
Unity tangent obtained by anti-clockwise rotation
of n by Tl/2.
Stress vector acting on the boundary of D.
Normal and tangential components of 1:, along n
and t (positive when tensile).
Isotropic pressure (positive when tensile).
Angular (driving) velocity of the apparatus.

p
n1,2,3) (1)o (xi Cartesian coordinates;

where aij are the stress tensor components and u is the
velocity vector.

div u = 0 (2)
3.1.4. Boundary conditions

Taking into account the symmetry with respect to the
z-axis, the solution, expressed in polar coordinates, is
periodical of period n. Consequently, the modelled region is
halved (see Fig. 5).

The prescribed boundary conditions are as follows:
3.1.2. Constitutive law for ice

The assumed constitutive law is Norton-Hoff's power
law which relates the strain-rates Eij to the deviatoric
stresses atj:

(a) periodicity n expressed by setting u(x,O) = --u(-x,O)
and I:(x,O) = I:(-x,O) (on ST and S'T' boundaries in Figure
5);

E· .IJ

B _
-rn la'..
2 IJ (3) (b) constant angular velocity n. resulting in tangential

s T

Fig. 5. Mesh used for computation, coordinates. and notation (shadowed area: ice-bump contact).
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3.2.3. Assembly and solution of the finite-element system
Equations (4) are assembled using the contributions

from each element to integral J. The boundary conditions
on u are specified after assembly. The driving velocity U is
prescribed using the Payne-Irons method. The sliding and
periodicity conditions are prescribed by making the appro-
priate combinations of rows and columns of the system, and
eliminating the excess unknowns. The resulting non-linear
finite-element system is:

the total number of "pressure nodes", while prescribing
boundary conditions on the velocities.

In this work Lagrangian triangular six-node elements,
with a quadratic interpolation of the velocity and a linear
interpolation of the pressure, were chosen (Thompson, 1975;
Jackson and Cliffe, 1981). Continuity of the velocity across
triangle sides is ensured, but not that of the pressure so as
to force complete incompressibility at each point within
each element. So each triangle has six "velocity nodes" (three
vertices + three mid-side nodes) and three internal nodes
corresponding to the "pressure at triangle vertices" un-
knowns. The mesh was made up of 142 elements and 351
"velocity" nodes, of which 105 were triangle vertices (see
Fig. 5). Its regular structure was broken so as to refine the
element size near the rejoining point. Curved triangles were
used to describe the inner and outer boundaries of D (strict
incompressibility in these elements is then no longer
ensured). It is worth pointing out that this mesh discretizes
the space occupied by ice and not the ice itself,
corresponding to an Eulerian description of the flow.

velocity U of constant magnitude on the outer ring TT':
up = 0; ue = U = ReO;

(c) free-surface condition 1: = 0 on the cavity roof S' C;
(d) frictionless ice-bump contact expressed by: un = 0

and Et = 0 on SC. It must be verified a posteriori that the
ice-bump interface is subject only to compression (En < 0).

3.1.5. Comments
Condition (c) above corresponds to a zero air pressure

Pc inside the cavity. The solution for Pc = H = constant is
simply obtained by adding H to the isotropic pressure (the
velocity and deviatoric stress fields are unchanged). As ice
incompressibility is assumed, the volume of the cavity, fixed
by the initial shape given to the domain D, does not
depend on Pc' The problem is thus different from the one
treated by Brepson (1979, 1980): in his experiments the
upper plate was free to move vertically and its upper side
was submitted to water pressure Pw' During steady plane
flow, the shape of the cavity adapted itself so that the
action of the vertical stresses exerted by ice balanced the
action of pW'

3.1.6 Choice of units
The computation is made using dimensionless variables.

The length unit is denoted by L. The magnitude U of the
tangential driving velocity is taken as the velocity unit.
Consequently, the strain-rates are expressed in units of UIL.
For the sake of convenience, the Glen's flow law
coefficient B is a fixed a priori. The stress unit is therefore
u = (UIBL)l/n.

As the reduced equations of the problem are identical
to Equations (I) and (2), the notation used for the actual
and reduced variables is the same.

[K(u)]Y = Bo (5)

3.2. Computation method

stationary over the set of kinematically admissible velocity
fields, i.e. those which satisfy here:

where Y is the nodal velocity and pressure-unknown vector,
the matrix K depends on the velocities through the viscosity
and Bo is the "load" vector resulting from the prescribed
velocity condition. It is solved by successive updating, for
which the convergence, for n " I in Glen's flow law, was
proved by Friaa (1979). At step i the viscosity at each
integrating point is calculated using the strain-rates obtained
at step i-I as n = B-1/nt(1-nJ/n. The resulting linear
system, [K(ui_l)]Yi = Bo' is solved by the Gauss algorithm.

In this work, the iterations were stopped at step i
when IIYi - Yi-11/IIIYill < 10-3 and IIBo - [K(ui)]YilI2 < 10-5
(uL2)2, where IIVl2 is the squared length of vector 'y.

3.2.4. Free-surface fitting
At each step the solution verifies only the natural

condition 1: = 0 on the cavity roof S' C (see Fig. 5): the
extra requirement for steady flow is that S' C must be a
stream line. This is carried out as follows:

(a) the initial shape of the cavity is fixed a priori as the
arc of circle tangent to one bump at its summit S' (po' 17)
and intersecting the other bump at point C (po' 17/4), close
to the observed position;

(b) after calculating the solution to system (5), the
trajectory of the ice particles passing through S' is obtained
by integrating the equation dyldx = uyiux;

(c) this trajectory is then taken as the new free surface
and the corresponding velocity field is re-computed;

(d) the different computations are re-iterated until the
condition un = 0 is satisfied on the free surface.

~B-l/nt<n+l)/n
n+1

where ~J

(a) u(x,O) = -u(-x,O);
(b) u = U on the outer ring (p = Re' 0 , e , 17);

3.2.1. Variational formulation
The problem is put into a form suitable for numerical

solution by using the Bird (I960)-Johnson (I960) variational
principle for steady flow of a non-Newtonian fluid with
dissipation potential ~. It has been proved (Meyssonnier,
1983) that the solution for a given cavity shape is obtained
by making the functional

where u~, pi are the values of ux' uy' and p at the Ne and
Me nodes i, and xy, LY are polynomial functions of x and
y.

The stationarity of J is expressed by sQlviqg the set of
simultaneous equations with the unknowns uj, pI

(c) un = 0 on the ice-bump contact.

where N is the total number of "velocity nodes" and M is

3.2.2. Finite-element method solution
This formulation leads naturally to the choice of

velocity and pressure as primitive variables (Nickell and
others, 1974; Thompson, 1975). The solution to 'OJ = 0 is
carried out by discretizing domain D into a finite number
of geometrically simple elements. In each element e the
velocity ,j! and pressure pe are interpolated as:

o
o

(i = I,N; j

(i = 'I,M)

1,2)
(4)

At each stage one must verify that the normal stresses
at the ice-bump interface nodes are all compressive, and
that the new computed free surface does not overlap the
bump profile. This represents the main difficulty of the
process, due to the changes in nature of the boundary
conditions occurring near the ends of the cavity.

From the start, it appeared that the ice tended to
contact with the bump down-stream, looking like the
swelling of jets in extrusion die outlets (Nickell and others,
1974). The iterations were stopped when the ratio Iunluu I
was lower than 10-2 at all the nodes on the free surface.
Their displacements, normal to the cavity roof, were then
below 10-4 L.

3.3. Estimation of strain-rates and stresses
The interpolation used for the velocities results in

strain-rates E ij which are discontinuous across the triangle
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boundaries. In order to obtain easily usable information, a
continuous description, in terms of nodal values, of the
quantities presenting such discontinuities is needed. Many
smoothing techniques are available (see, for example, Lee
and others, 1979). The simplest method, consisting of
calculating local nodal averages, was used in this study: xf
being the value calculated at node i in triangle e, and N
the number of triangles including node i, the smoothed

N
nodal value is simply xi 1r xe.

N 1 i
The mean pressures at the triangle vertices were calcu-

lated in this way, using the elementary values obtained as
part of the solution to system (5). Then the pressure field
was interpolated linearly through the vertices. The elemen-
tary values of the strain-rates, viscosity, and deviatoric
stresses were calculated at the six nodes of each triangle,
then smoothed to obtain nodal values. Suitable descriptions
of the respective fields were obtained by adopting the
quadratic interpolation used for the velocities. This has been
assessed in the case of the flow of a Newtonian material,
without cavitation, for which an approximate analytical
solution may be obtained (Meyssonnier, 1983). In the
present case, it is only possible to check the validity of the
results:

(a) on the inner stream line, the computed stresses
correctly account for the prescribed boundary conditions,
except in the immediate vicinity of the separation and
rejoining points, which present singularities (see Fig. 6);

(b) on the outer ring (p = Re)' the condition up = 0;
ull = U = constant leads in theory to E pp = 0
(Meyssonnier, 1983): this condition is achieved with

I
E pplt I < 10-\ except at the ends (ll = O,ll) where
E fly < 1.5 x 10-3;
fc) the value of the dissipated power computed from the

strain-rates, Pd = 2f B-1/nt(n+l)/ndD, and that derived
D

from the torque C exerted by the normal stresses acting on
the bump Pe = Cll are consistent since: (P d - Pe)/ Pe = 3 x
10-2.

Meyssonnier: lee flow over a bump

4. NUMERICAL AND EXPERIMENTAL RESULTS

4.1. Numerical results

4.1.1. Velocity field
Due to the large .extent of the cavity, the velocity field

is little disturbed in the zone situated above it. The ua
profiles are close to those of a rigid body in the sector
1l/2 < a < II (see Fig. 7). The disturbance becomes impor-
tant in the vicinity of the rejoining point.

4.1.2. Strain-rates
Contours of t derived from the computed velocity field

are shown in Figure 8. This figure can be read as a map
of T contours by applying Glen's flow law. The strain-rate
gradient is very high in the region near the rejoining point
where t passes from 2 to 17.6 (U/L), its maximum value,
over a distance equal to 0.OI5L, giving a gradient of about
I03(U/L2).

4.1.3. Stresses
The nodal isotropic pressures are all compressive, lying

between -a.2cr and -7.7cr. The minimum compression is
reached on the cavity roof, just after separation. The
maximum compression is reached at the rejoining point. The
istropic pressure remains high in the whole region of
convergence of the flow (see Fig. 9), being very high at
the rejoining point and stretching over the ice-bump
interface. Thus, the isotropic pressure contributes largely to
the normal stress acting on the bump (see Fig. 6). A similar
result was found by Lliboutry and Ritz (1978) for ice flow
past a sphere. Figure 10 shows the principal stresses
computed at the centroids of the triangles. All of these
stresses are compressive. The influence of the free surface
is significant and remains perceptible in the core of the ice
above the cavity. On the other hand, the extent of the
cavity-bump transition zones within the ice, characterized
by the rotation of the principal stress directions, seems very
limited.
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Fig. 6. Normal (En) and tangential (Et) components of stress acting on the ice at the bump contact and
on the cavity roof (dotted line: isotropic pressure p).
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Fig. 8. Effective shear strain-rate contours (Glen's flow law. n = 3; dimensionless values).
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4.2. Relation between computation and experiment

4.2.1. Units and value of B in Glen's flow law (3)
The length unit such as the dimensions of the finite-

element mesh correspond to that of the apparatus is L =
I m. The angular velocity 0 was measured very accurately
thanks to the photographs and checked to remain constant
for the duration of the experiment. It corresponded to a
driving velocity U = 154.1 ± 0.5 m a-I. The resulting strain-
rate unit is UIL = 154 a-I. The stress unit is derived from
the comparison between the measured and computed values
of the torque exerted by the ice on the torsion rod. The
"theoretical" torque calculated from the I:n distribution
shown in Figure 6, with a sample thickness of 0.13L is C1h
= 48.5 x 10-4 (uL 3). The "experimental" torque is taken as

T
the average Cexp = 1. f Cdt of the observed values (see

To
Fig. 4), T being the period during which quasi-steady state
was achieved. According to Mellor and Cole (1981), a better
value Ce' accounting for the non-linearity of Glen's flow
law, would be such that

90

In the present case, the fluctuations of the torque,
compared to Ce or Cexp' are small enough so that the two
estimates are very close. The average value, taking into
account a friction torque of 600 N m, is Cexp = 4150 N m.
The Cex/Cth ratio gives the stress unit: u = 0.85 Mpa (8.5
bar).

The resulting viscosity unit is uLIU = 1.74 x 1011 Pa s
(= 0.055 bar a), and the corresponding value of coefficient
B in Glen's flow law (3) is: B = UI(Lu3) = 7.92 x 10-24

Pa-3 S'l (= 0.25 bar-3 a-I). This value will be discussed later.

4.2.2. Shape of the cavity
Diagrams of the cavity profile have been made using

the photogaphs taken at time to then after one and four
revolutions of the machine (times t1 and t. in Figure 4).
Figure II shows the variations of p (measured to the
millimetre) versus 9 for the points on the cavity roof. A
slight increase of the cavity volume can be noted between
the extreme measurements. The computed cavity corresponds
well to observations, especially for the one obtained after
one revolution (t = t1).

4.2.3. Deformation of the marker network
The trajectories are solutions of the differential system:
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Fig. 9. Isotropic pressure contours (Glen's flow law, n = 3: dimensionless values).
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Fig. 10. Principal stresses at the element centroids (n = 3).

Each trajectory is defined by its starting point Mo on the
radius 6 = 11. The solution to Equations (6) is found
starting from Mo at time t = 0 = to and using the Runge-
Kutta method. At time t, the current point M belongs to
element e. The position of M at t + lU is calculated using
the nodal velocities solution to finite-element system (5) and
the interpolation functions specific to element e. The time
step lU is taken small enough so that, if M crossses the
boundary of e during lU, its new position can be kept. This
computation was performed for 19 stream lines, equally
spaced at 5 mm on the radius 6 = 11. Figure 12 shows the
deformation of the material line 6 = 0, initially radial, after
one and four revolutions.

During the experiment, the ice trajectories are observed
by following the displacement of each marker.

The comparison of the calculated and observed defor-
mations of the network was made after one and four revo-
lutions. The initial position of the network (instant to in
Figure 4) is shown in Figure 13_ In order to reduce the

dx

dt

dy

dt

(6)

computational burden, each individual marker trajectory was
linearly interpolated between the two nearest among the 19
already computed trajectories. The results are shown in
Figures 14 and 15. After one revolution the computed and
observed networks are practically the same. After four revo-
lutions the results remain quite good: the mean deviation in
the angular position 9 of the markers is I D,

4.2.4. Time description of the trajectories
More detailed checking of the flow can be carried out

by studying how a marker moves along its trajectory with
time. The study is restricted to the description of half a
trajectory (0 < 6 < 11). About 50 photographs are available
to measure the angular position 6(t) of a marker. The
computed values are 12 times more numerous, The results
for a marker on the innermost stream line are shown in
Figure 16. As the differences between the observed and
calculated 6 are very slight after half a revolution, instead
of 9(t) this figure shows the angular difference e(t) to a
point which would turn at the constant speed of rotation n
of the machine, i.e, e(t) = fit - 9(t). The comparison is
made by taking the rejoining point on a bump as the
starting point of the trajectory. It can be noted that when
passing over the cavity, the differences e are slightly
greater for the marker than for the theoretical material
point, which indicates a smaller increase in the observed
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Fig. 12. Computed deformalion (n = 3) of the radial line
a = 0: (0) initial position; (1) after one revolution; (4)
after four revolutions (this line is not part of the network
which is already deformed at time to)'

5.1. Experimental conditions
Before discussing the results, it is necessary to look at

how the assumptions used for the computation were handled
during the experiment.

Fig. 11. Radius p(a) of Ihe cavity roof: (A) cavity
observed at t = to (beginning of observations), (B) cavity
observed at t = t1 (afler one revolution), (C) cavity
observed at t = I. (afler four revolutions). Solid line:
cavity computed with n = 3; dotted line: polar radius of
Ihe bump profile.

5.1.1. Steady-state conditions
The cold-room temperature is very difficult to maintain

at a constant value over long periods. These temperature
variations give rise to heat exchanges with the ice and are
largely responsible for the torque variations (see Fig. 4).

On the other hand, the steady-flow assumption
supposes that the shape of the cavities does not change. The
measured increase in volume of a cavity between zero and
four revolutions was about 100 ems, corresponding to a 1%
decrease in the volume of ice, half of this variation taking
place during the first revolution (volume of the cavity after
four revolutions: 680 ems). This decrease in the volume of
ice was found to be mainly caused by melting at the bump
contact, as heat was provided. by the outer environment,
further densification of the ice after time t.. to being
undetectable (Meyssonnier, 1983). Two relatively important
melting phases correspond to the decreases in torque

recorded at times t = to and t = t2 in Figure 4.
Finally, it must be noted that the polar angle of the

rejoining point varied little from the beginning to the end
of the observations, passing from 440 to 43.5 o.

Fig. 13. Initial position of the marker network (time to in
Figure 4).

5.1.2. Boundary conditions
The boundary conditions used for the computation and

for which experimental validity must be verified are:

(a) frictionless ice-bump contact: in order to ensure the
existence of a lubricating water film at the ice-bump
interface, the melting temperature Tm must be below the
ambient temperature. According to Lliboutry (1976): Tm =
To - BPm - AN/w, where To is the melting temperature at
normal atmospheric pressure, Pm is the pressure at the ice-

e

3 in Glen's flow

TT

'" /
TT/4

velocity than that calculated with n
law.

5. DISCUSSION
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Fig. /4. Deformation of the marker network after one
repolulioll (time tl ill Figure 4): 0 obserped: /!; computed
(II = 3).

Fig. 15. Deformation of the marker network after four
repolutions (time 14 in Figure 4): 0 obsened; /!; computed
(n = 3).
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Fig. 16. Angular difference e(t) = nt - a(t) for a marker moping along the ice-bump contaci and the
capity roof. 0: obsened; solid line: computed (n = 3) palues.

water interface, B '" 0.1 °c MPa-l (Harrison, 1972), N is the
number of saline equivalents per kg of ice, w is the water
content, and A = 1.86°C kg mol-I. With Pm = 6.5 Mpa, the
mean normal stress corresponding to the measured torque,
the drop in Tm is 0.65°C. To reach the cold-room
temperature Nlw should be near 0.2 mol kg-I. This is quite
a probable value as w was probably very low. During the
experiment no disappearance of air bubbles was noticed
which would have indicated melting at grain boundaries
(Barnes and others, 1971) and which was observed by
Brepson (1979), who obtained a laler of blue ice totally
free of bubbles when working at 0 C. Apart from the two
short periods when melting was ascertained, ensuring perfect
sliding, the friction should have remained very low at a
temperature close to -1°C.

(b) driving condition: the adherence condition on the
driving ring seems to be well represented if one refers to

the deformation of the marker network after one and four
revolutions (see Figs 14 and 15). A computation from a
separate finite-element model (Meyssonnier, 1983) indicated
that the sliding velocity over a driving cog, corresponding
to a mean drag of 0.07 Mpa, is negligible (ub < 0.1 cm a-I).
However, it can reach 2 m a-I in zones where the tangential
stress reaches its maximum value of 1 MPa (see Fig. 8).

(c) plane-flow hypothesis: the observations made on pieces
of the ice sample collected at the end of the experiment
did not show any appreciable inclination of the markers
from the vertical.

5.2. Aptitude of the model for describing the observed
behaviour

5.2.1. Value of exponent n in Glen's flow law
The numerical results shown above were obtained with
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n = 3. This value is generally accepted for effective shear
stress T between 0.05 and 0.5 MPa (Barnes and others, 1971;
Duval, 1976).

For higher values of T, higher values of n have been
reported in the literature (Steinemann, 1958; Dillon and
Andersland, 1967; Barnes and others, 1971). In general,
values close to n = 5 have been quoted. Goodman and
others (1981) explained these high values by the fact that at
high stresses (T > 1 MPa) the dislocation sliding velocity is
no longer a linear function of stress. According to ShOji
and Higashi (1978) or Jones (1982), creep at high stresses is
accompanied by generalized micro-cracking, initiated by the
piling up of dislocations at grain boundaries.

In the present model, T = 1 MPa with n = 3 corres-
ponds to a dimensionless value T = 1.18(U/BL)I/3, or t =
1.63(U/L). The extent of the region t > 1.5(U/L) covers all
of the part situated up-stream of the bump (see Fig. 8). In
order to take into account the results of the literature
concerning high stresses, the computations were run again
with values of n higher than 3.

First, n was taken equal to 4. The corresponding map
of t does not differ considerably from that obtained with
n = 3. Therefore, the comparison is made primarily on the
total deformations. Figure 17, which represents the com-
puted deformation of the radial line 9 = 11/2 after four

ofice-

Fig. 17. Deformation of the radial line 0 = 11/2 after four
revolutions. computed with n = 3 and n = 4.

revolutions, shows that this deformation is of course more
important when n = 4, but that the differences are only
appreciable near the innermost stream line. For a point on
this stream line, the angular difference between its positions
computed with n = 3 and n = 4 after four revolutions is
5.6°. As for the deformation of the marker array, the
difference in behaviour, already noticeable after one revolu-
tion, is very clear in the final position. The model with
n = 3 already has a slight tendency to overestimate the
deformations and this tendency becomes very pronounced
with n = 4. This value must therefore be discarded.

In order to complete this work, the influence of a
greater increase in n, but limited to the high effective
shear-stress zones, was studied. To take such behaviour into
account, L1iboutry (1969) and Colbeck and Evans (1973)
have suggested adopting the polynomial relation t = BIT +
BsTS + B5Ts, in which the linear term represents the
behaviour at low stresses. In this work we preferred to use
Glen's flow law in which n is a (step) function of T. The
viscosity is still given as I'l = B-1T1-n where n = 3 and B =
Bs for T < T 5; n = 5 and B = B5 for T 5 ' T; the co-
efficients Bi being laken to preserve the continuity of the
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viscosity. In practice, the exact non-dimensional value of
the threshold T 5 which corresponds to a given stress cannot
be fixed a priori (because the stress scale can only be fixed
after calculation of the torque derived from the finite-
element computation, and comparison to the measured one).
Therefore, an approximate dimensionless value of T 5 is
chosen, based on the results obtained with n = 3, and it is
verified a posteriori that the actual value of T 5
corresponding to the experimental conditions is not too far
from the desired threshold.

The computation was made for a threshold T 5 close to
I MPa. The n = 5 region is then approximately limited by
the contour t = 1.5(U/L) in Figure 8. The ratio of the
observed to the computed torques gives a pressure unit a =
0.89 MPa and the corresponding actual threshold is T 5 =
1.05 MPa. For a marker in contact with the bump, the
angular difference with its position computed with n = 3
after four revolutions lies between 2.5 ° and 3 0, depending
on its initial position. The difference between the final
deformations of the marker network is less pronounced than
in the case n = 4.

5.2.2. Value of coefficient B in Glen's flow law
The torque-measuring system is very accurate but part

of the measured torque is due to the friction of the mobile
upper plate on its inner fixed support. This friction torque
depends very much on the tightening and lubrication of the
sliding pad. It can only be estimated by destroying the ice
sample, allowing the ice to melt on contact with the bumps
(this is done by raising the cold-room temperature and
letting the machine turn without dismantling the upper
plate). This procedure was not adopted here, in order to
preserve the sample. A friction torque of 600 N m, known
to within 400 N m, was assumed. This corresponds to the
average of values obtained in other tests at the end of
which the ice was melted. The resulting uncertainty in the
measurement of torque is 10%. It remains acceptable for the
estimation of the stresses involved, but the accuracy of B,
computed for n = 3, is only of the order of 30%.

In other experiments at the end of which friction was
measured, B was found to lie between 6.34 x 10-24 and
1.27 x 10-23 Pa-3 S-1 (0.2-0.4 bar'3 a-I).

The values of B computed with n different from 3 are:

(a) with n = 4: B = 7.6 x 10-30Pa-4 S-1 (0.024 bar-4 a-I);
(b) with n = 3 if T < T 5' n = 5 if T " TJi = 1.05 MPa:

B3 = 7 x 10-24 Pa-s S-1 (= 0.22 bar-:r a-I)
B5 = 6.3 x IO-S6 Pa-5 S-1 (= 0.002 bar-5 a'I).

The values corresponding to n = 3 are higher than
Duval's (1976), i.e. B = 3.17 x 10-24 pa-3 s-1 (= 0.1 bar-3
a-I) at -o.05°C, for a low water content (w = 0.03%), and
in a secondary creep state. This is due to the fact that at
present deformation level tertiary creep is reached: re-
crystallization and fabric formation contribute to increase
the value of B. Comparison with Duval's (1981) value for
tertiary creep and zero water content, B = 6.3 x 10-24 Pa-3
S-1 (= 0.2 bar-3 a-I), indicates that w remained very low
during our experiment.

5.2.3. Steady-creep hypothesis
During the experiment the ice is obviously not in a

state of steady creep: stresses at a given material point are
very different up-stream and down-stream of the bump (see
Fig. 8).

Figures 18 and 19 show the mean angular differences e
(as defined in section 4.2.4) observed for the markers which
travelled close to the ice-bump interface. These averages are
calculated as follows:

(a) for each marker i, the observation allows 8 at time
tn = n/::J to be calculated as ei(tn) = Iltn - 9i(tn)' where /::J
is the interval between. two photographs, n is the machine
angular velocity, and 9/Un) is the polar angle of marker i
measured at time tn; . .

(b) a value of el(Om) .for O/(tn+) < 9m < Oi(tn) is
linearly interpolated thn;lUgh el(tn) and W(tn+1);

(c) assuming that el(90) = 0 at 90 = 11 (see Fig. 18) or
90 = 11/4 (see Fig. 19) for all the observed markers i, it is
then possible to calculate an average 8(9) corresponding to
an Eulerian description of the flow.
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Fig. 18. Mean angular difference e(9) for the markers along the cavity roof. compared to those
computed with n = 1, 3. or 4 (8 = 0 is assumed at the bump summit for each marker).

Fig. 19. Mean angular difference e(9) for the markers
along the bump contact. compared to those computed with
n = I. 3. or 4 (8 = 0 is assumed at point 9 = 11/4 for
each marker).

6. CONCLUSION

The analysis of the observed and computed final defor-
mations of the marker array allows for the assumption of a
Glen's flow law exponent n higher than 3 to be discarded,
and all the more so since the actual deformation is higher
than or equal to that which would take place if the ice-
bump contact were perfectly frictionless.

However, it remains possible that n could take a value
higher than 3 for effective shear stresses T greater than
1 MPa: the region involved would be too small for a

Figure 18 shows 8(9) observed for markers which have
passed the bump summit and are moving along the cavity
roof. A comparison is made with the values calculated for
ice obeying Glen's flow law with n = I, 3, or 4. Figure 19
gives 8(9) for markers which have passed through the
rejoining point and are travelling along the ice-bump
interface.

First of all, it must be noted that a purely Newtonian
model is not suitable for simulating the ice behaviour.
Along the first three-quarters of the cavity roof, the points
calculated with n = 3 or n = 4 are ahead of the observed
average (see Fig. 18). This tendency is reversed when
approaching the next bump. For a marker in contact with
the bump, the accordance with the computation for n = 3
is excellent, except on approaching the bump summit (see
Fig. 19).

The difference in behaviour observed between a
theoretical Glen body and actual ice, down-stream of the
bump, could be explained by the influence of transient
creep occurring on unloading (Duval, 1976; Duval and
others, 1983). As for (re- )Ioading, no appreciable influence
of Andrade creep (which appears upon loading of a virgin
or annealed sample) can be noted. This result is in
accordance with Liiboutry's (1975) estimations.
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Fig. 20. Deviation from the constant speed of rotation. 0 of the angular. velocity 9 = d9/dt of markers
on the inner stream line: values of oc = 1 - 0/9 = -de/d9 ~ (9 - 0)/0. Comparison between
computed values and those derived from the observed values of 8(9).

significant difference in behaviour to be detected by our
method.

A more detailed study on how the observation markers
move along their trajectories shows the difference in
behaviour between ice and a purely viscous body, and the
influence of transient creep. It appears that only transient
creep on unloading may be significant.

The comparison betweeen the angular velocities 9
deduced from the delay curves in Figures 18 and 19, and
the computed values (shown in Figure 20), indicates that
these transient effects can be ignored when the basal flow
velocity of a glacier in steady-state conditions is to be
simulated.
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