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ABSTRACT. Self-organizing maps (SOMs) provide a powerful, non-linear technique to optimally
summarize a complex geophysical dataset using a user-selected number of ‘icons’ or SOM states,
allowing rapid identification of preferred patterns, predictability of transitions, rates of transitions, and
hysteresis in cycles. The use of SOMs is demonstrated here through application to a 24 year dataset
(1973–96) of monthly Antarctic sea-ice edge positions. Variability in sea-ice extent, concentration and
other physical characteristics is an important component of the Earth’s dynamic climate system,
particularly in the Southern Hemisphere where annual changes in sea-ice extent (temporarily) double
the size of the Antarctic cryosphere. SOM-based patterns concisely capture the spatial and temporal
variability in these data, including the annual progression of expansion and retreat, a general eastward
propagation of anomalies during the winter, and sub-annual variability in the rate of change in extent at
different times of the year (e.g. retreat in January is faster than in November). There is also often a
general seasonal hysteresis, i.e. monthly anomalies during cooling follow a different spatial path than
during warming.

INTRODUCTION
Many techniques are useful for extracting patterns from a
large geophysical dataset, such as the monthly-mean
anomalies of the position of the Antarctic sea-ice edge
considered here. It may prove useful and informative, for
example, to note the strength of the loading of the data from
a particular month on the first two principal components of
the dataset. It may also be instructive to note that the data
from a given month are very similar to those of some earlier,
well-known month (e.g. ‘this looks like the ice that trapped
Endurance in the Weddell Sea ice pack in January 1915’). In
this hypothetical example, ‘January 1915’ serves as an icon,
to which other data fields can be compared. Such icon-
based classification schemes can work in parallel with
pattern-extraction tools such as principal components
analysis (PCA). However, a particular data field (such as
‘January 1915’) may contain unique features that reduce its
utility as a more general icon. To overcome this difficulty,
the technique of self-organizing map (SOM) analysis
(Kohonen, 2001) provides an objective way to optimally
extract a user-specified number of icons or SOM states from
an input dataset.

In short, a SOM analysis produces a small number (e.g.
30) of states representing variability in the input data, in
this case sea-ice distribution. Each data point (i.e. each
monthly measurement of sea-ice extent) corresponds with
(or maps to) exactly one of these 30 states (the one to
which it is closest). The 30 states are chosen in some
optimal way (based on the theory of neural networks) to
represent the original data in a generalized sense. The
states are arranged as a rectangular grid, with spacing
between adjacent states related to their similarity (a result
of the method by which they are extracted from the data).
By applying SOMs to sea-ice edge data, we develop an
average sea-ice cycle, based on the monthly SOM states,
and information about variability, both of which are
described in more detail below.

SELF-ORGANIZING MAPS AND CLIMATE ANALYSIS
SOMs (Kohonen, 2001) are an analysis tool from the field of
artificial neural networks that uses so-called unsupervised
training to find salient features of an input dataset without
prior specification (or knowledge) of the ‘correct’ output.
Once trained, the input data may be broken up into distinct
classes (as defined by the network itself) using the derived
features (i.e. classification), or it may be that the patterns
found by the network are of most interest. SOMs thus
support unsupervised classification of large, multivariate
geophysical datasets through creation of a spatially orga-
nized set of generalized patterns of variability which,
collectively, represents the probability density function
(PDF) of the input data (e.g. Hewitson and Crane, 2002;
Reusch and others, 2005b). In short, a SOM analysis
produces a discrete, non-linear classification of the con-
tinuum input data.

SOM analysis returns the icons or SOM states in a grid or
‘map’, with similar states placed near each other, and the
most extreme states at the corners. Often the states at the
ends of one diagonal are similar to the positive and negative
phases of the first principal component of the input data,
with the second principal component correspondingly at the
ends of the other diagonal; however, this is not required. In
the analysis here, for example, the extended sea ice of
winter and the reduced sea ice of summer are placed at
opposite ends of one diagonal of the map, important
asymmetries in this seasonal pattern are highlighted on the
other diagonal, and intermediate states capture more of the
rich behavior of the system. Because each input dataset
maps uniquely to one SOM state, SOM analysis easily
allows characterization of time-trends in frequency of
occurrence, preferred transitions that may point toward
predictability, and hysteresis of preferred patterns.

SOMs provide an alternative to more traditional linear
techniques (e.g. PCA), that is more robust (e.g. able to
interpolate into areas of the input space not present in the
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available training input), less complex and less subjective
while also accommodating non-linear relationships in the
data (Reusch and others, 2005a).

SOMs are also a completely independent uniformitarian
analysis pathway and thus provide independent results for
comparison with more traditional techniques. SOM-based
analysis thus complements linear techniques without repla-
cing them. SOMs also provide a powerful visualization
approach for studying structure in large, complex datasets.
In the case of atmospheric circulation data, for example, the
patterns capture the full range of synoptic conditions while
also treating the data as a continuum, unlike, for example,
cluster analysis.

SEA ICE
Sea ice has long been known to be a very important
component of the global climate system, and is expected to
be a sensitive indicator of a warming climate (Houghton and
others, 2001). Changes in sea-ice properties (e.g. extent,
thickness, annual cycle) have complex, often bidirectional
relationships with many other physical (e.g. Kwok and
Comiso, 2002; Wu and others, 2004), chemical (e.g. Wolff
and others, 2003) and biological (e.g. Thomas and
Dieckmann, 2002) systems in the polar regions, such as
ocean–atmosphere heat fluxes, freshwater advection, deep
water formation and a wealth of ecological networks.
Human activities are also often subject to the vagaries of
sea-ice anomalies (e.g. Shackleton, 1920; Turner and others,
2002). Recent changes in Arctic extent and thickness (in
particular, strong downward trends) have been more dra-
matic (ACIA, 2004), but there is also evidence for changes in
the Antarctic. Whether regional changes have only regional
causes or are also tied to larger phenomena such as the
Antarctic Oscillation (AAO) or El Niño–Southern Oscillation
(ENSO) remains uncertain (e.g. Liu and others, 2004). Long-
term trends have also been difficult to identify, with both
weak increases (in the 1970s) and decreases (after 1979)
being identified (e.g. Houghton and others, 2001; Cavalieri
and others, 2003). In both cases, the shortness of the
Antarctic sea-ice record has been an important factor.
Unfortunately, satellite remote sensing is the only way to
quickly and reliably capture comprehensive, synoptic data
on most sea-ice characteristics, such as extent and concen-
tration. Thus, improved understanding will, in part, require
our patience as continued satellite observations build on the
existing record. While awaiting this longer record, analysis
of the existing data using new tools can still be instructive.
The new tools used may help supplement existing under-
standing of sea ice in the climate system.

DATA
Sea-ice data were obtained from the Australian Antarctic
Data Centre (Simmonds and Jacka, 1995; T.H. Jacka, http://
aadc-maps.aad.gov.au/aadc/metadata/metadata_redirect.
cfm?md=AMD/AU/sea_ice_extent_gis). For each month be-
tween 1973 and 1996, the latitude of the northern edge of the
sea ice is recorded for each 108 of longitude, for 0–3508.
Prior to analysis, data were standardized by subtracting the
full-record mean and dividing by its standard deviation, at
each longitude. Sea-ice edge anomalies are plotted as boxes
covering �58 east–west of the center longitude and a north–
south extent based on the full-record mean and the anomaly

from the mean at each longitude (black for positive
anomalies and gray for negative anomalies, as in Fig. 1).

METHODOLOGY: SELF-ORGANIZING MAPS
SOM usage begins by creating a set of generalized patterns
from the input data, an iterative process known as training.
Mathematically, a SOM is composed of a finite set of nodes,
organized as a grid (usually rectangular, sometimes hex-
agonal), with each node having an associated reference
vector representing the node’s generalized pattern. Refer-
ence vectors have the same dimensionality as the original
data. Because the pattern set is relatively small (and finite),
complexity is reduced to working with the set of reference
vectors instead of the (usually much larger) original dataset.
The generalized patterns (or states) are a projection of the
multidimensional input data onto the two-dimensional (2-D)
array of reference vectors. The size of the grid (number of
states) directly influences the amount of generalization:
smaller (larger) node arrays have fewer (more) available
states to characterize the n-dimensional data space, so the
final patterns developed during training will tend to do more
(less) generalization of the input. (Grid size is thus a first-
order experimental parameter.)

In practice, a SOM is usually referred to by its grid
dimensions (e.g. a 4� 3 SOM, which has 12 nodes). SOM
patterns may be identified by an (x,y) coordinate pair or a
sequence number within the two-dimensional array (count-
ing left-to-right, top-to-bottom). Coordinate pairs identify
patterns consistently across different grid sizes while
sequence numbers have notational simplicity.

Because relative distances between nodes in data space
are actually variable (as a function of the information
content and distribution of the raw data), Sammon maps
(Sammon, 1969) are often used to visualize these relative
distances. Sammon mapping, as used here, projects the
multidimensional reference vectors for each generalized
SOM pattern into a 2-D space. This aids visualization of
inter-pattern relationships by being able to plot the SOM
nodes based on relative neighbor-to-neighbor similarity,
rather than using the simpler, but less informative, regularly
spaced grid format normally used. However, the regularly
spaced grid is adequate for the purposes of displaying
relative frequencies and related attributes of each node.

A key step in SOM training, and in later analyses using
the generalized patterns, is the mapping of input data
samples to the closest matching reference vector (usually
based on the Euclidean distance between the input and the
reference vectors). During training, this step identifies which
reference vectors (and neighbors) are to be updated. After
training, mapping is used to classify the input data (since
input records with common patterns will map to the same or
nearby SOM nodes) and is widely used to study, for
example, frequency-of-occurrence characteristics of differ-
ent subsets of the data (based on time or other criteria, such
as state of the Southern Oscillation Index (SOI)), also known
as frequency mapping.

Details on SOM training are readily available in the
literature (e.g. Hewitson and Crane, 2002; Reusch and
others, 2005b). (However, because the application of this
technique is still relatively new to the Earth sciences, we
recommend reviewing multiple sources for their perspec-
tives on best practices.) Briefly, an iterative and unsupervised
process is used to adjust the reference vectors representing
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each SOM node (or state) based on distances (differences)
between best-matching reference vectors and each input
record. From a randomly (i.e. evenly distributed across the
input data space) or first-two-eigenvectors-of-the-training
data-based initialization, the reference vectors will, when
trained, each represent a distinct portion, or sub-space, of
the multidimensional input space. (Unlike summation of
PCA components, the sum of these reference vectors does
not reconstruct the original input data.) Because neighbors
of the best match are also updated during training (but to a
lesser degree), adjacent nodes have the strongest similarity,
with similarity decreasing with increasing distance away
from any given node. For mathematical stability during the
learning process, the SOM grid is normally asymmetric
rather than being square (e.g. 5� 4 or 5� 3, not 5� 5 or
4� 4). Ideally, the grid dimensions match well with the
shape of the 2-D projection of the input dataset’s probability
density function (Kohonen, 2001), but this is not always
known in advance and is not normally a significant issue.

The freely available SOM-PAK software (Kohonen, 2001)
has been used here as in previous work (e.g. Reusch and
others, 2005b).

OVERVIEW OF SOM RESULTS

Generalized patterns of a 6� 5 SOM of the full sea-ice edge
record are shown in Figure 1 as anomalies from the climato-
logical full-record (1973–96) mean. Variability in the record
is captured by changes in the magnitude (overall extent) and
spatial characteristics (longitude of maxima/minima) of the
patterns. The lefthand column encompasses longitudinal
variations among patterns with roughly comparable overall
spatial extent (changes near the Antarctic Peninsula may be
easiest to see). The second column shows similar character-
istics for not-quite-maximum extent patterns. Variability in
the minimal sea-ice edge position is focused more on the
patterns near the upper right corner. Climatologically
‘average’ patterns are found primarily in column four.

Although not the focus of this paper, a generalized, SOM-
based reconstruction of the sea-ice edge can readily be
created from the best matching SOM pattern for each month
in the observations. Statistical comparisons of this new
(smoothed) time series with the observational time series
indicate that the reconstruction captures all the main
features of the original data.

Fig. 1. Generalized patterns from a 6� 5 SOM analysis. Sea-ice edge values are drawn as anomalies from the full-record mean for each 108
longitude band. Black (light gray) areas indicate an edge farther north (south) than the climatological mean, with the area between the edge
and the mean (the anomaly) filled in. East–west extent is centered on the longitude of the data point.
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THE ANNUAL CYCLE IN SEA-ICE EDGE

As an example of the utility of SOMs in studying climate
data, we present in this section an analysis of the annual
cycle in sea-ice edge based on the SOM patterns of
Figure 1. A common approach to studying dataset vari-
ability using SOMs is shown in Figure 2: summarizing
frequency of pattern occurrence for data subsets using a
simplified SOM grid, i.e. making frequency maps. Subsets
may be temporal (e.g. by month) or based on some other
index relevant to the data (e.g. high/low values of the SOI).
Here we study the annual cycle by creating frequency
maps with data from representative months in each season
(March, June, September, December). Because only the
full-record mean was removed, rather than the monthly
means, the SOM patterns still reflect the variability of the
annual cycle. In the simplified SOM grids (Fig. 2, lefthand
column), SOM nodes are indicated by small squares
(instead of the actual patterns). Numbers within the squares
indicate pattern frequency, or how often that SOM state
was ‘occupied’ in a particular month, during the 24 years of
data coverage. (For each monthly sea-ice edge position in
the observations, the best matching SOM pattern is deemed

to be occupied for that month.) The most common pattern
is indicated by a shaded box in the lefthand column, with
the corresponding generalized SOM pattern shown in the
middle column.

The righthand column of Figure 2 shows a representative
observation that matches best with each of the SOM patterns
in the middle column. Because the SOM creates generalized
patterns, the matches are not exact for any given observation
(and are not expected to be). Instead, these examples show
that the SOM patterns are quite reasonable (and in some
sense optimal) representations of the original data.

The frequency maps in Figure 2 show that each month
has one (sometimes two) dominant SOM state. For example,
15 of the 24 Decembers exhibit the pattern with sea ice
more extensive than the full-record mean position in the
Ross and Weddell Seas, and less extensive elsewhere.
Furthermore, most of the remaining Decembers exhibit
similar patterns (Fig. 1), with only one giving a notably
different SOM state. The frequency maps also show the
range of monthly variability in the record. For example,
March has the fewest (four) patterns of the four example
months, suggesting reduced variability at this time of
minimal sea-ice extent. June and September tend to be

Fig. 2. Selected frequency maps with representative SOM patterns and observations for each season. Lefthand column shows pattern counts
(frequencies) for data from four months of the year on a simplified SOM grid (each box corresponds to a generalized pattern). The highest-
frequency (most common) pattern has a gray background and an arrow to the actual pattern (middle column) for that grid position. The
righthand column shows representative observational data for which the leading SOM pattern in each month is the best match.
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more variable (i.e. more patterns are seen in the 24 year
record), with September variability tending to be more
regional, i.e. the longitude of maximum extent varies more
between patterns than the overall spatial extent. This
approach can then be extended to all months, to explore
the annual cycle of sea-ice variability.

As mentioned above, relative distances between nodes
in data space are actually variable, and it is more
informative to view the annual cycle of monthly patterns
in a so-called ‘SOM space’, i.e. in a 2-D, topology
preserving space defined by a Sammon mapping (Sammon,
1969) of the SOM’s reference vectors. Figure 3a shows the
Sammon map of the 6� 5 SOM. The dominant feature of
this mapping is the greatly elongated left/right dimension,
which reflects the large differences between minimal and
maximal sea-ice edge patterns. Furthermore, the longest
dimension of the grid is between the upper left and upper
right corners, again reflecting the strong differences
between September (upper left, Fig. 2) and March (upper
right) sea-ice conditions. The Sammon map also empha-
sizes the similarities among patterns at the left and right
sides of the grid as well as the particularly tight cluster of
patterns at the upper right. The latter can be labeled as
‘March’ using the frequency maps of Figure 2, further
showing the reduced variability in this month.

Additionally, combining the monthly frequencymaps (e.g.
Fig. 2) with the Sammon map (Fig. 3a) brings together the
temporal and SOM-space characteristics of the sea-ice edge
dataset (Fig. 3b). In this version of the annual cycle, the
differences between the warm (upper right) and cold (lower
left) seasons stand out clearly as opposite, well-separated
areas of the SOM grid. Because this format incorporates both
time (month-to-month) and distance (in arbitrary units based
on similarity), a velocity in SOM space can be applied to each
monthly transition. For example, retreat transitions during
spring (September–October, October–November) are slower
than transitions in the peak retreat season (November–
December, December–January). Expansion also begins rela-
tively slowly (arrows moving from the upper right corner),
accelerates through May and June as a larger spatial area
becomes active, and finally slows as the active area decreases
and northernmost areas begin to retreat.

A comparison of the month-to-month differences in the
dominant monthly patterns helps clarify the spatial patterns
of change of the sea-ice edge during a generalized annual
cycle (Fig. 4). Expansion (March–August) begins in the Ross
and Weddell Sea regions in early fall and occurs at all
longitudes by early winter, with the largest changes in the
peninsula region. Mid- to late winter sees only small
changes. Sea-ice retreat (September–February) begins

Fig. 3. The annual cycle of sea-ice edge. (a) The Sammon map of 6 � 5 SOM patterns showing relative locations of SOM patterns using a
2-D, topology-preserving projection of the reference vectors following Sammon (1969). (b) A generalized annual cycle as defined by the
most common pattern(s) for each month, connected in temporal order and plotted on Sammon map coordinates. Dominant patterns for
selected months (Fig. 2) are also shown.
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around the eastern Antarctic Peninsula (August) while
expansion is still occurring in the Amundsen and Bellings-
hausen Seas (ABS) and around much of East Antarctica.
Retreat through the rest of the spring and summer continues
in the eastern ABS and Wilkes Land regions, followed by the
western ABS, Ross Sea and the rest of East Antarctica until
the minimum is reached everywhere in late summer.

CONCLUDING REMARKS
Much progress in glaciology has come from improved ability
to ‘see’ what is going on, using, for example, ice-penetrating
radar or seismic techniques to collect data on the glacier
bed, or satellite imagery to characterize the ice surface. Most
techniques of data analysis extract features of the dataset
without allowing the user to ‘see’ the full patterns. SOM
analysis optimally simplifies a large and complex dataset
into a few patterns that a user can see. The study of
frequency of occurrence, preferred transitions, rates of
change, hysteresis and other features is then made much
easier.

In this exploration of area anomalies of Antarctic sea-ice
coverage, we find that March patterns (and December
patterns, with one outlier) are highly reproducible, but that
greater variability is exhibited in June and September. Sea-
ice growth and shrinkage exhibit strong hysteresis, with a
general eastward propagation of anomalies. These results are
not entirely surprising, but we hope that they illustrate the
insights that can be gained from such analyses.
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