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Abstract

We generalize the main result of the paper by Bennett and Mulholland [‘On the diophantine equation
xn
+ yn

= 2α pz2’, C. R. Math. Acad. Sci. Soc. R. Can. 28 (2006), 6–11] concerning the solubility
of the diophantine equation xn

+ yn
= 2α pz2. We also demonstrate, by way of examples, that questions

about solubility of a class of diophantine equations of type (3, 3, p) or (4, 2, p) can be reduced, in certain
cases, to studying several equations of the type (p, p, 2).
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1. Introduction

By the work of Hellegouarch, Frey, Serre, Ribet, Wiles, Taylor and many others [5, 13–
15], we can reduce the study of a class of ternary diophantine equations (generalized
Fermat equations) Ax p

+ Byq
= Czr to modern techniques coming from Galois

representations and modular forms. In all known cases, the proofs follow a
variant of the method of Frey (or Frey–Hellegouarch) curves and Ribet’s level-
lowering theorem. We should stress that Frey curves have been constructed for
only a few families of diophantine equations. In particular, a number of partial
(sometimes complete) results are available when (p, q, r) is one of the following
types: (p, p, p), (p, p, 2), (p, p, 3), (3, 3, p), (4, 4, p), (5, 5, p), (2, 4, p).

In this paper we prove the following result, generalizing [1, Theorem 1.1].

THEOREM 1.1. Let M be an odd squarefree positive integer, gcd(M, 21)= 1. Then
the equation

xn
+ yn

= 2αMz2 (1.1)

has no solutions in coprime nonzero integers x and y, positive integers z and α, and
primes n satisfying n > M132M2

.

Similarly, one can generalize the results from the paper by Bennett et al. [3] (see
the remark in Section 3).
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In Sections 4, 5 and 6 we give new proofs of results concerning solubility of specific
diophantine equations of types (3, 3, p) and (4, 2, p). In these cases we reduce the
problem to studying several diophantine equations of type (p, p, 2).

2. Preliminaries

LEMMA 2.1. Suppose that p ≥ 7 is prime.

(i) If (C, α0) ∈ {(1, 2), (3, 2)}, then the equation x p
+ 2α y p

= Cz2 has no
solutions in nonzero pairwise coprime integers (x, y, z) with xy 6= ±1 and
integers α ≥ α0.

(ii) If C ∈ {1, 2}, then the equation x p
+ y p

= Cz2 has no solutions in nonzero
coprime integers (x, y, z) with xy 6= ±1.

PROOF. Special cases of Theorems 1.2 and 1.1 in [2]. See also [7, Main theorem]. 2

LEMMA 2.2. For non-zero integers x, y satisfying gcd(x, y)= 1, we have:

(i) gcd(x + y, x2
+ y2)= 1 or 2;

(ii) gcd(x + y, x2
− xy + y2)= 1 or 3.

PROOF. (i) Assume re
|x + y and re

|x2
+ y2, where r is a prime and e is a positive

integer. Then re
|2x2. But gcd(x, y)= 1, hence r -x . Therefore re

|2 and the assertion
follows. The proof of (ii) follows along the same lines. 2

3. Generalization of Bennett and Mulholland’s result

The proof of Theorem 1.1 follows along the same lines as the proof of [1,
Theorem 1.1], therefore we only indicate the main steps. The genuine new ingredient
is Lemma 3.1 below. The point is that a classification of elliptic curves over Q with
rational 2-torsion point and conductor 32M2 or 256M2 is not necessary—here we use
a much weaker result.

Let
E = E(a, b, c) : Y 2

= X3
+ 2β+1cM X2

+ 2βMbn X

denote the elliptic curve attached to nontrivial solution of (1.1). Let ρE
n denote the

corresponding mod n Galois representation. Using [2, Lemmas 3.2 and 3.3] we obtain
that this representation arises from a cuspidal newform of weight 2, trivial Nebentypus,
and level 32M2 or 256M2. Let f be a cuspidal newform of weight 2, level N , and
trivial Nebentypus, where N = 32M2 or 256M2.

If f has at least one Fourier coefficient that is not a rational integer, then we obtain
(analogously to [1]) n ≤ M12M2

if N = 32M2, and n ≤ M132M2
if N = 256M2.

If f has only rational integer Fourier coefficients, then we argue as in [1], replacing
Propositions 3.1 and 3.2 by the following result.

LEMMA 3.1. Let E be an elliptic curve defined over Q with rational 2-torsion and
conductor 32M2 or 256M2, where M is an odd squarefree integer. If gcd(M, 21)= 1,
then E has j-invariant whose denominator is divisible by some prime p0|M or CM by
an order in Q(

√
−1) or Q(

√
−2).
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PROOF. Write M = p1 · · · pk . Generalizing [8, Lemme 1], we deduce that E has
global minimal model of the form

y2
= x(x2

+ ax + b),

with integers a, b ∈ Z without common prime factors different from 2, p1, . . . , pk .
One can easily check that

c4 = 24(a2
− 3b), c6 = 25a(9b − 2a2), 1E = 24b2(a2

− 4b).

If a = 0, then E has CM by Q(
√
−1).

Assume that a 6= 0, and write

1E =±2m pα1
1 · · · pαk

k , a =±2m1 pβ1
1 · · · pβk

k a0, b =±2m2 pγ1
1 · · · pγk

k .

Using [12, Tableau IV] we obtain

(v2(1E ), v2(c4), v2(c6))

∈ {(6, 4,≥ 6), (9, 4, 6), (12, 6,≥ 9), (12, 7, 9)} if NE = 32M2,

and

(v2(1E ), v2(c4), v2(c6)) ∈ {(9, 5,≥ 8), (15, 7,≥ 11)} if NE = 256M2.

If 2βi0 < γi0 for some i0 ∈ {1, . . . , k}, then the denominator of jE is divisible
by pi0 .

If 2βi ≥ γi for all i ∈ {1, . . . , k}, then careful analysis of possible cases for
(v2(1E ), v2(c4), v2(c6)) leads to elliptic curves with CM by Q(

√
−1) or Q(

√
−2),

or to elliptic curves with j-invariants whose denominators are divisible by some prime
p0|M . Let us give some details (possible values of (m1, m2) will follow from the
formulas for c4, c6 and 1E , given above).
(v2(1E ), v2(c4), v2(c6))= (6, 4,≥6). In this case (m1, m2)= (0, 1) or (>1, 0).

If (m1, m2)= (0, 1), then denominator of jE is divisible by some p0|M , or
p2β1−γ1

1 · · · p2βk−γk
k a2

0 ± 8=±1. In the second case a0 =±3 and γi = 2βi for
all i ∈ {1, . . . , k} (here we use the assumption gcd(pi , 21)= 1), and we obtain a
family of elliptic curves y2

= x3
± 3Mx2

+ 2M2x with CM by Q(
√
−1). The case

(m1, m2)= (>1, 0) leads to elliptic curves with j-invariants whose denominators are
divisible by some p0|M .
(v2(1E ), v2(c4), v2(c6))= (9, 4, 6). In this case (m1, m2)= (1, 0), and we obtain

elliptic curves with j-invariants whose denominators are divisible by some p0|M , or
a family y2

= x3
± 3Mx2

+ 2M2x with CM by Q(
√
−1).

(v2(1E ), v2(c4), v2(c6))= (9, 5,≥8). In this case (m1, m2)= (≥2, 1), and we
obtain elliptic curves with j-invariants whose denominators are divisible by some
p0|M , or a family y2

= x3
± 4Mx2

+ 2M2x with CM by Q(
√
−2).

(v2(1E ), v2(c4), v2(c6))= (12, 6,≥9). In this case (m1, m2)= (1, 3), and we
obtain elliptic curves with j-invariants whose denominators are divisible by some
p0|M , or a family y2

= x3
± 3Mx2

+ 2M2x with CM by Q(
√
−1).
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(v2(1E ), v2(c4), v2(c6))= (12, 7, 9). This case produces no elliptic curve.
Indeed, m1m2 = 0 implies v2(c4)= 4 or v2(1E )= 4, a contradiction. Let m1m2 ≥ 1.
Then m1 = 1 implies m2 = 2, and hence v2(c6)= 8; similarly, m1 ≥ 2 implies m2 = 3,
and hence v2(c6)≥ 10.
(v2(1E ), v2(c4), v2(c6))= (15, 7,≥11). In this case (m1, m2)= (≥3, 3), and we

obtain elliptic curves with j-invariants whose denominators are divisible by some
p0|M , or a family y2

= x3
± 8Mx2

+ 8M2x with CM by Q(
√
−2). 2

REMARK 3.2. One can generalize [3, Theorems 1.1, 1.3 and 1.4]: here we replace
Proposition 6.1 by a variant of Lemma 3.1. It is clear that variants of Lemma 3.1 will
apply to some other types of generalized Fermat equations.

4. New proof of Billerey’s result

Let p be an odd prime. Consider the equation

(x + y)(x2
+ y2)= z p, gcd(x, y)= 1. (4.1)

By Lemma 2.2 we have two cases to consider.
(i) Assume that gcd(x + y, x2

+ y2)= 2. In this case x + y = 2p−1z p
1 and x2

+

y2
= 2z p

2 , with gcd(z1, z2)= 1. Substituting y =−x + 2p−1z p
1 in the second equation

we obtain
2x2
− 2pz p

1 x + 22p−2z2p
1 − 2z p

2 = 0.

We have 1x = 16(z p
2 − 22p−4z2p

1 ). Using Lemma 2.1(i), we obtain that the
equation X p

+ 2mY p
= Z2 (m ≥ 2) has no solution in nonzero pairwise coprime

integers (X, Y, Z) with XY 6= 1. As a corollary we obtain the following result [4,
Theorem 3.1].

PROPOSITION 4.1. Equation (4.1) has no nontrivial solution in integers x, y, z with
z even.

(ii) Assume that gcd(x + y, x2
+ y2)= 1. In this case x + y = z p

1 and x2
+

y2
= z p

2 , with gcd(z1, z2)= 1. Substituting y =−x + z p
1 in the second equation we

obtain 2x2
− 2z p

1 x + z2p
1 − z p

2 = 0. We have 1x = 4(2z p
2 − z2p

1 ). It is expected that
the equation 2X p

+ Y p
= Z2, gcd(X, Y )= 1, has no solutions in nonzero coprime

integers (X, Y, Z) with XY 6= ±1, and hence (4.1) has no solutions. Such an
expectation follows from [9, Conjecture 2], at least for p sufficiently large.

5. Application to the equation x3 + y3 = z p

Let p be an odd prime. Consider the equation

x3
+ y3

= z p, gcd(x, y)= 1. (5.1)

Assume that p ≥ 17 and (a, b, c) is a nontrivial solution to Equation (5.1), satisfying
ac even. Kraus [11, Theorem 6.1] has proved the following result.
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PROPOSITION 5.1.

(i) c is odd;
(ii) v2(a)= 1;
(iii) v3(c)≥ 1.

We give another proof of this result. By Lemma 2.2 we have two cases to consider.
(i) Assume that gcd(x + y, x2

− xy + y2)= 1. In this case x + y = z p
1 and

x2
− xy + y2

= z p
2 , with gcd(z1, z2)= 1. Substituting y =−x + z p

1 in the second

equation, we obtain 3x2
− 3z p

1 x + z2p
1 − z p

2 = 0. We have1x = 3(4z p
2 − z2p

1 ). Using
Lemma 2.1(i), we obtain that the equation 4X p

+ Y p
= 3Z2, gcd(X, Y )= 1, has no

nontrivial solution in integers satisfying XY 6= ±1. In particular, Equation (5.1) has
no solution if z is even. This proves case (i).

(ii) Assume that gcd(x + y, x2
− xy + y2)= 3. Then, in particular, v3(z)≥ 1. In

this case we have x + y = 3p−1z p
1 and x2

− xy + y2
= 3z p

2 , with gcd(z1, z2)= 1.
Substituting y =−x + 3p−1z p

1 , we arrive at the diophantine equation 4z p
2 −

32p−3z p
1 = t2. Here we are in case (iii) from [2]: A = 3p−3, B = 4, C = 1. Let

E = E3(a, b, c) be the corresponding elliptic curve. Using [2, Lemma 3.3], we obtain
that the corresponding Galois representation ρE,p (with p ≥ 7) arises from a cuspidal
newform of weight 2 and level 12 (level 24) if z2 ≡ 3 mod 4 (z2 ≡ 1 mod 4). There
are no nonzero cuspforms of weight 2 and level 12. In the case of level 24 we have
z2 ≡ 1 mod 4, hence x ≡ 2 mod 4, proving case (ii).

REMARKS 5.2.

(i) Note that 3p−3
± 4 are not squares of integers. Therefore [9, Conjecture 1]

implies that the equation 4X p
+ 3p−3Y p

= Z2 has no nontrivial solutions.
Consequently (5.1) has no nontrivial solutions.

(ii) Kraus [11] showed that (5.1) has no nontrivial solutions for exponents p with
17≤ p ≤ 104; the same can be proved for 5≤ p ≤ 13.

6. Application to the equation x4 − y2 = nz p

Let p ≥ 5 be prime and n a positive integer greater than 1. Dąbrowski [6] proves
that, under certain conditions on n, the equation x4

− y4
= nz p has no nontrivial

solution in Z if p ≥ C(n), where C(n) is effectively a constant. Let us state a particular
case [6, Corollary 1].

PROPOSITION 6.1. Let q be an odd prime, not of the type 2m
± 1. Let p be a

prime satisfying p > (
√

8q + 8+ 1)2q−2. Then the equation x4
− y4

= qz p has no
nontrivial solution in the integers.

We will deduce the following version of this result from [9]. We should stress that
both proofs use ideas from [10].

PROPOSITION 6.2. Let q > 3 be a prime; assume that q ≡ 3 mod 8 and q 6= 2t2
+ 1,

or q ≡ 5 mod 8 and q 6= t2
+ 4. In addition, let p be a prime satisfying

p > (8
√

q + 1+ 1)16(q−1). Then the equation x4
− y2

= qz p has no nontrivial
solution in the integers.
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PROOF. The case where xy is even leads to consideration of the diophantine equation
q X p
+ Y p

= 2Z2. Theorem 1.2 in [9] implies that it has no nontrivial solution if
q ≡ 3 mod 8 and q 6= 2t2

+ 1 or q ≡ 5 mod 8, and p > (8
√

q + 1+ 1)16(q−1).
The case where xy is odd leads to consideration of two diophantine equations:

(i) X p
+ 4qY p

= Z2;
(ii) 4X p

+ qY p
= Z2.

Theorem 1.1 in [9] implies that these equations have no nontrivial solution if q ≡
3 mod 8 or q ≡ 5 mod 8 and q 6= t2

+ 4, and p > (8
√

q + 1+ 1)16(q−1). 2

REMARK 6.3. Some questions concerning solubility of a general diophantine
equation x4

− y2
= nz p may be reduced to [9, Conjectures 1 and 2].
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