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Starting from the coupled Boltzmann–Enskog (BE) kinetic equations for a two-particle
system consisting of hard spheres, a hyperbolic two-fluid model for binary, hard-sphere
mixtures was derived in Fox (2019, J. Fluid Mech. 877, 282). In addition to spatial
transport, the BE kinetic equations account for particle–particle collisions, using an elastic
hard-sphere collision model, and the Archimedes (buoyancy) force due to spatial gradients
of the pressure in each phase, as well as other forces involving spatial gradients. The
ideal-fluid–particle limit of this model is found by letting one of the particle diameters
go to zero while the other remains finite. The resulting two-fluid model has closed terms
for the spatial fluxes and momentum exchange due to the excluded volume occupied by
the particles, e.g. a momentum-exchange term Ff p that depends on gradients of the fluid
density ρ f , fluid velocity u f and fluid pressure p f . In Zhang et al. (2006, Phy. Rev.
Lett. 97, 048301), the corresponding unclosed momentum-exchange term depends on the
divergence of an unknown particle–fluid–particle (pfp) stress (or pressure) tensor. Here, it
is shown that the pfp-pressure tensor Pp f p can be found in closed form from the expression
for Ff p derived in Fox (2019, J. Fluid Mech. 877, 282). Remarkably, using this expression
for Pp f p ensures that the two-fluid model for ideal-fluid–particle flow is well posed for all
fluid-to-particle material-density ratios Z = ρ f /ρp.

Key words: particle/fluid flow, kinetic theory

1. Introduction
Despite the fact that such models are most often ill posed (Lhuillier, Chang &
Theofanous 2013), two-fluid models have found widespread use for simulating industrial

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1010 A8-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1944-1861
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2025.333


R.O. Fox

and environmental polydisperse multiphase flows (Fox 2024). The principal modelling
difficulty to achieving a well-posed system results from the Archimedes force, involving
the continuous fluid pressure gradient, for cases where the particle-phase material density
ρp is smaller than that of the fluid ρ f (Lhuillier et al. 2013). In addition to being non-
physical, ill-posed two-fluid models suffer from numerical instabilities due to complex
eigenvalues, yielding spurious oscillations (Panicker, Passalacqua & Fox 2018). Given that
two-fluid models are usually derived from well-posed microscale models (e.g. the Navier–
Stokes equation for the fluid phase coupled to Newton’s equations for the particles) (Drew
& Passman 1998; Zhang, Ma & Rauenzahn 2006), it is clear that they are ill posed due
to the approximations used to close the model equations. In general, there are two types
of unclosed terms: (i) terms modifying the spatial fluxes of mass, momentum and energy;
and (ii) source terms for exchange of mass, momentum and energy. For example, in the
volume-averaging approach (Drew & Passman 1998), the source terms for momentum
and energy exchange involve unclosed particle-surface integrals depending on the fluid
stresses at the particle surface. Similarly, in the kinetic approach of Zhang et al. (2006)
an unclosed particle–fluid–particle (pfp) stress tensor Σ p f p arises from fluid-mediated (or
hydrodynamic) forces on a given particle due to the surrounding particles (see Wang et al.
2021; Zhang 2021 for more details).

With these difficulties in mind, Fox (2019) derived a two-fluid model for ideal-fluid–
particle flow starting from the Boltzmann–Enskog (BE) kinetic equation for hard spheres
with disparate sizes. As done in the derivation of the Euler equations for gas dynamics
(Cercignani 1988), the goal was to find exact expressions for the fluxes and source terms in
the two-fluid model for a specific system with well-defined interactions between the phases
(i.e. binary, hard-sphere collisions). Such a model can then be analysed to check if it is well
posed and, if so, to determine what are the necessary properties of the fluxes and source
terms. As is well known, the (inviscid) Euler equations for an ideal fluid can be found from
the Boltzmann kinetic equation for monodisperse hard spheres. For a binary system of hard
spheres with different diameters d1 � d2, the BE kinetic equation is used to model how
spatial gradients in the macroscopic variables (e.g. density, velocity, pressure) affect the
collision rates between particles with different diameters (Chapman & Cowling 1952). For
example, in order to include the Archimedes force in the momentum balances, the binary
collision operators in the BE kinetic equation require a specific form for the particle-pair
distribution function (see Fox 2019 and § 2 for details). In addition to the Archimedes force,
this distribution function generates a momentum-exchange term (denoted by Ff p = −Fp f )
involving spatial gradients in the fluid-phase density ρ f and the fluid-phase velocity u f .
Likewise, the presence of particles modifies the momentum and energy fluxes in the fluid
phase. For the binary hard-sphere system, it is in fact these additional terms that are
responsible for making the two-fluid model well posed (see analysis in Fox 2019 and § 4)
for material-density ratio Z = ρ f /ρp ≤ 0.1.

In order to make the two-fluid model well posed for arbitrary Z , Fox, Laurent & Vié
(2020) included added mass as first proposed by Cook & Harlow (1984). In the kinetic
equation, the definition of a particle was extended to include some fluid (i.e. the added
mass) travelling with the velocity of the particle. The effective material density of a
particle ρe is defined using the sum of the particle mass and the added mass. As a result,
the material-density ratio ρ f /ρe remains finite when ρp → 0. Besides added mass, Fox
et al. (2020) introduced an ad hoc model for the pfp-pressure tensor Pp f p (or, equivalently,
a model for −Σ p f p). They justified this additional hydrodynamic stress by the fact that,
when Z � 1 (e.g. bubbly flows), particle–particle interactions are strongly mediated by
the fluid phase (Wang et al. 2021; Zhang 2021), as opposed to hard-sphere collisions.
Nonetheless, while this augmented two-fluid model with added mass is well posed for
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arbitrary Z , the question of what is the exact form for Pp f p still remains. Indeed, the
general analysis by Zhang et al. (2006) shows that the pfp-stress tensor should exist in any
kinetic derivation of the two-fluid model. If this is true, then what is the exact expression
for Pp f p in the hard-sphere model of Fox (2019), and how is it related to Ff p? Answering
these questions is the principal objective of this work.

The remainder of this article is organised as follows. In § 2, we briefly review the BE
kinetic model with emphasis on the particle-pair distribution function in the ideal-fluid–
particle limit. The two-fluid model derived in Fox (2019) for an ideal fluid and spherical
particles is also provided in § 2. The main result concerning the relationship between Ff p
and Pp f p is derived in § 3. Finally, in § 4, we find explicit expressions for the eigenvalues
of the two-fluid model for a constant-density fluid, and discuss how the results from this
work can be applied to the two-fluid models containing additional physics discussed in
Fox (2024).

2. Boltzmann–Enskog kinetic model
In Fox (2019), a hyperbolic two-fluid model was derived, starting from the BE kinetic
equation, that includes the Archimedes force. The derivation used binary, hard-sphere
collisions for particles with diameters d1 ≤ d2, and resulted in a two-fluid model for the
limit d1 � d2, e.g. a molecular gas containing finite-size particles. In this section, we
briefly review the principal assumptions and results for an ideal-fluid–particle flow.

2.1. Principal assumptions
For simplicity and clarity, we only consider the ideal-fluid case. The kinetic theory model
in Fox (2019) uses the Enskog term for the two-particle distribution function at the contact
point (i.e. on the surface of the particle with diameter dp)

f (2)(v f , vp) = f f (v f ) f p(vp) + 1
2

dp f p(vp) x12 · ∂x f f (v f ), (2.1)

where x12 is the unit vector pointing from the surface contact point for collision with a fluid
particle to the particle centre. The reader will recognise (2.1) as a Taylor-like expansion of
the fluid-velocity distribution function (VDF), denoted by ff , from the particle surface to
its centre. The principal assumption used to derive the two-fluid model is that (2.1) is valid
when spatial gradients are small enough to neglect higher-order terms.

Another assumption is that the VDF for an ideal fluid is Maxwellian

ff (v f ) = ρ f (t, x)

[2πΘ f (t, x)]3/2 exp

(
−|v f − u f (t, x)|2

2Θ f (t, x)

)
, (2.2)

with velocity variance Θ f and fluid pressure p f = ρ f Θ f . Notice that ff depends on x
and t through three moments, e.g. fluid density ρ f , fluid velocity u f and fluid pressure
p f (one could also use Θ f in place of p f , but p f is more convenient for separating the
Archimedes (buoyancy) force from the hydrodynamic force Ff p. Θ f is proportional to the
thermodynamic temperature T f .) and not explicitly. Thus, the Enskog term in (2.1) can be
written using the following expression for the spatial gradient (summation over i):

∂x ff =
(

∂ ff

∂ρ f

)
∂xρ f +

(
∂ ff

∂u f,i

)
∂xu f,i +

(
∂ ff

∂p f

)
∂x p f . (2.3)
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On the right-hand side of (2.3), only the partial derivatives of ff depend on v f through
(2.2). In the kinetic theory model, the gradients of all hydrodynamic variables are
considered, not just the pressure gradient needed for the Archimedes force.

Even before doing the detailed calculations to evaluate the collision integrals, we can
already observe from (2.3) that the Archimedes force will come from the term involving
∂x p f , while the two other terms generate Fp f . In other words, Fp f results from fluid
density and velocity gradients across the particle radius. Note that the separation of f (2)

into two contributions is done in a more general formulation by Zhang et al. (2006) and
Zhang (2021). The interest of using (2.1) as a specific example is that it allows us to find an
exact expression for Fp f , valid when spatial gradients of ff are small. In contrast, Wang
et al. (2021) find an approximate correlation for Fp f from particle-resolved DNS (direct-
numerical simulation) that depends on particle-phase volume fraction αp and the particle
Reynolds number Rep. Generally speaking, small Rep is a sufficient condition for small
spatial variation of ff . Thus, the main assumption from which all the results below follow
is that (2.1) is a physically relevant approximation for f (2).

2.2. Collision integrals with Maxwellian VDF
The collision integral that generates the force of an ideal fluid on a spherical particle of
diameter dp uses the approximation in (2.1) for f (2). The first term on the right-hand side
( ff f p) is the Boltzmann closure, while the second accounts for variations of ff around
the particle surface. The latter is the Enskog closure that keeps only the first derivative in
x. As shown in Fox (2019), the fluid-drag force depends on the first term in (2.1), while
the Archimedes and hydrodynamic forces depend on the second. For clarity, we shall also
assume that the particle VDF is Maxwellian

f p(vp) = ρpαp(t, x)

[2πΘp(t, x)]3/2 exp

(
−|vp − up(t, x)|2

2Θp(t, x)

)
, (2.4)

and the particle–particle collisions are elastic. A more general form where the particle
velocity variance (Θp is often referred to as granular temperature.) Θp is a tensor (i.e.
anisotropic Gaussian) and the collisions are inelastic can be found in Fox (2019). Note that
ρp is constant and the fluid-phase volume fraction is defined by α f = 1 − αp.

The specific forms of the collision integral can be found in Fox (2019). For momentum,
the forms (explicitly showing the dependence on v f and vp) are the vector

C (0) = 3
2ρpdp

∫
R6

(v f − vp)|v f − vp| ff (v f ) f p(vp) dv f dvp, (2.5)

and the vector C (1) with components

C (1)
i = 1

5ρp

∑
j

∫
R6

Ii, j (v f − vp) f p(vp)∂x j ff (v f ) dv f dvp, (2.6)

where the symmetric second-order tensor Ii, j has diagonal elements Ii,i (v) = v2 + 2v2
i

and off-diagonal elements Ii, j (v) = 2viv j (i.e. Ii, j (v) = v2δi, j + 2viv j ). This tensor is
found by integration over the collision surface of a particle, and all such integrals have
a closed form for integer velocity moments (see Fox 2019 for details). Notice that Ii, j
does not depend on x or t , only on the independent variable v. For a Maxwellian VDF,
velocity moments of orders 0, 1 and 2 suffice to find the mass, momentum and total energy
balances. The collision integrals for mass are null, and those for energy are given in Fox
(2019). Here, we consider only (2.5) and (2.6) for momentum exchange.
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2.2.1. Fluid-drag force
The parameter C (0) represents the drag force and the integral is unclosed due to
|v f − vp|. For the ideal-fluid case, both ff and f p are Maxwellian. Approximating the
integrals yields an expression for the drag coefficient K . In general, Θ f � Θp when
Rep is small so that K ∝ 6 αpρ f Θ

1/2
f /dp. This approximation is inaccurate and higher-

order terms in the VDF are required (see van Beijeren & Dorfman 1980a,b for details). In
practice, K is found using a drag correlation (Capecelatro 2022).

2.2.2. Forces due to spatial gradients
The parameter C (1) represents all of the forces that depend on the spatial gradient ∂x ff .
Substituting (2.3) leads to three separate contributions (summation over j)[∫

R6
Ii, j (v f − vp)

(
∂ ln ff

∂ρ f

)
f p(vp) ff (v f ) dv f dvp

]
∂x j ρ f[∫

R6
Ii, j (v f − vp)

(
∂ ln ff

∂u f,k

)
f p(vp) ff (v f ) dv f dvp

]
∂x j u f,k[∫

R6
Ii, j (v f − vp)

(
∂ ln ff

∂p f

)
f p(vp) ff (v f ) dv f dvp

]
∂x j p f ,

(2.7)

where (the integral
∫
R3 |v f − u f |2 ff dv f (trace of velocity covariance) equals 3ρ f Θ f =

3p f and
∫
R3 ff dv f = ρ f . Gaussian moments of order higher than two have known

dependencies of ρ f , u f and Θ f )

∂ ln ff

∂ρ f
= 3

2ρ f
− |v f − u f |2

6p f
,

∂ ln ff

∂u f
= ρ f (v f − u f )

p f
,

∂ ln ff

∂p f
= − 1

2p f
+ ρ f |v f − u f |2

6p2
f

.

(2.8)

An important technical point is that the three integrals in the square brackets in (2.7) are
closed, i.e. they can be evaluated exactly and depend on ρ f , u f , Θ f and ρpαp, up, Θp.
(See Fox 2019 for details.) Remarkably, the integral multiplying ∂x j p f reduces to αpδi, j ,
yielding the Archimedes force. The other two integrals yield (in Fox 2019, an equivalent
procedure is used to find the Archimedes and hydrodynamic forces. Because Ii, j does not
depend on x, the velocity integrals can be computed before taking the spatial derivatives of
the fluid variables. This procedure reduces the number of integrals to evaluate from three
to one, making it easier to extend to higher-order moments)

Fp f = αp(ΘpI + R) · ∂xρ f + ρ f αp
2
5
[u f p · (∂xu f ) + (∂xu f ) · u f p + (∂x · u f )u f p],

(2.9)
where u f p = u f − up and

R = 1
5

u2
f pI + 2

5
u f p ⊗ u f p, (2.10)

with tr(R) = u2
f p. Note that, because here we separate out the term involving ΘpI when

defining R, this definition is slightly different than in Fox (2019).
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In Fox (2019), the exact expression for C (1) for arbitrary VDFs (e.g. depending on
the velocity covariance matrix, etc.) is computed. Thus, (2.9) represents the lowest-
order approximation assuming Maxwellian VDFs. In any case, the accuracy of this result
depends mainly on the accuracy of the model for f (2) in (2.1).

2.3. Two-fluid model for fluid–particle flow
For completeness, we provide the two-fluid model with an ideal fluid in table 1. Our main
objective in the next section is to demonstrate that the momentum-exchange term Fp f in
(2.9) provides a closed expression for the pfp-pressure tensor Pp f p introduced in an ad
hoc manner in Fox et al. (2020). The tensor R results from integrating over the collision
surface of a spherical particle (see chapter 6 in Marchisio & Fox 2013 for details). Notice
that R appears in the fluid-phase momentum flux (‘collisional’ flux) in the momentum
balance in table 1 (see Fox 2019 for details). This result is also found by volume averaging
over the surface of spherical particles (Lhuillier 2023), and arises due to the excluded
volume occupied by particles. This would suggest that the fluid-phase momentum flux in
the two-fluid model with spherical particles should always depend on R, regardless of how
it is derived.

3. Particle–fluid–particle pressure tensor
In this section, we show how to find a closed expression for the pfp-pressure tensor Pp f p
from the momentum-exchange term Fp f in (2.9). The derivation of Pp f p requires us to
express the gradient of the fluid velocity ∂xu f in terms of the slip velocity up f and the
volume-average velocity uv defined by

uv = αpup + α f u f = αpup f + u f . (3.1)

From the mass balances in table 1, it can easily be shown that if the material densities
(i.e. ρ f and ρp) are constant, then ∂x · uv = 0. Thus, uv is the ‘natural’ choice for the
reference velocity. The momentum-exchange terms in (2.9) can then be rewritten using the
identity

∂xu f = ∂xuv + ∂x(αpu f p). (3.2)

In particular, by rearranging the terms on the left-hand side below (which appears in Ff p),
we find that

ρ f αp
2
5
[u f p · (∂xu f ) + (∂xu f ) · u f p + (∂x · u f )u f p]

= ρ f αp
2
5
[2Γ v + (∂x · uv)I] · u f p + ρ f ∂x · (α2

pR), (3.3)

where Γ v = 1
2 [(∂xuv) + (∂xuv)

t ] is the rate-of-deformation tensor for the volume-average
velocity.

The pfp-pressure tensor is then defined by

Pp f p = ρ f α
2
pR, (3.4)

such that ∂x · Pp f p = ρ f ∂x · (α2
pR) + α2

pR · ∂xρ f . The dependence of Pp f p on α2
p is

consistent with it arising from particle-pair interactions, while the dependence on
ρ f shows the role of the fluid. Using these results, the momentum-exchange term
becomes
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Mass balances

∂t (ρ f α f ) + ∂x · (ρ f α f u f ) = 0
∂t (ρpαp) + ∂x · (ρpαpup) = 0

momentum balances

ρ f α f (∂t + u f · ∂x)u f + ∂x · [αpρ f (ΘpI + R)] + α f ∂x p f = Fp f + K up f + ρ f α f g
ρpαp(∂t + up · ∂x)up + ∂x pp + αp∂x p f = Ff p + K u f p + ρpαpg

total energy balances

ρ f α f (∂t + u f · ∂x)E f + ∂x · (α f p f u f + αpρ f r) + p f ∂x · (αpup) = Dp f + DE + ρ f α f g · u f

ρpαp(∂t + up · ∂x)E p + ∂x · (ppup) + αpup · ∂x p f = D f p − DE + ρpαpg · up

where α f + αp = 1,

R = 1
5

u2
f pI + 2

5
u f p ⊗ u f p r = R · up + Θp(up + 2up f ) DE = K

(
3Θp + up · up f

)
Dp f = −D f p = up · Fp f + 2αpΘp[up f · ∂xρ f − ρ f (∂x · uv) − ρ f ∂x · (αpu f p)]

u f p = −up f = u f − up p f = ρ f Θ f pp = ρpαpΘp(1 + 4αpg0) g0 = 1 + α f

2α3
f

Θ f = 2
3

(
E f − 1

2
u2

f

)
Θp = 2

3

(
E p − 1

2
u2

p

)

Table 1. Two-fluid model for flow of an ideal fluid and elastic hard-sphere particles with constant ρp . Fp f =
−F f p is given in terms of the pfp-pressure tensor Pp f p and the volume-average velocity uv = αpup + α f u f
in (3.5). To include added mass, as done in Fox et al. (2020), it suffices to make the following substitutions:
αp → α�

p , ρp → ρe, α f → α�
f ; and to include a mass balance for αp , as well as the added-mass exchange terms

(see Boniou et al. 2024 for details). Note that, for clarity, the frictional pressure needed for dense granular flows
(see, e.g. Houim & Oran 2016) has not been included in the definition of pp . With or without added mass, the
frictional pressure depends only on αp .

Fp f = ∂x · Pp f p + αpρ f
4
5
Γ v · u f p + αp(ΘpI + α f R) · ∂xρ f + αpρ f

2
5
(∂x · uv)u f p.

(3.5)

The first two terms on the right-hand side are present even when ρ f is constant, in which
case the last two are zero. The second term is a lift force due to gradients in uv (and not
u f ); however, in the dilute limit αp → 0 (i.e. the lift force on a single particle), these two
velocities are nearly identical. Alternatively (i.e. using the traceless tensor Sv as done in
Fox 2019), the tensor Γv in the lift force can be made traceless and one third its trace
combined with the final term in (3.5).

Given that Ff p = −Fp f , we can observe that by moving ∂x · Pp f p to the left-hand sides
of the momentum balances in table 1, Pp f p acts like a (positive) pressure term for the
particle phase. For the fluid phase, we can combine the Pp f p term with the momentum
flux due to R to find

∂x · [αpρ f (ΘpI + R)] − ∂x · Pp f p = ∂x · [αpρ f (ΘpI + α f R)], (3.6)
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and thus the combined term acts as a pressure as well. In agreement with Zhang (2021),
this would suggest that a pfp-pressure tensor should be present in every two-fluid model
for disperse multiphase flows, regardless of how the model is derived.

4. Discussion and conclusions

4.1. Physical interpretation of Fp f

The force Fp f has two contributions: one due to the fluid-density gradient at constant
pressure, and one due to the fluid-velocity gradient. The first is important in high-speed
flows with shock waves. At a contact surface behind a shock wave, the fluid pressure
is constant but the density gradient is large. Here, Fp f provides an unsteady drag on
the particles due to the density gradient (Boniou & Fox 2023). In low-speed flows, the
fluid-density gradient is small (or zero), in which case Fp f depends only on fluid-velocity
gradients. Physically, when u f varies over the length scale dp/2, a hydrodynamic force
results. Because u f = uv + αpup f and (with constant ρ f ) ∂x · uv = 0, the hydrodynamic
stress scales like ρ f α

2
pu2

p f (see Zhang et al. 2006; Zhang 2021 for details). Thus, in
addition to the fluid-drag force found for uniform u f , there is ‘slip stress’ when u f varies
across the particle radius (i.e. for non-zero ∂xu f ). Finally, it is important to notice that Fp f
does not depend directly on gradients of αp. This is because at the scale of the particle,
αp is not defined (or constant). Thus, in the kinetic model in (2.1) for an ideal-fluid–
particle system, the Enskog contribution to f (2) does not depend on the gradient of f p.
Nonetheless, recent work (Wang, Zhang & Balachandar 2024) has demonstrated that a
volume-fraction gradient leads to a diffusion stress Σd . The reader is referred to Wang
et al. (2024) for the exact definition, but it is important to note that such a stress will affect
the hyperbolicity of the two-fluid model. Indeed, a similar term is widely used in two-fluid
models for bubbly flows to make them well-posed (Lhuillier et al. 2013; Panicker et al.
2018).

4.2. Is the two-fluid model well-posed?
As shown in Fox et al. (2020), since the trace of Pp f p is ρ f α

2
pu2

p f , the pfp-pressure will
be large enough to keep the two-fluid model well posed. For an incompressible fluid (see
table 2), the two eigenvalues for the particle phase λ1,2 = u p + u f pλ̂1,2 can be computed
analytically (Panicker et al. 2018). Subtracting u p = 0 and dividing the result by u f p, we
find the two scaled eigenvalues (this result is strongly dependent on using both the correct
pfp-pressure and fluid-phase momentum flux. For example, using ∂x · Pp f p without ∂x ·
[αpρ f (ΘpI + R)] yields very different (non-physical) eigenvalues for small Θp)

λ̂1,2 = Zαpα f ± X1/2

(α f + Zαp)α f
, (4.1)

with (if the particle–particle collisions are inelastic with coefficient of restitution ec, then
pp = αpΘp[1 + 2(1 + ec)αpg0]. The second and third terms on the right-hand side of
(4.2) then depend on ec, but the qualitative behaviour of the eigenvalues remains the
same)

X = (1 − Θ̂p)Z2α2
pα

2
f + 2

α f
(3 + α f )α

2
p ZΘ̂p + (α4

p + 4α f α
2
p + 4αp + 1)Θ̂p, (4.2)

where Θ̂p = Θp/u2
f p. As seen in figure 1, these eigenvalues are real and distinct for all

αp when X > 0. As only the first term in (4.2) can be negative when Θ̂p > 1, an ill-posed
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∂tα f + ∂x (α f u f ) = 0
∂tαp + ∂x (αpu p) = 0

α f (∂t + u f ∂x )u f + ∂x (αpΘp) + ∂x (αpα f u2
f p) + α f ∂x p f = 0

αp(∂t + u p∂x )u p + ∂x [αpΘp(1 + 4αpg0)] + Z∂x (α
2
pu2

p f ) + Zαp∂x p f = 0

Table 2. One-dimensional two-fluid model with a constant-density fluid and constant granular temperature
Θp . The source terms are neglected because they do not affect the eigenvalues. The primitive variables are
X = [p f , αp, u p, u f ] where the fluid pressure is divided by ρ f . Two eigenvalues for this system are ±∞
(Panicker et al. 2018), and the other two can be scaled to depend only on Z and Θ̂p (Fox et al. 2020). In
the particle-phase momentum balance, the second term is the granular pressure, the third term is the pfp
contribution, while the fourth is due to the Archimedes force. The pfp and αp R contributions are combined in
the fluid-phase momentum balance, yielding a positive ‘slip pressure’ as in (3.6).
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Figure 1. Scaled particle-phase eigenvalues with an incompressible fluid found from (4.1) with (a) Θ̂p = 0
and (b) Θ̂p = 1. Lines: solid black, Z = 1000; dotted green, Z = 3; dash-dot blue, Z = 1; dashed red,
Z = 0.001. With Θ̂p = 0, one scaled eigenvalue is zero. For larger Θ̂p , the eigenvalues separate more rapidly
with increasing αp . When added mass is included (Fox et al. 2020; Boniou et al. 2024), bubbly flow
corresponds to Z ≈ 3, and the eigenvalues are real for all Θ̂p ≥ 0.

system may arise if Z is large enough. In the granular limit, Z = 0 and λ̂1,2 ∝ ±Θ̂
1/2
p

as expected, while for massless particles Z → ∞ and λ̂1,2 = 1 ± (1 − Θ̂p)
1/2. However,

when added mass is included in the two-fluid model (see Fox et al. 2020; Boniou et al.
2024 for details), the effective density of the particles ρe depends on the added-mass
coefficient Cm ≈ 0.5 (for the two-fluid model with added mass to be well posed for
all Θp, the minimum value is Cm ≈ 0.1, which gives Z ≈ 11 when ρp → 0) such that
Z = ρ f /ρe ≤ 3. In that case, the two eigenvalues are real for all Θ̂p ≥ 0. Likewise, when
the frictional pressure is included in the particle-phase pressure pp, the particle-phase
eigenvalues have much larger magnitude when αp > 0.63 (Houim & Oran 2016). We can
therefore conclude that the two-fluid model derived in Fox (2019) with the pfp-pressure
tensor given in (3.4) and the added-mass model in Fox et al. (2020), Boniou et al. (2024)
is well posed for all physically relevant conditions.

Concerning the physical interpretation of the eigenvalues in figure 1, the results for
Θp = 0 are of particular interest. In a frame of reference with u p = 0, the particles are
fixed with zero mean and fluctuating velocity, and the slip velocity u f p is in the positive
direction (e.g. gravitational sedimentation). This results in λ1 = 0 so that no information
about the particles travels upstream (i.e. ahead of the falling particles). On the other
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hand, the wave with λ2 = 2Zαpu f p/(α f + Zαp) will propagate particle-phase mass and
momentum downstream at speeds that can exceed the mean fluid velocity for Z ≥ 1. This
will cause a cloud of particles to spread only in the downstream (u f p > 0) direction. In
most applications (e.g. Boniou & Fox 2023), 0 < Θ̂p � 1 so that information propagates
in both directions. Nonetheless, due to its dependence on Z , including the pfp-pressure
term (and added mass) is crucial for lightweight particles such as bubbles (Risso 2018) or
even inertial granular suspensions (Guazzelli & Pouliquen 2018).

In summary, like the Euler equations for ideal-fluid flow, the two-fluid model in table 1
for ideal-fluid–particle flow is the simplest possible model containing the minimum
physics needed to be well posed. Thus, it can be used as the starting point for adding
more physics such as viscous effects, mass transfer and chemical reacting species (Boniou
et al. 2024). Unlike the ‘standard’ two-fluid model used in most academic and commercial
codes, the model in table 1 has the fluid-phase flux term R and the pfp-pressure tensor
Pp f p, both of which arise (like the Archimedes force) from the excluded volume of the
particles. Given this fact, it is reasonable to expect that the fluid–particle model in table 1
can be used as a starting point for other particle shapes besides spheres, albeit with
corrections to some of the exchange terms (e.g. the drag coefficient K ).
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