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RESOLVING THE MULTITUDE OF MICROSCALE INTERACTIONS
ACCURATELY MODELS

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

A. J. ROBERTS

Abstract

Constructing numerical models of noisy partial differential equations
is a very delicate task. Our long-term aim is to use modern dynamical
systems theory to derive discretisations of dissipative stochastic
partial differential equations. As a second step, we consider here a
small domain, representing a finite element, and derive a one-degree-
of-freedom model for the dynamics in the element; stochastic centre
manifold theory supports the model. The approach automatically
parametrises the microscale structures induced by spatially varying
stochastic noise within the element. The crucial aspect of this work
is that we explore how a multitude of microscale noise processes
may interact in nonlinear dynamical systems. The analysis finds that
noise processes with coarse structure across a finite element are the
significant noises for the modelling. Further, the nonlinear dynamics
abstracts effectively new noise sources over the macroscale time-
scales resolved by the model.

1. Introduction

We need, accurately and efficiently, to model numerically the evolution of stochastic partial
differential equations (SPDEs). For example, SPDEs may be used to model pattern-forming
systems [15, 6]. Due to the forcing over many length- and timescales, an SPDE typically
has intricate spatio-temporal dynamics. Numerical methods to integrate stochastic ordinary
differential equations are known to be delicate and subtle (see, for example, [21]). We surely
must take considerable care for SPDEs as well (see, for example, [18, 42]).

A critical aspect of SPDEs is that the stochastic effects generate high-wavenumber, steep
variations, in spatial structures. However, stable time integration schemes generally damp
such high-wavenumber decaying modes far too fast. Thus stable time integration schemes
often predict these high-wavenumber modes to be far too small. Nevertheless, through
stochastic resonance an accurate resolution of the amplitude and life-time of these high-
wavenumber modes may be important on the large-scale dynamics. The term ‘stochastic
resonance’ includes phenomena where stochastic fluctuations interact with each other and
themselves through nonlinearity in the dynamical system, not only to generate long time-
drifts but also to change stability (see, for example, [22, 7, 15, 35, 41]) as seen in the
model SDE (4). Thus, for accurate modelling of SPDEs, we must reasonably resolve the
high-wavenumber microscale structures. Only then will numerical discretisation on large
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space-time grids achieve efficiency without sacrificing the subtle interactions that take place
among stochastic subgrid scale structures.

Centre manifold theory supports the macroscale modelling of microscale dynamics. For
example, Knobloch & Wiesenfeld [22], Boxler [7, 8] and Arnold [1, §7.6] explicitly used
stochastic centre manifold (SCM) theory to support the modelling of SDEs. Indeed, Boxler [7,
p. 510] proves that ‘stochastic center manifolds share all the nice properties of their determin-
istic counterparts’. Others, such as Berglund & Gentz [5], Blömker, Hairer & Pavliotis [6],
and Kabanov & Pergamenshchikov [20], use the same separation of timescales that under-
lies centre manifold theory to form and support low-dimensional, long-term models of SDEs
and SPDEs that have both fast and slow modes. A centre manifold approach also illuminates
the discretisation of deterministic partial differential equations [30, 32, 23, 31, 33, 24]. By
merging these two applications of centre manifold theory, we may model SPDEs with sound
theoretical support. Here we begin to explore the discretisation of SPDEs based upon SCM

theory. We consider the case of just one finite element forming the domain. Later work will
address how to couple many finite elements together to form large-scale discrete models of
SPDEs.

The crucial issue explored here is how to deal with noise that is distributed independently
across space as well as time; that is, the noise is uncorrelated in space and time. We decom-
pose the noise into its Fourier sine series, and assume that the infinite number of Fourier
coefficients are an infinite number of independent noise sources. The word ‘multitude’ in
the title reflects the vast number of nonlinear interactions among the infinite number of
these Fourier modes. It eventuates that only a finite number of combinations of these noise
sources are significant in the model. However, all do contribute in the infinite sums forming
these few combinations.

The importance of this work is to establish a practical methodology to create accurate,
finite-dimensional, discrete models of the long-term dynamics of SPDEs.

1.1. Analyse a prototype SPDE

Continuing earlier work [35], we explore the modelling of the dynamics of a SPDE on just
one finite-size element — the simplest case. As a prototype application of the methodology,
let us consider the stochastically forced nonlinear partial differential equation

∂u

∂t
= −u∂u

∂x
+ ∂2u

∂x2 + u+ σφ(x, t), such that u = 0 at x = 0, π, (1)

which involves the important generic physical processes of nonlinear advection uux , linear
diffusion uxx , some additive noise process φ(x, t), and a linear reaction u. The reaction term
partially ameliorates diffusion to make the sin x mode dynamically neutral. Analogously,
Blömker et al. [6] rigorously modelled the stochastically forced Swift–Hohenberg equation
by a stochastic Ginzburg–Landau equation as a prototype SPDE in a class of pattern-forming
stochastic systems. Consider the forcing φ(x, t), of strength σ , to be a white-noise process
that is delta-correlated in both space and time; although note that Sections 2 and 3 actually
apply to much more generic forcing. Express the additive noise in the orthogonal sine series

φ(x, t) =
∞∑
k=1

φk(t) sin kx, (2)

where the φk(t) are independent white noises that are delta-correlated in time. (The reason
for expressing the noise in the sine expansion (2) is that the modes sin kx are the eigenmodes
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of the linear dynamics and thus form a natural basis for analysis.) These spatially distributed
noises interact through the nonlinearity of the prototype SPDE (1). Our immediate aim is
to discover how these noise interactions affect the dynamics over the relatively large-scale
domain [0, π ].

Throughout the body of this paper we interpret all noise processes and all stochastic
differential equations in the Stratonovich sense so that the rules of traditional calculus apply.
Thus the direct application of this modelling is to physical systems where the Stratonovich
interpretation is the norm. However, Appendix B provides alternative derivations of some
key properties of the nonlinear interaction of noise processes: these derivations use the
Ito interpretation. Only in Appendix B is the Ito interpretation used; everywhere else the
stochastic calculus is Stratonovich.

1.2. Centre manifold theory supports modelling

We base the macroscale modelling upon the dynamics when the noise is absent, σ = 0.
When σ = 0, the linear dynamics of the SPDE (1), namely

∂u

∂t
= ∂2u

∂x2 + u such that u = 0 at x = 0, π, (3)

are that modes u ∝ sin kx exp λt decay with rate λk = −(k2 − 1) except for the k = 1
mode, u ∝ sin x, which is linearly neutral, λ1 = 0, and thus forms the basis of the long-term
model. Those components of the forcing noise (2) with wavenumber k > 1 are orthogonal
to this basic mode. Consequently, simple numerical methods, such as Galerkin projection
onto the fundamental mode sin x, would ignore the ‘high-wavenumber’ modes, k > 1, of
the noise (2) and hence would completely miss subtle but important subgrid interactions.
Instead, the systematic nature of SCM theory accounts for the subgrid-scale interactions as
a series in the noise amplitude σ from the deterministic base (3).

SCM theory, summarised in Appendix A, applies to the nonlinear, stochastically forced
SPDE (1) because in the linearised PDE (3) there is some (here, one) eigenvalue of 0 and
all the other eigenvalues are negative (and bounded away from 0). After adjoining the
trivial dσ/dt = 0, SCM theory assures us (see Theorems 2 and 3) that in some finite
neighbourhood of (u, σ ) = (0, 0) there exists a slow manifold u = v(a(t), x, t, σ ) where
the amplitude a of the neutral mode sin x evolves according to a low-dimensional ‘model’
SDE ȧ = g(a, t, σ ) for some function g. Unfortunately, there is a caveat: Boxler’s [7]
and Arnold’s [1, Chapter 7] SCM theory is as yet developed only for finite-dimensional
systems which satisfy a Lipschitz condition. Here, the SPDE (1) is infinite-dimensional,
and furthermore the nonlinear advection u ∂u/∂x involves the unbounded operator ∂/∂x.
There is some infinite-dimensional theory: Blömker et al. [6, Theorem 1.2] rigorously
proved the existence and relevance of a stochastic Ginzburg–Landau model to the stochastic
forced Swift–Hohenberg PDE; further, Caraballo, Langa & Robinson [9] and Duan, Lu &
Schmalfuss [16] proved the existence of invariant manifolds for a wide class of reaction-
diffusion SPDEs; they built on earlier work on inertial manifolds in SPDEs by Bensoussan &
Flandoli [4]. I expect future theoretical developments to rigorously support the modelling
of SPDEs.

However, in the interim, let us proceed via a shadowing argument. The high-wavenumber
modes of the SPDE (1) dissipate rapidly; the spectrum λk ∼ −k2 for large-wavenumber k.
This rapid dissipation ensures that the dynamics of the SPDE (1) is close to finite-dimensional.
By modifying the spatial derivatives in the SPDE (1) to have a high-wavenumber cutoff, the
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dynamics of the cutoff version of (1) is effectively that of a Lipschitz, finite-dimensional,
system. The SCM theorems of Boxler [7] then rigorously apply. For example, Section 4
shows that using just ten spatial modes in the noise φ(x, t) gives the coefficients in the
stochastic model (24) correct to five decimal digits. Thus modifying ∂/∂x to cutoff modes
with wavenumber k > 20 forms a nearby, Lipschitz, finite-dimensional SDE system that is
effectively indistinguishable from the original SPDE to five decimal digits, and to the order
of asymptotic expansion pursued here. Whenever theoretical support is invoked, I actually
refer to the nearby system of this projection of SPDE (1) onto a subspace of large but finite
dimensions.

1.3. Stochastic induced drift affects stability

Previously [35], I pointed out that when the sin 2x component φ2(t) of the noise (2) is
large enough, and in the absence of any other noise component (φk = 0 for k �= 2), then
stochastic resonance may make a qualitative change in the nature of the solutions of the
SPDE (1) in that stochastic resonance restabilises the zero equilibrium. The stochastic model
described the evolution of the amplitude a(t) of the sin x mode as the SDE

ȧ ≈ −σ
2

88
a − 1

12
a3 + 1

6
σaφ2 +

√
515

1936
√

3
σ 2a�, (4)

for some white noise �(t) independent of φ2 over long times. The second key theorem
of SCMs is that models such as the SDE (4) do capture the long-term dynamics of the
original stochastic SPDE (1). For example, Theorem 4 assures us that all nearby solutions
of the SPDE (1) approach, exponentially quickly in time, a solution of the model SDE (4)
embedded on the slow manifold u = v(a(t), x, t, σ ). This theorem assures us that apart
from exponentially decaying transients, models such as the SDE (4) describe all the long-term
dynamics of the full SPDE.

The nonlinearity of the SPDE acting on the stochastic forcing generates two new effects.
First, it generates the effectively new multiplicative noise, ∝ σ 2a�. Second, and often
its most significant effect, is the enhancement of the stability of the equilibrium a = 0
through the −σ 2a/88 term. In other examples, Boxler [7, p. 544], Drolet & Vinals [14, 15],
Knobloch & Weisenfeld [22], and Vanden–Eijnden [41, p. 68] found the same sort of
stability-modifying linear term in their analyses of stochastically perturbed bifurcations.
Boxler [7, Theorem 7.3(a)] and Arnold [1, Corollary 7.4.7] prove that the stability of an SDE

is the same as the model SDE on the SCM. Analogously, Just et al. [19] sought to determine
how microtime deterministic chaos, instead of the noise that we consider here, translates
into a new, effective stochastic noise in the slow modes of a deterministic dynamical system.
Here, we explore the modelling of induced changes to the stability of the SPDE (1) through
the transformation by nonlinearity of microscale noise into macroscale drift and noise.
Indeed, our more complete analysis in Sections 3 and 4 shows that noises of wavenumbers
k �= 2 all contribute to destabilise the equilibrium; see the model SDE (24).

1.4. The approach

For the first part of the analysis of the SPDE (1), namely Sections 2 and 3, the requirement
of white, delta-correlated noise is irrelevant; the results are valid for quite general time-
dependent, additive forcing. Section 2 shows how to remove ‘memory’ convolutions over
the past history of terms linear in the noise. However, in a nonlinear system there are effects
that are quadratic in the noise processes; transformations in Section 3 reduce the number
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of memory convolutions of quadratic noise terms, but cannot eliminate all such memory
convolutions.

In the second part of the analysis (Sections 4 and 5), the critical assumption of white,
delta-correlated noise enables simplifying analysis of the nonlinear interactions. We con-
sider the Fokker–Planck equations for the probability density functions (PDFs) of the irre-
ducible quadratic noise processes. Deterministic centre manifold modelling shows that a
PDF approximately factors into a multivariate Gaussian quasi-stationary distribution (see,
for example, [27]) and a slowly evolving conditional probability. Such a factorisation is
also the key to the modelling by Just et al. [19] of fast deterministic chaos as noise on
the slow modes. This factorisation effectively abstracts new noise processes over the long
timescales of interest in the model. Section 4 discusses the specifics, such as an appropriate
version of a model SDE, such as (4), for the SPDE (1) with delta-correlated noise in space and
time, whereas Section 5 presents generic transformations of the irreducible quadratic noises
for use in analysing general stochastic systems. Appendix B provides alternate derivations,
using Ito calculus, of some of the key results on the modelling of nonlinear interactions
among the noise components.

2. Construction of a memoryless normal form model

The linearised PDE (3) identifies that the long-term dynamics of the SPDE (1) may be
parametrised by the amplitude a(t) of the neutral mode sin x. In this section, SCM techniques
are used to construct the model.Arnold et al. [2] investigated stochastic Hopf bifurcations in
this way, and the approach is equivalent to the slaving principle for SDEs used by Schoner &
Haken [38]. However, most scientists generate models with convolutions over fast timescales
of the noise. Here we simplify the model SDE tremendously by removing such ‘memory’
convolutions. This removal of convolutions was originally developed for SDEs by Coullet,
Elphick & Tirapegui [13], Sri Namachchivaya & Lin [39], and Roberts & Chao [10, 35].

SCM theory supports the modelling. Critical interesting features of the model reflect
the steps taken to construct the model; thus the next two sections discuss the iterative
construction of the SCM model. Note that the amplitude a and the noise intensity σ are
the small parameters in the asymptotic expansions forming the model. Theorem 5 assures
us that if we satisfy the SPDE (1) to some residual O(‖(a, σ )‖q), then the stochastic slow
manifold and the evolution thereon have the same order of error. The support that Theorem 5
gives to our modelling is independent of the details of construction. One complication is
that I construct models to residuals of O(a4 + σ 2), for example. The theory covers this
when we simply define a new small parameter ε = √

σ ; then, for example, a residual
of O(a4 + σ 2) = O(‖(a, ε)‖4); hence Theorem 5 applies to assure us the errors in the SCM

model are of O(‖(a, ε)‖4) = O(a4 + σ 2). I use this latter form to report the residuals and
errors. Because the critical aspect of constructing the slow manifold model is simply the
ultimate order of the residual of the SPDE (1), the specific details of the computation are not
recorded here. Instead, computer algebra [36, §1] performs all the details. Here I just report
on critical steps in the method.

Consider the task of iteratively constructing an SCM model for the SPDE (1) using iter-
ation [29]. We seek solutions in the form u = v(a, x, t, σ ) = a sin x + · · · such that the
amplitude a evolves according to some model SDE ȧ = g(a, t, σ ), such as the SDE (4). The
steps in the construction proceed iteratively. Suppose that at some stage we have an asymp-
totic approximation to the SCM model; then the next iteration is to seek small corrections,
denoted v′ and g′, to improve the asymptotic approximation. As the iterations proceed, the
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small corrections v′ and g′ get systematically smaller — that is, of higher order in the small
parameters a and σ of the asymptotic expansion. As explained in [29]: substitute u = v+v′
and ȧ = g + g′ into the SPDE (1); linearise the problem for v′ and g′ by dropping products
of small corrections; approximate terms in v′ and g′ by replacing their coefficients by the
leading order approximation; and find that the corrections should satisfy

∂v′

∂t
− ∂2v′

∂x2 − v′ + g′ sin x = residual(1).

Here, the ‘residual’ is the residual of the SPDE (1), evaluated for the currently known asymp-
totic approximation. For example, if at some stage we had determined that the deterministic
part of the SCM model was

u = a sin x − 1

6
a2 sin 2x + 1

32
a3 sin 3x + O

(
a4, σ

)

such that ȧ = − 1

12
a3 + O

(
a4, σ

)
,

then the residual of the SPDE (1) for the next iteration would be simply the stochastic forcing:

residual(1) = σ

∞∑
k=1

φk sin kx + O
(
a4).

At any iteration, the terms in the residual split into two categories, as follows, as is standard
in singular perturbations.

• The components in sin kx for wavenumbers k � 2 cause no great difficulties. We
include a corresponding component in the correction v′ to the field in proportion
to sin kx. When the coefficient of sin kx in the residual is time-dependent, the compo-
nent in the correction v′ is Hkφk(t) sin kx, in which the operator Hk denotes convolu-
tion over past history with exp[−(k2 −1)t]; namely, Hkφ = exp[−(k2 −1)t]�φ(t) =∫ t
−∞ exp[−(k2 − 1)(t − τ)]φ(τ) dτ .

• However, any component in sin x, such as φ1 in this iteration with this residual, must
cause a contribution to the evolution correction g′, here simply g′ = σφ1, as no
uniformly bounded component in v′ of sin x can match a sin x component of the
residual. This is the standard solvability condition for singular perturbations.

However, a more delicate issue arises in subsequent corrections. In the next iteration, the
next residual is

residual(1) = aσ

[
1

2
H2φ2 sin x +

(1

3
φ1 + H3φ3

)
sin 2x (5)

+
∞∑
k=3

k

2
(Hk+1φk+1 − Hk−1φk−1) sin kx

]
+ O

(
a4 + σ 2).

Many are tempted to simply use the solvability condition and match the sin x compo-
nent in this residual directly by making the correction aσ 1

2H2φ2 to the evolution g′. But
this choice introduces incongruous short-timescale convolutions of the forcing into the
model SDE (4) of the long-time evolution. The appropriate alternative [13, 39, 10, 35] is
to recognise that part of the convolution can be integrated: since for any �(t) see that
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d/dtHk� = −(k2 − 1)Hk�+�; thus

Hk� = 1

k2 − 1

[
− d

dt
Hk�+�

]
. (6)

Consequently, we split such a convolution in the residual, when multiplied by the neutral
mode sin x, into:

• the first part of (6), namely −d/dtHk�/(k
2 − 1), to be integrated into the next

update v′ for the subgrid field; and

• the second part of (6), namely �/(k2 − 1), to update the evolution via g′.
For the example residual (5), the term 1

2aσH2φ2 sin x in the residual thus forces a term
− 1

6aσH2φ2 sin x into the subgrid field, and a term 1
6aσφ2 into the model SDE for ȧ. When a

component in the residual has many convolutions, then we apply this separation recursively.
Such separation works whether the forcing is deterministic or stochastic. This separation
removes all fast-time memory convolutions linear in the forcing from the evolution equation
for the amplitude a(t).

Continuing this iterative construction gives models to high order in the asymptotic ex-
pansion in the amplitude a. The iteration terminates when the residuals are zero to some
specified order. Then the SCM Approximation Theorem 5 assures us that the model has the
same order of error as the residual.

For example, terminating the iterative construction so that residual(1) = O(a4 +σ 2), we
find that the stochastic slow manifold is

u = a sin x − 1

6
a2 sin 2x + 1

32
a3 sin 3x + σ

∞∑
k=2

Hkφk sin kx

+ aσ

[
− 1

6
H2φ2 sin x +

(1

3
H2φ1 + H2H3φ3

)
sin 2x

+
∞∑
k=3

k

2
Hk(Hk+1φk+1 − Hk−1φk−1) sin kx

]

+ O
(
a4 + σ 2). (7)

The corresponding model SDE for the evolution,

ȧ = − 1

12
a3 + σ

[
φ1 + 1

6
aφ2 + a2

( 1

18
φ1 + 1

96
φ3

)]
+ O

(
a5 + σ 2), (8)

has no fast-time convolutions, only the direct influence of the forcing. This is the preferred
normal form for a noisy model.

Note the generic feature that the originally additive noise, through the nonlinearities in
the system, appears as a multiplicative noise in the model. However, it is only the coarse
structure of the forcing/noise that appears in the model: all components of the forcing/noise
with wavenumber k > 3 are ineffective in these, the most important, terms in a model.

3. Irreducibility of quadratic interactions

Consider continuing the iterative construction of the stochastic slow manifold model to
determine effects that are quadratic in the magnitude σ of the noise. We seek terms in σ 2,
as these generate mean drift terms, and we also seek terms in aσ 2, as these affect the linear
stability of the SPDE (1); see [35, Figure 2] and [7, p. 544].
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Driven by the residuals of the SPDE (1), computer algebra [36, §§ 1.1–4] determines the
model SDE to be

ȧ = − 1

12
a3 − 7

3456
a5

+ σφ1 + 1

6
aσφ2 + a2σ

(
1

18
φ1 + 1

96
φ3

)
+ a3σ

(
1

54
φ2 + 1

4320
φ4

)

+ σ 2
[

1

6
φ1H2φ2 +

∞∑
k=2

φkHk+1φk+1 + φk+1Hkφk

2(2k2 + 2k − 1)

]

+ aσ 2
[

1

18
φ1H2φ1 + 19

528
φ1H3φ3 + 1

6
φ1H2H3φ3

− 1

44
φ2H2φ2 + 1

66
φ3H2φ1 + 1

22
φ3H2H3φ3

+
∞∑
k=3

c0
kφkHkφk +

∞∑
k=3

c∗k (φk+1Hk−1φk−1 + φk−1Hk+1φk+1)

+
∞∑
k=2

c+k φkHk+1(Hk+2φk+2 − Hkφk)

+
∞∑
k=4

c−k φkHk−1(Hkφk − Hk−2φk−2)

]
+ O

(
a6 + σ 3), (9)

where the constants

c0
k = 1

2(k2 − 1)(2k2 − 2k − 1)(2k2 + 2k − 1)
,

c∗k = 4k4 − 2k2 + 1

12k2(2k2 − 2k − 1)(2k2 + 2k − 1)
,

c±k = k ± 1

4(2k2 ± 2k − 1)
.

The model SDE (9) provides accurate simulations of the original SPDE (1), as the model
is obtained through solving the SPDE to a specified order of its residual (Theorem 5). This
model holds whether the forcing φ(x, t) is deterministic or stochastic, space-time correlated
or independent, at each point in space and time. The infinite sums in the model SDE (9)
represent the effects on the macroscale of the multitude of interactions among the microscale
noises. In deterministic cases, Chicone & Latushkin’s theory of infinite-dimensional centre
manifolds [12] supports (9) as a model of the deterministic but nonautonomous PDE (1).
However, we proceed to consider exclusively the case when the applied forcing φ(x, t) is
stochastic.

The outstanding challenge, with effects that are quadratic in the noise, is that we
apparently cannot directly eliminate convolutions over the past history of the noise, such
as φ1H2φ2, from the model.

4. Stochastic resonance and deterministic drift

Chao and Roberts [10, 35] argued that terms of O(σ 2) involving memory convolutions
of the noise were effectively new drift and new noise terms when viewed over the long
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timescales of the relatively slow evolution of the model SDE (9). Analogously, Just et al. [19]
argued that fast-time deterministic chaos appears as noise when viewed over long timescales.
The arguments of Chao and Roberts [10, 35] rely upon the noise being stochastic white noise.
The model SDE (9) is a ‘strong’ model in that it faithfully tracks any given realisation of
the original SPDE (Theorem 4). However, this section derives weak model SDEs, such as
the SDE (4). The weak sense arises because we cannot know which realisation is being
simulated, due to the effectively new noises on the macroscale. The memory convolutions
are replaced through analysis of the long-time behaviour of their PDFs.

4.1. Abandon fast-time convolutions

The undesirable feature of the large-time model SDE (9) is the inescapable appearance
in the model of fast-time convolutions in the quadratic noise terms, for example H2φ1 =
e−3t �φ1 and H2H3φ3 = e−3t �e−8t �φ3. These require resolution of the fast-time response
of the system to these fast-time dynamics in order to maintain fidelity with the original
SPDE (1), and so they incongruously require small time-steps to find a supposedly slowly
evolving amplitude a. However, maintaining fidelity with the full details of a white-noise
source is a pyrrhic victory when all we are interested in is the relatively slow long-term
dynamics. Instead, we need only those parts of the quadratic noise factors, such as φ1H2φ1
and φ1H2H3φ3, that over long timescales are firstly correlated with the other processes
that appear, and are secondly independent of the other processes; these not only introduce
factors in new independent noises into the model, but also introduce a deterministic drift
due to stochastic resonance (as also noted by Drolet & Vinal [14]).

To the order of accuracy of the strong model SDE (9), we need to understand the long-term
effects of quadratic noises appearing in the form φjHpφi and φjHqHpφi . These two sorts
of terms appear in the right-hand side of the SDE (9) in the form ȧ = · · · σ 2cφjHpφi · · · ,
for example. Equivalently, we can rewrite this form as da = · · · σ 2cφjHpφi dt · · · . In this
latter form, we aim to replace such a quadratic noise term by a corresponding stochastic
differential, so that da = · · · σ 2c dy1 · · · for some stochastic process y1 with some drift
and volatility: dy1 = ()dt + ()dW for a Wiener process W . We work similarly for a noise
term involving φjHqHpφi . Thus we must understand the long-term dynamics of stochastic
processes y1 and y2 defined via the nonlinear SDEs

dy1

dt
= φjHpφi and

dy2

dt
= φjHqHpφi. (10)

4.2. Canonical quadratic noise interactions

To proceed following the argument put forward by Chao & Roberts [10, §4.1], we name
the two coloured noises that appear in the nonlinear terms (10): we define z1 = Hpφi and
z2 = HqHpφi . From (6), these satisfy the SDEs

dz1

dt
= −β1z1 + φi and

dz2

dt
= −β2z2 + z1, (11)

where for this particular SPDE (1) the rates of decay are β1 = p2 − 1 and β2 = q2 − 1.
Now put the SDEs (10) and (11) together; we must understand the long-term properties of
y1 and y2 governed by the coupled system of SDEs

ẏ1 = z1φj , ż1 = −β1z1 + φi,

ẏ2 = z2φj , ż2 = −β2z2 + z1.
(12)
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There are two cases to consider: when i = j the two source noises φi and φj are identical;
but when i �= j the two noise sources are independent. Understanding the SDEs (12) will
help us replace memory convolutions in modelling general nonlinear stochastic processes,
not just in the modelling of the SPDE (1).

4.3. Use the Fokker–Planck equation

Following Chao & Roberts [10, 35] and analogously to Just et al. [19], we explore the
long-term dynamics of the canonical quadratic system (12) via the Fokker–Planck equation
for the joint PDF P(
y, 
z, t). Vanden-Eijnden [41] similarly uses the Kolmogorov forward
equation to model the slow modes in SDEs. The canonical system (12) shows that, if we
neglect the forcingφi andφj , the 
z variables decay exponentially, whereas the 
y variables are
constant. Consequently, upon retaining the forcing, over long times we expect the 
z variables
to settle onto some quasi-stationary probability distribution (see, for example, [27]), whereas
the 
y variables would evolve slowly. Thus we proceed to approximately factor the joint PDF

into

P(
y, 
z, t) ≈ p(
y, t)G0(
z). (13)

Here, G0(
z) is some distribution to be determined, depending upon the coefficients 
β. The
quasi-PDF p(
y, t) evolves slowly in time according to a PDE that we interpret as a Fokker–
Planck equation for the long-term evolution of the interesting variables 
y(t).

We begin by analysing the Fokker–Planck equation for the joint PDF P(
y, 
z, t) of the
canonical system (12). Recall that throughout we adopt the Stratonovich interpretation of
SDEs; thus the Fokker–Planck equation of the SDEs (12) is

∂P

∂t
= ∂

∂z1
(β1z1P)+ ∂

∂z2
[(β2z2 − z1)P ] + 1

2

∂2P

∂z2
1

+ 1

2
s

2∑
k=1

∂

∂yk

(
zk
∂P

∂z1

)
+ 1

2

2∑
k,l=1

∂

∂yk

(
zkzl

∂P

∂yl

)
, (14)

where the parameter s = 1 for the identical noise case i = j , whereas s = 0 for the
independent noise case i �= j .

4.4. A deterministic slow manifold captures the long-term dynamics

The first line in the Fokker–Planck equation (14) represents all the rapidly dissipative
processes: the terms of the form ∂zk [βkzkP ] ‘move’ probability density P to the vicinity
of zk = 0; this movement is balanced by the spread induced through the stochastic noise
term 1

2Pz1z1 and the forcing term ∂z2 [−z1P ]. In contrast, the terms in the second line of
the Fokker–Planck equation (14) describe the way that the PDF P will slowly spread in the
yk directions over long times. This strong disparity in timescales of the 
y and 
z evolution has
led many (see, for example, [14, 38, 19]) to the conditional factorisation (13). However, we
systematically go further by appealing to deterministic centre manifold theory [10, 34, 17];
alternatively, one can appeal to the SCM theory outlined in Appendix A but without any
noise.

We treat the terms in the second line of the Fokker–Planck equation (14) as small per-
turbation terms by assuming that the structures in the yk variables are slowly varying; that
is, we treat ∂/∂yk as asymptotically ‘small’ parameters [28, 34], as is appropriate over long
times. Then ‘linearly’ (that is, upon ignoring the ‘small’ 
y derivative terms in the second
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line) the dynamics of the Fokker–Planck equation (14) are those of exponential attraction
to a manifold of equilibria P ∝ G0(
z) at each 
y; say the constant of proportionality is p.
Theory for slow variations in space [28, 34] then assures us that a slow manifold exists for
the Fokker–Planck equation (14), and that all dynamics (as it is a liner PDE) are exponen-
tially quickly attracted to the dynamics on the slow manifold. The approximation theorem
then assures us that the long-term dynamics of the joint PDF P , when the small terms in the
second line of (14) are accounted for, may be expressed as a series in gradients in 
y of the
slowly evolving p(
y, t): using 
∇ for the vector gradient ∂/∂yk , we have the PDF

P(
y, 
z, t) = G0(
z)p + 
G1(
z) · 
∇p + G2(
z) : 
∇ 
∇p + · · · , (15)

where, instead of being constant, the quasi-conditional probability p evolves slowly in time
according to a series in gradients of p in 
y of the Kramers–Moyal form (see, for example,
[26, 25, 40]):

∂p

∂t
= − 
U · 
∇p + D : 
∇ 
∇p + · · · . (16)

In practice, we truncate this Kramers–Moyal expansion to include up to the second-order
gradients in 
y for three reasons: firstly, the terms appearing explicitly in (16) form the
lowest-order, structurally stable model for p(
y, t); secondly, Pawula’s theorem implies that
any higher-order truncation may lead to negative probabilities; and thirdly, we interpret the
second-order truncation of the Kramers–Moyal expansion (16) as a Fokker–Planck equation
for the long-term evolution of the interesting 
y processes. Just et al. in [19, equation (11)]
similarly truncate to second order. Deterministic centre manifold theory assures us that all
solutions are attracted to the model (15)–(16); see, for example, [34, §2.2.2].

4.5. Construct the long-term model

The approximation theorem of centre manifolds (see, for example, [34, §2.2.3]) as-
serts that we simply substitute the ansatz (15)–(16) into the governing Fokker–Planck
equation (14) and solve to reduce the residuals to some order of asymptotic error; then
the slow-manifold model is constructed to the same order of accuracy. Here the order of
accuracy is measured by the number of 
y gradients, 
∇. Consequently, an error denoted as
O( 
∇qp) denotes all terms of the form

∂q1+q2p/∂y
q1
1 ∂y

q2
2 for q1 + q2 � q.

For example, truncating (15)–(16) to the shown terms has errors O( 
∇3p). Computer algebra
machinations [36, §2] driven by the residuals of the Fokker–Planck equation (14) readily
find the coefficients of the slow-manifold model (15)–(16).

The computer algebra [36, §2] readily determines that the joint PDF of large-time solutions
of the SDEs (12) form the slow manifold

P = A exp

{
− (β1 + β2)

[
z2

1 − 2β2z1z2 + β2(β1 + β2)z
2
2

]}

×
{
p − s

[
z2

1 − 2β2z1z2 + 2β2(β1 + β2)z
2
2 + B1

] ∂p
∂y1

− s
[
(β1 + β2)z

2
2 + B2

] ∂p
∂y2

+ O
( 
∇2p

)}
,

for some normalisation constants A, B1 and B2.

203https://doi.org/10.1112/S146115700000125X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000125X


Resolving microscale interactions accurately models stochastic PDEs

Simultaneously with finding the next-order corrections to this joint PDF, the computer
algebra finds that the relatively slowly varying, quasi-conditional probability density p
evolves according to the Kramers–Moyal expansion

∂p

∂t
= −1

2
s
∂p

∂y1
+ D : 
∇ 
∇p + O

( 
∇3p
)
, (17)

where the constant diffusion matrix is

D = 1

4β1




1
1

β1 + β2

1

β1 + β2

1

β2(β1 + β2)


 . (18)

4.6. Translate to a corresponding SDE

We now interpret (17) as a Fokker–Planck equation. It corresponds to the coupled SDEs

ẏ1 = 1

2
s + ψ1(t)√

2β1
and ẏ2 = 1

β1 + β2

(
ψ1(t)√

2β1
+ ψ2(t)√

2β2

)
. (19)

Of course, there are many coupled SDEs whose Fokker–Planck equation is the PDE (17):
the reason is there are many 2 × 2 volatility matrices S of coupled SDEs that give the same
diffusivity matrix D = 1

2 SS
T ; for example, Just et al. [19] choose S to be the positive

definite, symmetric square root of the diffusivity matrix 2D. For our purposes, any of
the possible volatility matrices would suffice: in resorting to the Fokker–Planck equations
we necessarily lose fidelity of paths, and now require only fidelity of distributions and
correlations; as commented earlier, the result is a weak model, not a strong model. For
simplicity, we obtain the form of the noise terms in (19) by the unique Cholesky factorisation
of the diffusion matrix

D = 1

2
LL

T

for matrix

L =




1√
2β1

0

1√
2β1(β1 + β2)

1√
2β2(β1 + β2)


 . (20)

Choosing the volatility matrix in the SDEs to be the lower triangular Cholesky matrix L

ensures that nearly half the terms in the volatility matrix are zero, and it also ensures that
when we go to higher-order convolutions of noise in Section 5, this 2 × 2 factorisation
remains in the higher-order factorisations; see the 4 × 4 Cholesky matrix (28).

The processesψi(t) in (19) are new noises, independent ofφi andφj over long timescales.
Chao & Roberts [10, 35] showed this independence numerically, and Appendix B presents
an analysis supporting this independence. One remarkable feature to see in the SDEs (19)
is that for the case of identical noise, φi = φj , in the case s = 1, there is a mean drift of 1

2
in the stochastic process y1; there is no mean drift in any other process, nor in the other
case, s = 0.

One might query the role of the neglected terms in the Kramers–Moyal expansions of
the PDF (15) and the supposed Fokker–Planck equation (17). In the joint PDF (15), the
neglected O( 
∇3p) terms provide more details of the non-Gaussian structure of the joint
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PDF in the slowly evolving, long-time dynamics. The effects of the neglected O( 
∇3p) terms
in (17) correspond to algebraically decaying departures from the second-order truncation
that we interpret as a Fokker–Planck equation; Chao & Roberts [10] demonstrated this
algebraic decay to normality in some numerical simulations. (Chatwin [11] discussed this
algebraic approach to normality in detail in the simpler situation of dispersion in a channel.)
Such algebraically decaying transients may represent slow decay of non-Markovian effects
among the 
y variables. However, the truncation (17) that we interpret as a Fokker–Planck
equation is the lowest-order structurally stable model, and so it models the dynamics over
the longest timescales.

4.7. Temporarily truncate the noise to simplify discussion

To simplify the detailed strong model SDE (9) further, we eliminate the nonlinear fast-time
memory convolutions to deduce a model that is nearly as simple as the SDE (4). However,
dealing with the infinite sums in the strong model SDE (9) is confusing when the focus is
on transforming the nonlinear fast-time convolutions. Thus temporarily we discuss the case
when the applied spatio-temporal noise (2) is truncated to the first three modes:

φ =
3∑
k=1

φk(t) sin kx.

Just these three noise components have a range of interactions that are representative of
the noise interactions appearing in the SDE (9) to the order of accuracy reported here, and
for the nonlinearity of this SPDE. Thus, to focus on the transformations of the noise, we
temporarily consider the strong model SDE (9) with the truncated noise; that is,

ȧ = − 1

12
a3 − 7

3456
a5

+σφ1 + 1

6
aσφ2 + a2σ

(
1

18
φ1 + 1

96
φ3

)
+ a3σ

1

54
φ2

+σ 2
(

1

6
φ1H2φ2 + 1

22
φ3H2φ2 + 1

22
φ2H3φ3

)

+aσ 2
[

1

18
φ1H2φ1 − 1

44
φ2H2φ2 + 1

4048
φ3H3φ3 + 19

528
φ1H3φ3

+ 1

66
φ3H2φ1 − 3

44
φ2H3H2φ2 + 1

6
φ1H2H3φ3 + 1

22
φ3H2H3φ3

− 1

23
φ3H4H3φ3

]
+ O

(
a6 + σ 3). (21)

4.8. Transform the strong model (21) to be usefully weak.

The quadratic noises in the strong model SDE (21) involve the convolutions H2, H3
and H4, which have corresponding decay rates β of 3, 8 and 15 respectively. Thus from the
various instances of (19), to obtain a model for long timescales we replace the quadratic
noises as follows:
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φ1H2φ2 �→ ψ1√
6
,

φ3H2φ2 �→ ψ2√
6
,

φ2H3φ3 �→ ψ3

4
,

φ1H2φ1 �→ 1

2
+ ψ4√

6
,

φ2H2φ2 �→ 1

2
+ ψ5√

6
,

φ3H3φ3 �→ 1

2
+ ψ6

4
,

φ1H3φ3 �→ ψ7

4
,

φ3H2φ1 �→ ψ8√
6
,

φ2H3H2φ2 �→ ψ5

11
√

6
+ ψ9

44
,

φ1H2H3φ3 �→ ψ7

44
+ ψ10

11
√

6
,

φ3H2H3φ3 �→ ψ6

44
+ ψ11

11
√

6
,

φ3H4H3φ3 �→ ψ6

92
+ ψ12

23
√

30
,

whereψ1, . . . , ψ12 are independent white noises (that is, derivatives of independent Wiener
processes). Thus we transform the strong model SDE (21) to the weak model SDE

ȧ = − 1

12
a3 − 7

3456
a5

+σφ1 + 1

6
aσφ2 + a2σ

(
1

18
φ1 + 1

96
φ3

)
+ a3σ

1

54
φ2

+σ 2
[
ψ1

6
√

6
+ ψ2

22
√

6
+ ψ3

88

]
+ 1

2
aσ 2

(
1

18
− 1

44
+ 1

4048

)

+aσ 2
[
ψ4

18
√

6
− 7ψ5

242
√

6
+ 2549ψ6

4096576
+ 9ψ7

704
+ ψ8

66
√

6
− 3ψ9

1936

+ ψ10

66
√

6
+ ψ11

242
√

6
− ψ12

529
√

30

]
+ O

(
a6 + σ 3). (22)

Here the new noise processes ψk appear in only two different combinations (the bracketed
terms). Thus we do not need to use them individually, only their combined effect. Combining
the new noise processes into two effective new noise processes�1 and�2 (see [36, §1.5]),
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we see that the weak model (22) vastly simplifies to the weak model SDE

ȧ = 0.01654 σ 2a − 1

12
a3 − 7

3456
a5

+ σφ1 + 1

6
aσφ2 + a2σ

(
1

18
φ1 + 1

96
φ3

)
+ a3σ

1

54
φ2

+ 0.07144 σ 2�1 + 0.02999 σ 2a�2 + O
(
a6 + σ 3). (23)

(The combinations σφ1 + 0.07144 σ 2�1 and 1
6aσφ2 + 0.02999 σ 2a�2 in (23) could be

combined, but then one must be careful with the correlations with the other noise terms on
the second line of (23).) The Stratonovich model SDE (23) is a weak model of the original
Stratonovich SPDE (1) because we have replaced detailed knowledge of the interactions of
rapid microscale noise, seen in the convolutions of the strong model SDE (21), by their long-
timescale statistics. Similarly, Just et al. [19] replaced detailed knowledge of rapid chaos
by its long-timescale statistics. Vanden-Eijnden [41] comments that stronger results can be
obtained. However, resolving rapid fluctuations seems futile when they are stochastic, as
required for this section, because describing them as stochastic is an admission that we do
not know their detail anyway. The weak model SDE (23) is useful because it only resolves
long-timescale dynamics and hence, for example, we are empowered to efficiently solve
the SDE with numerical schemes using large time-steps.

Furthermore, however, we readily discover crucial stability information in the weak
model SDE (23). The quadratic interactions of noise processes, through stochastic reso-
nance, generate the mean effect term 0.01654 σ 2a. As it is a term that is linear in a with
positive coefficient 0.01654 σ 2, this term destabilises the origin. Roberts [35] demonstrated
in numerical simulations how the same term inσ 2a, but with a negative coefficient, stabilises
the origin as expected. Thus we are empowered here by our analysis to predict instead that
the stochastic solutions of the SPDE (1) will linger about (and make noise-induced transi-
tions between) two fixed points obtained from the deterministic part of the model SDE (23),
namely u ≈ a sin x for amplitudes a ≈ ±0.45 σ .

4.9. Return to the full spectrum of noise

Now we deal with the full complexity of the infinite sums of nonlinear noise interactions
in the strong model SDE (9). First, we obtain the exact numerical coefficient for the stochastic
resonance term σ 2a for the full spectrum of noise through the infinite sum

∞∑
k=3

c0
kφkHkφk.

Terms of this form are the only ones contributing to this stochastic resonance. The exact
numerical coefficient is thus

1

2

(
1

18
− 1

44
+

∞∑
k=3

c0
k

)
= 0.016563

to five significant digits. Curiously, in this problem, it is only the φ2 sin 2x component
of the noise that acts to stabilise u = 0 through its negative contribution to this sum; as
explored in [35], all other noise components act to destabilise u = 0 through their positive
contribution.
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Second, and similarly, the other infinite sums over the noise components in the strong
model SDE (9) modify the coefficients in the weak model SDE (23). However, as for the
stochastic resonance term, the modification to the coefficients is not large: the plain σ 2

term from the third line of (9) has coefficients ∼ 1/k2 (as k → ∞) but φk±1Hkφk ∼ 1/k
(from (19) and that β ∼ k2), so that the terms in the sum are ∼ 1/k3; similarly, the
infinite sums in lines 6–8 of (9) have terms ∼ 1/k4 or smaller. Further, when combining
the infinitely many new noise terms in the analogue of (22) to find the exact version of the
weak model SDE (23), the coefficients are the root-sum-squares of the coefficients of the
new noise processes in the infinite sums; thus the terms O(1/k3) and O(1/k4) in the sums
are terms of relative magnitude O(1/k6) and O(1/k8). Thus the infinite sums are accurately
truncated after relatively few terms. Indeed, computer algebra [36, §1.5] demonstrates that
at most ten terms in these sums determine the coefficients of the weak model SDE correct
to five significant digits, namely

ȧ = 0.016563 σ 2a − 1

12
a3 − 7

3456
a5

+ σφ1 + 1

6
aσφ2 + a2σ

(
1

18
φ1 + 1

96
φ3

)
+ a3σ

1

54
φ2

+ 0.071843 σ 2�1 + 0.030368 σ 2a�2 + O
(
a6 + σ 3). (24)

The earlier weak model SDE (23) with just the three coarsest microscale noise processes has
coefficients correct to about 1% when compared to the model SDE (24) for the full spectrum
of microscale noise.

5. Quadratic noise interactions with up to four convolutions

The strong model SDE (9) resolves the quadratic noise interactions affecting the terms in
σ 2 and σ 2a. If we were to seek quadratic noise interactions affecting terms of higher order
in the amplitude a, such as terms in σ 2a2 and σ 2a3, then we would face more convolutions
of the noise: φjHsHrHqHpφi , for example. At such higher orders in a strong model,
the infinite sums over the noise modes are considerably more complicated. Although such
complication may be difficult to handle, the techniques for constructing a strong model are
routine, as established in Sections 2 and 3. However, any useful weak model SDE of higher
order in amplitude a requires us to establish the correlations between noise processes with
more convolutions than the two convolutions of equation (10). This section extends the
analysis to four convolutions of the noise processes, to empower others to analyse to higher
order in amplitude a when needed in other problems.

To cater for more noise convolutions, we extend the canonical system of noise interac-
tions, the SDEs (12). For up to n convolutions of noise processes, we extend (12) to the
system of SDEs

ẏ1 = z1φj , ż1 = −β1z1 + φi,

ẏ2 = z2φj , ż2 = −β2z2 + z1,

...
... (25)

ẏn = znφj , żn = −βnzn + zn−1.

Recall that the constants βk appearing here are just the decay rates of various of the funda-
mental modes of the linearised SPDE. Thus the results of this section apply to the modelling
of general SDEs and SPDEs by appropriately setting the decay rates βk .
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Consider the Fokker–Planck equation for the joint PDFP(
y, 
z, t) of the canonical system
of SDEs (25). It is a straightforward extension of the Fokker–Planck equation (14). In the
Stratonovich interpretation of SDEs, the Fokker–Planck equation is

∂P

∂t
= ∂

∂z1
(β1z1P)+

n∑
k=2

∂

∂zk
[(βkzk − zk−1)P ] + 1

2

∂2P

∂z2
1

+ 1

2
s

n∑
k=1

∂

∂yk

(
zk
∂P

∂z1

)
+ 1

2

n∑
k,l=1

∂

∂yk

(
zkzl

∂P

∂yl

)
. (26)

Using the same arguments as in Section 4, and treating yk derivatives as asymptotically
small parameters, this Fokker–Planck equation has a slow manifold, that is exponentially
quickly attractive, and may be constructed by making the residual of the Fokker–Planck
equation (26) zero to some order. For a given number of convolutions n, computer alge-
bra [36, §2] readily derives the terms in the slow-manifold model (15)–(16). For example,
it appears that the leading-order Gaussian can be written in terms of a sum of squares as
G0 = A exp(− ∑n

k=1 βkζ
2
k ), where

ζ1 = z1,

ζ2 = z1 − (β1 + β2)z2,

ζ3 = z1 − (β1 + 2β2 + β3)z2 + (β1β2 + (β1 + β2 + β3)β3)z3,

ζ4 = z1 − (β1 + 2β2 + 2β3 + β4)z2

+ (β1β2 + (2β1 + 2β2 + 2β3 + β4)β3 + (β1 + β2 + β3 + β4)β4)z3

− (β1β2β3 + (β1β2 + β1β3 + β2β3)β4 + (β1 + β2 + β3 + β4)β
2
4 )z4.

However, using this algorithm to determine terms in 
∇p and 
∇ 
∇p requires more computer
memory and time than I currently have available for anything more than the case of n = 3
general noise convolutions with βk as variable parameters. For the accessible n = 3 case,
we find that the relatively slowly varying, quasi-conditional probability density p evolves
according to the Fokker–Planck-like PDE (17) but now the 3×3 diffusion matrix has entries

D11 = 1

4β1
,

D12 = D21 = 1

4β1(β1 + β2)
,

D22 = 1

4β1β2(β1 + β2)
,

D13 = D31 = 1

4β1(β1 + β2)(β1 + β3)
,

D23 = D32 = β1 + β2 + β3

4β1β2(β1 + β2)(β1 + β3)(β2 + β3)
,

D33 = β1 + β2 + β3

4β1β2β3(β1 + β2)(β1 + β3)(β2 + β3)
.

(27)

The 2 × 2 upper-left block is reassuringly identical to the earlier diffusion matrix (18).
Fortunately, the alternative derivation in Appendix B of the diffusion matrix D is signifi-
cantly more efficient. Computing the 4×4 diffusion matrix, I find the expressions extremely
complicated and apparently not worth recording.
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However, the Cholesky factorisation is accessible. Recall that to interpret the PDE (17) as
a Fokker–Planck equation of some system of SDEs, we desire the Cholesky factorisation of
the diffusion matrix. The Cholesky factorisation here is D = 1

2 LL
T for the lower triangular

matrix L with the following non-zero entries:

L11 = 1√
2β1

,

L21 = 1√
2β1(β1 + β2)

,

L22 = 1√
2β2(β1 + β2)

,

L31 = 1√
2β1(β1 + β2)(β1 + β3)

,

L32 = 1√
2β2(β1 + β3)

[
1

β1 + β2
+ 1

β2 + β3

]
,

L33 = 1√
2β3(β2 + β3)(β1 + β3)

,

L41 = 1√
2β1(β1 + β2)(β1 + β3)(β1 + β4)

,

L42 = 1√
2β2(β1 + β3)

[
1

(β2 + β3)(β2 + β4)
+ 1

(β1 + β4)(β2 + β4)

+ 1

(β1 + β2)(β1 + β4)

]
,

L43 = 1√
2β3(β2 + β4)

[
1

(β1 + β3)(β2 + β3)
+ 1

(β1 + β4)(β3 + β4)

+ 1

(β1 + β3)(β1 + β4)

]
,

L44 = 1√
2β4(β1 + β4)(β2 + β4)(β3 + β4)

.

(28)

There are some intriguing hints of relatively simple patterns developing in the entries of L.
Maybe an even more direct derivation via a change in measure for the hierarchy (25) could be
exploited to derive general formulae for more convolutions of noise. The upper-left entries
are also reassuringly identical to the earlier 2 × 2 case (20). These formulae empower us
to transform general quadratic nonlinear combinations of noise processes into effectively
new and independent noise processes for the long-time dynamics of quite general SDEs and
SPDEs.

6. Conclusion

The crucial virtue of the weak model SDEs (4) and (24), as also recognised by Just et
al. [19], is that we may accurately take long time-steps as all the fast-time dynamics have
been eliminated. The critical innovation here is that we have demonstrated, via the particular
example SPDE (1), how it is feasible to analyse the net effect of a multitude of independent,
subgrid, microscale, stochastic effects. Three important results follow:
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• we can remove all memory convolutions (convolutions) from the model SDE;

• nonlinear effects quadratic in the noise processes effectively generate a mean drift;
and

• nonlinear effects quadratic in the noise processes effectively abstract new noise pro-
cesses from the seething microscale interactions.

The general formulae in Section 5, together with the iterative construction of slow manifold
models [29], empower us to model quite generic SPDEs.

My aim is to construct sound, discrete models of SPDEs. Here we have treated the whole
domain of the SPDE as one element. The next step in the development of this approach
to creating good discretisations of SPDEs is to divide the spatial domain into finite-sized
elements and then systematically to analyse their subgrid processes together with the ap-
propriate physical coupling between the elements, as we have instigated for deterministic
PDEs (see, for example, [30, 32, 24]).

Appendix A. Summary of stochastic centre manifold theory

For the convenience of the reader, this section records crucial parts of the stochastic
centre manifold theory of Boxler [7]. This theory underpins the analysis of Sections 2–5.
As Arnold comments [1, p. 317], the theory is ‘inevitably very technical’.

The italic text, such as that in the theorems presented here, is taken from Boxler [7] with
minor modifications. Text in roman font denotes my simplified interpretation.

Extant SCM theory addresses a formal SDE equation in d dimensions: ẋ = F(ω, x)where
ω parametrises all the different realisations of the ‘noise’. However, theory is almost always
better expressed in terms of integrals. Hence, the theory is phrased in terms of the formal
integral of the stochastic differential equation starting from a generic initial condition,
x = x0 at t = 0. Thus the stochastic ensemble trajectory/orbit x = ϕ(t, ω, x0) is defined
to represent a stochastic/random dynamical system (RDS); see also [1, §1.1].

Definition 1 (RDS [7, Definition 2.1]). Let (�,F , P ) be a probability space, and let ϑt
be a group of bimeasurable measure-preserving bijections on�. A map ϕ : R×�×R

d →
R
d , (t, ω, x) → ϕ(t, ω, x), is called a random dynamical system of Ck-diffeomorphisms

(k � 1) on R
d over the flow {ϑt : t ∈ R} if the following properties are satisfied.

1. ϕ(t, ·, x) is F ,B(Rd)-measurable for any t ∈ R, x ∈ R
d .

2. There is a ϑt -invariant set �0 ⊂ �, P(�0) = 1, such that for all ω ∈ �0:

(a) ϕ(t, ω, x) is continuous in (t, x) ∈ R × R
d ;

(b) ϕ(t, ω, ·) is a Ck-diffeomorphism for any t ∈ R (herein, Ck,1 means that
Dkϕ(t, ω, ·) satisfies a global Lipschitz condition);

(c) ϕ(t + s, ω, x) = ϕ(s, ϑtω, ·) ◦ ϕ(t, ω, x) for any t, s ∈ R, x ∈ R
d (cocycle

property).

This last cocycle property generalises the semigroup property of integrals of deterministic
differential equations. The shift in time ϑt of the realisation ω accommodates the change
in origin of time for the evolution over a time t from time 0, to the evolution over a time s
from time t .

In a considerable simplification, by transforming to a moving coordinate system attached
to the orbit ϕ(t, ω, x) . . . without loss of generality the random dynamical system ϕ may be
assumed to have an equilibrium point at the origin x = 0; see [7, Proposition 4.1].
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Based about the dynamics near the origin, we partition the dynamics into slow centre
modes, exponentially decaying modes and exponentially growing modes. Oseledec’s Multi-
plicative Ergodic Theorem asserts that there is a decomposition of the state space R

d into a
finite number of Oseledec spaces (analogous to eigenspaces), each Oseledec space charac-
terised by a different (real) Lyapunov exponent λi obtained from the linearised dynamics,
and the Oseledec spaces collectively span the state space R

d . The bounds λs = maxλi<0 λi
and λu = minλi>0 λi are crucial in characterising the timescale separation between the
centre, decaying and growing modes. Then Ec(ω), Es(ω) and Eu(ω) denote the spaces
spanned by those Oseledec spaces, respectively corresponding to zero, negative and posi-
tive Lyapunov exponent. Subscripts c, s and u denote projections onto the subspacesEc(ω),
Es(ω) and Eu(ω). For example, we may write x = (xc, xs, xu). The SCM is a nonlinear
counterpart of the centre Oseledec space Ec(ω).

We distinguish the linear and nonlinear parts of the RDS by the decompositionϕ(t, ω, x) =
T ϕ(t, ω, 0)x +�(t, ω, x). The theory applies only to RDSs with a nonlinear part that has
sufficiently small derivatives ‖Dj�(t, ω, x)‖ for j = 0, . . . , k and a Lipschitz condition
onDk�(t, ω, x). Denote this class of RDSs byNLε0,...,εk . The following existence theorem
then applies.

Theorem 2 (Existence [7, Theorem 5.1]). There is a constant L0 such that for any L,
0 < L � L0, and any β, 0 < β < 1

4 min(−λs, λu), there are constants ε0(L) �
· · · � εk(L) > 0, which depend on β and for any random dynamical system of class
NLε0(L),...,εk(L) which consists of Ck,1-diffeomorphisms there exists a global stochastic
Ck,1-centre manifold for P -a.a. ω ∈ �. It may be written in the form

M(ω) = {(
xs, hs(ω, xs), hu(ω, xs)

) | xs ∈ Ec(ω)
}

with a function h ∈ Ak(L).
The space Ak(L) mentioned in this theorem denotes strictly nonlinear stochastic

functions, h(ω, 0) = 0 and D1h(ω, 0) = 0, which are smooth enough; that is, for all
x, x̃ ∈ Ec(ω), we have |Djh(ω, x)| � 1

2L for all j = 0, . . . , k and the Lipshitz condition
|Dkh(ω, x)−Dkh(ω, x̃)| � 1

2L|x − x̃|. That is, the SCM M(ω) is written as a graph over
the centre Oseledec space Ec(ω)

This global existence theorem is very restrictive. Much more useful in practice is the
existence of a local centre manifold based upon the linearisation at an equilibrium. Further,
when the deterministic part of the linearisation has eigenvalues that are all zero (the imag-
inary part is zero), then we may call the centre manifold by the more informative name of
‘slow manifold’, as is done in this paper.

Theorem 3 (Local existence [7, Theorem 6.1]). Let ϕ be a random dynamical system
on R

d which consists of Ck-diffeomorphisms (k � 2) and satisfies the assumptions of
Definition 1. If one of the Lyapunov exponents of the linearization vanishes, then there will
be a local stochastic Ck−1-centre manifold for ϕ.

For modelling, we require the dynamics to settle onto a low-dimensional manifold so that
the dynamics are described by the evolution of the relatively few variables parametrising
the manifold. SCM theory assures this when there are no growing modes; that is, when
Eu(ω) = ∅. Further, the theory asserts that the evolution of the orbits approaching the SCM

are the same, to an exponentially decaying difference, as those orbits actually on the SCM. For
deterministic dynamics this property is sometimes called ‘asymptotic completeness’ [37].
Thus the following theorem guarantees the relevance of the dynamics on the SCM M(ω).
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Theorem 4 (Relevance [7, Theorem 7.1]). Let M(ω) be the stochastic centre manifold
of Theorem 2. If all Lyapunov exponents are less than or equal to 0, then there is a map
cs : R

+ → (0,∞) satisfying limt→∞(1/t) log cs(t) < 0 such that for any initial values
xc ∈ Ec(ω) and xs ∈ Es(ω):

|ϕ(t, ω, xc, xs)− h[ϑtω, ϕ(t, ω, xc, xs)]|sϑtω � cs(t)|xs − hs(ω, xc)|sω
for any t � 0 almost surely.

This inequality asserts that the difference between orbits on and offM(ω) is bounded by
the initial difference and an essentially exponentially decaying function cs(t). Thus orbits
on M(ω) model the dynamics from a wide variety of initial conditions.

Lastly, we construct SCMs by approximately satisfying the governing SDEs. The following
theorem asserts that the error in the SCM is of the same order as the residual of the governing
equations of the random dynamical system. Consider that x = η(ω, xc) approximates the
actual SCM x = h(ω, xc), and let the operator V compute the residual of the governing
equations, so that V η is the residual for the approximation η. Then the following theorem
underpins the orders of errors given throughout this paper.

Theorem 5 (Approximation [7, Theorem 8.1]). For a given η ∈ Ak(L), assume that
(V η)(ω, xc) = O

(‖xc‖q) for some q > 1, almost all ω ∈ � and all xc ∈ Ec(ω) sufficiently
small. Then we obtain:

‖h(ω, xc)− η(ω, xc)‖ = O
(‖xc‖q).

Finally, note that the theory of stochastic normal forms of Arnold [1, §8.4] gives another
and very appealing view of centre manifold reduction. Corresponding to normal forms for
deterministic systems, a normal form of stochastic dynamics empowers us simultaneously to
extract the SCM, derive the stochastic evolution thereon, and show asymptotic completeness.
However, I believe that further research will simplify the memory convolutions (as seen in
Appendix B) which have so far appeared in normal forms of stochastic dynamics.

Appendix B. Quadratic stochastic effects: alternative derivation

This Appendix uses the Ito interpretation of SDEs, rather than the Stratonovich
interpretation used throughout the body of this work. We consider some of the properties
of quadratic noise interactions that in Sections 4 and 5 were established through analysis
of Fokker–Planck equations. Here we provide alternative, more direct, derivations of the
effective drift, volatility and inter-dependencies of the long-time dynamics of the 
y variables
in the canonical interaction system of SDEs (25).

B.1. Noise interacting with itself over long times

As a prelude to more extensive analysis, this subsection begins by analysing the simplest
case of one noise process quadratically interacting with itself ; that is, φi = φj . Thus we
explore the large-time dynamics of the first pair of Stratonovich SDEs in the system (25). The
equivalent Ito SDEs, written in the more usual capital letters, are for some Wiener processW

dY = 1
2 dt + Z dW and dZ = −βZ dt + dW, (29)

where all subscripts are omitted for simplicity, Y = y1, Z = z1 and dW = φj dt = φi dt .
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Consider the dynamics over any time interval [a, b]. Where necessary, the times a and b
are large enough for exponentially decaying transients to become negligible. For notational
simplicity, we use just

∫
to denote

∫ b
a

and just � to denote the difference [ ]t=bt=a .

Proposition 6. The process Y has drift 1
2 with a variance growing linearly at a rate 1/(2β).

An argument to support this proposition is the following. Integrate the Y SDE to �Y =
1
2�t +

∫
Z dW and take expectations:

E [�Y ] = 1
2�t + E

[∫
Z dW

]
= 1

2�t,

by the martingale property of Ito integrals. Hence Y has drift 1
2 .

Now consider

Var
[
�

(
Y − 1

2 t
)] = Var

[∫
Z dW

]

=
∫

E
[
Z2] dt by Ito isometry

= �t

2β
,

as Z is a well known Ornstein–Uhlenbeck process. Hence the variance of Y grows linearly
at rate 1/(2β).

Rather than appeal to Z being an Ornstein–Uhlenbeck process, we could instead recog-
nise that

Z =
∫ t

−∞
exp{−β(t − s)} dWs

from the defining convolution; then

E
[
Z2] = Var

[∫ t

−∞
exp{−β(t − s)} dWs

]

which by the Ito isometry is equal to
∫ t

−∞
E

[
exp{−β(t − s)}2

]
ds

=
∫ t

−∞
exp{−2β(t − s)} ds

= 1

2β
,

which confirms the growth of the variance. The next subsection uses this route to find
covariances with any number of convolutions.

Given that�Y approaches a Gaussian over long timescales, as established in the Fokker–
Planck analysis leading to (17)–(18) and shown in some numerical simulations by Chao &
Roberts [10], the process Y may be thus modelled over long timescales by the SDE

dY = 1

2
dt + 1√

2β
dW1

for some Wiener process W1, as analogously derived in (19).
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However, before this corollary is of any use we need to establish that the Wiener
process W1 is effectively independent of the original Weiner process W when viewed over
large timescales. The next proposition asserts the correlation E [�W ·�W1] = 0.

Proposition 7. For the processes Y and Z with Ito SDE (29), the correlation

E
[
�W ·�(

Y − 1
2 t

)] = 0,

and hence the increments �W and �(Y − 1
2 t) are independent.

An argument to support this proposition is the following. Since trivially E [�W ·�t] =
0, we need only consider E [�W ·�Y ]. Since (W −Wa)(Y − Ya) = 0 at t = a, it follows
that

�W ·�Y = �{(W −Wa)(Y − Ya)}.
Hence

E [�W ·�Y ] = E [�{(W −Wa)(Y − Ya)}]
= E

[∫
d{(W −Wa)(Y − Ya)}

]

which by Ito’s formula (see, for example, [3, p. 62]) is equal to

E

[∫
Y − Ya + Z(W −Wa) dW +

∫
Z + 1

2 (W −Wa) dt

]

= E

[∫
Y − Ya + Z(W −Wa) dW

]
+

∫
E [Z] + 1

2 E [W −Wa] dt

= 0,

by the martingale property of Ito integrals, by the fact that Z is an Ornstein–Uhlenbeck
process and hence has zero expectation except for exponentially decaying transients, and
since Wiener increments have zero expectation. Consequently, the increments �W and
�(Y − 1

2 t) are independent.

B.2. Two distinct and interacting noises

Now turn to the case of two noise processes interacting; that is, when φi �= φj . Thus we
explore the large-time dynamics of the first pair of Stratonovich SDEs in the system (25).
Now the equivalent Ito SDEs for some independent Wiener processes W and Ŵ are

dY = Z dW and dZ = −βZ dt + dŴ , (30)

where dW = φj dt and dŴ = φi dt .

As in the argument for Proposition 6, we write the increments�Y = ∫
Z dW , and then

the martingale property and the Ito isometry assure us that E [�Y ] = 0 and Var [�Y ] =
�t/(2β). Similar to the argument for Proposition 7, the increment�Y is uncorrelated with
both�W and�Ŵ ; we use Ito’s formula for products of processes that depend upon multiple
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noises (see, for example, [3, p.185]):

E [�W ·�Y ] = E

[∫
d{(W −Wa)(Y − Ya)}

]

= E

[∫
(W −Wa)Z + (Y − Ya) dW +

∫
Z dt

]

= E

[∫
(W −Wa)Z + (Y − Ya) dW

]
+

∫
E [Z] dt

= 0 ;
E[�Ŵ ·�Y ] = E

[∫
d{(Ŵ − Ŵa)(Y − Ya)}

]

= E

[∫
(Ŵ − Ŵa)Z dW +

∫
Y − Ya dŴ

]

= E

[∫
(W −Wa)Z dW

]
+ E

[∫
Y − Ya dŴ

]

= 0.

Consequently, given that �Y approaches a Gaussian over long timescales, we may model
the process Y by the SDE dY = (1/

√
2β)dW1 for some effectively independent Wiener

process W1, as analogously derived in (19).
This subsection gives alternative and more direct proofs of some of the Fokker–Planck

analysis of Section 4 on the most elementary canonical noise interactions. However, this
subsection does not establish the key property that the increments �Y approach a Gaus-
sian for long times. Instead, the relevance theorem of centre manifolds, together with the
structural stability of the Fokker–Planck equation (17), assures us of this key property.

B.3. Multiple convolutions of quadratic noises

To complete the analysis, we here explore noise processes interacting with multiple
convolutions of their past history. Thus we consider the Ito version of the Stratonovich
hierarchy of SDEs (25):

dY1 = 1
2 s dt + Z1 dW, dZ1 = −β1Z1 dt + dŴ ,

dY2 = Z2 dW, dZ2 = (−β2Z2 + Z1) dt,

...
...

dYn = Zn dW, dZn = (−βnZn + Zn−1) dt,

(31)

where W = Ŵ in the case of a noise interacting with itself, s = 1; otherwise they are
independent, s = 0. Ito calculus provides an alternative confirmation to that derived in
Section 5, of the effective large-time dynamics of the processes Ym.

The processes Ym have zero drift except for the caseW = Ŵ when instead process Y1 has
drift 1

2 . We need the covariances of the fluctuations in these processes in order to establish
that the correlations among the fluctuations is determined by the lower triangular matrix L

in (28). For conciseness, we define the fluctuation process Ym = Ym − δm1
1
2 st .

Proposition 8. The expectation E [�Ym] = 0 for allm, and the covariances E [�Yk�Ym]
are the corresponding elements in �t LL

T for the lower triangular matrix L in (28).
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An argument to support this proposition is the following. Firstly, immediately from
the definition of Ym and the Ito SDEs (31), we have dYm = Zm dW . Recall that an un-
adorned

∫
denotes

∫ b
a

and � denotes the difference [ ]t=bt=a . Thus �Ym = ∫
Zm dW , and

then E [�Ym] = 0 by the martingale property of an Ito integral.
Secondly, consider the covariances

E [�Yk�Ym] = E

[∫
Zk dW

∫
Zm dW

]
=

∫
E [ZkZm] dt, (32)

by an extension of the Ito isometry.
Find these covariances by observing (and this is actually the definition from convolutions

of the right-hand column in the hierarchy of Ito SDEs (31)) that

Z1 =
∫ t

−∞
e−β1(t−s)dŴs and Zm =

∫ t

−∞
e−βm(t−s)Zm−1(s) ds.

The first is an Ito integral. Turn the others into Ito integrals by defining

h1(t) = e−β1t and hm(t) = e−βmt � hm−1(t) =
∫ t

0
e−βm(t−s)hm−1(s) ds ; (33)

for example, when the decay rates βm are distinct, then

h2(t) = e−β2t − e−β1t

β1 − β2
,

h3(t) = e−β1t

(β1 − β2)(β1 − β3)
+ e−β2t

(β2 − β3)(β2 − β1)
+ e−β3t

(β3 − β1)(β3 − β2)
.

Then inductively

Zm =
∫ t

−∞
e−βm(t−τ)

∫ τ

−∞
hm−1(τ − s) dŴs dτ

=
∫ t

−∞

∫ t

s

e−βm(t−τ)hm−1(τ − s) dτ dŴs

=
∫ t

−∞

∫ t−s

0
e−βm(t−s−τ)hm−1(τ ) dτ dŴs

=
∫ t

−∞
hm(t − s) dŴs.

Consequently, by an extension of the Ito isometry, we have

E [ZmZk] = E

[∫ t

−∞
hm(t − s) dŴs

∫ t

−∞
hk(t − s) dŴs

]

=
∫ t

−∞
E [hm(t − s)hk(t − s)] ds

=
∫ ∞

0
hm(t)hk(t) dt. (34)

Computer algebra [36, §3] readily computes the convolutions and integrals in equations
(33) and (34). The resultant covariances E [ZkZm] are correctly twice the corresponding
elements in the diffusion matrices D given in (18) and (27).
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The computer algebra [36, §3] easily computes higher-order covariance matrices, but the
expressions for order n � 4 are too hideous to record in detail here. However, (28) records
the expressions computed for the fourth-order Cholesky factorisation.

The Cholesky factorisation (28) is needed to weakly model convolutions of noise by
effectively new and independent noises, as discussed in Section 4. Again, we need to be
sure that these effectively new noise processes are independent of the original processes
W and Ŵ .

Proposition 9. For the processes Ym and Zm with Ito SDE (31), the correlation

E [�W ·�Ym)] = E
[
�Ŵ ·�Ym)

]
= 0,

and hence the increments �W , �Ŵ and �Ym are independent.

An argument to support this proposition is the following. As in Proposition 7, since
(W −Wa)(Ym − Yma) = 0 at t = a, it follows that

�W ·�Yma = �{(W −Wa)(Ym − Yma)}.
Hence, using Ito’s formula for products of processes that depend upon multiple noises (see,
for example, [3, p. 185]), we have

E [�W ·�Ym] = E [�{(W −Wa)(Ym − Yma)}]
= E

[∫
d{(W −Wa)(Ym − Yma)}

]

= E

[∫
Ym − Yma + Zm(W −Wa) dW +

∫
Zm dt

]

= E

[∫
Y − Yma + Zm(W −Wa) dW

]
+

∫
E [Zm] dt

= 0,

by the martingale property of Ito integrals, includingZm = ∫ t
−∞ hm(t− s) dŴs as deduced

above. Consequently, the increments �W and �Ym are independent.

Similarly,

E
[
�Ŵ ·�Ym

]
= E

[
�{(Ŵ − Ŵa)(Ym − Yma)}

]

= E

[∫
d{(Ŵ − Ŵa)(Ym − Yma)}

]

= E

[∫
Ym − Yma dŴ +

∫
(Ŵ − Ŵa)Zm dW

]

= E

[∫
Y − Yma dŴ

]
+ E

[∫
(Ŵ − Ŵa)Zm dW

]

= 0,

by the martingale property of Ito integrals. Consequently, the increments �Ŵ and �Ym

are independent.
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