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Abstract. We are currently developing an analytical theory of an artificial satellite of the Moon.
It is an interesting problem because the dynamics of a lunar orbiter is quite different from that
of an artificial satellite of the Earth, by at least two aspects: the J2 lunar gravity term is only
1/10 of the C22 term and the third body effect of the Earth on the lunar satellite is much larger
than the effect of the Moon on a terrestrial satellite. So we have to account at least for these
larger perturbations. We use here the method of the Lie Transform as perturbation method.
The Hamiltonian of the problem is first averaged over the fast angle, in canonical variables. The
solution is developed in powers of the small factors linked to n , J2, C22 and to the Earth’s
position. The Earth location is determined by the lunar theory ELP2000 (Chapront-Touzé &
Chapront 1991) from which we take the leading terms. Series developments are made with
our home-made Algebraic Manipulator, the MM (standing for “Moon’s series Manipulator”).
The results are obtained in a closed form, without any series developments in eccentricity or
inclination. So the solution applies for a wide range of values, except for few isolated critical
values. We Achieved, among others, second order results for the combined effect of J2 and C22.
As a side result, we were able to check the second order generator W2 given by Kozai for the
effect of the J2 term on an artificial satellite.

1. Introduction
The case study of a satellite around the Moon is quite different from the one around

the Earth on several aspects. First of all, the moon is a slowly rotating body and has
no dense atmosphere. Secondly, as it is well known, the lunar gravity field is far from
being central, nor does it exhibit any strong symmetry of revolution; see e.g. Konopliv
(2001) for a recent model in spherical harmonics. The order of magnitude of the second
order coefficients for the Earth (Kaula 1966) and the Moon (Bills & Ferrari 1980) is
given in the Table 1. The Moon is much less flattened than the Earth, which makes the
C22 coefficient to come closer to J2 (at 1 order of magnitude instead of 3 in the case of
the Earth); so it needs to be considered. Moreover, the effect of the Earth on the lunar
satellite is much larger than the effect of the Moon on a terrestrial satellite; so the former
effect is mixed to the effects of the shape of the lunar gravity field. In this paper, we will
focus on the combined effect of the perturbations J2 and C22, and introduce the effect
of the Earth considered as a third body.

Table 1. Some orders of magnitude for J2 and C22

C20 ≡ −J2 C22

Earth ⊕ −10−3 2.10−6

Moon −2.10−4 2.10−5
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The following assumptions have been made: the orbit of the Moon is circular (we
neglect e ≈ 0.055); the motion of the Moon is uniform (librations are neglected); the
lunar equator lies in the ecliptic (we neglect the inclination of the lunar equator to the
ecliptic of 1.5◦, and the inclination of the lunar orbit to the ecliptic of about 5◦); the
perturbation of the Sun is negligible; and the longitude of the lunar longest meridian λ22

is equal to the longitude of the Earth λ⊕ (librations are neglected). This last assumption is
one of the well known Cassini’s laws (Cook 1988), stating that the Moon is in synchronous
rotation: she rotates about her axis perpendicular to the plane of her orbit at an angular
velocity γ that is equal to her mean angular velocity in her orbit n ; that is to say
γ = n = 2π/T with the sidereal rotation period of the Moon being T = 27.321 661 5
solar days.

2. Partial perturbative Hamiltonians
We work within the frame of the Hamiltonian formalism and use the classical Delaunay

canonical variables (qi, pi) = (l, g, h, L,G,H). The term 1
2v2 − µ

r is then simply written
H(0)

0 = − µ2

2L2 (the unperturbed potential); next one has to develop the perturbations.
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Figure 1. Simplified selenocentric sphere.

We define an inertial frame (x, y, z) as follows (see Fig. 1): the origin is taken at the
center of the Moon; the x direction is the one of the first point of Aries Υ, the y is the
direction normal to x and contained in the lunar equatorial plane containing x, and the
z direction is the right-handed normal to (x, y). We define also the spherical coordinates
(r, λ′, φ). The zonal perturbation in J2 is defined as usual by ε H(0)

2 = ε µ
r3 P20(sin φ) where

we use ε = J2R
2 and the Legendre Associated Functions Pnm. The argument (sinφ) may

partially be translated into Delaunay variables by way of spherical trigonometry (see
Fig. 1, where the plane of the orbit is at an inclination I): sin φ = sin I sin(f + g).

The sectorial perturbation in C22 requires us to define λ22 as the longitude of the lunar
longest meridian (minimum inertia), which is λ22 = λ⊕. Since this angle rotates at the
rate of the synchronous rotation λ̇⊕ = n , we preferably introduce a rotating frame by
defining λ = λ′ − λ⊕ and also h = Ω − λ⊕. A new term must then be added to the
Hamiltonian in order to have ḣ = ∂H/∂H = −n ; we call this term H(0)

1 = −n H. Now
the sectorial perturbation may be written as δ HB(0)

2 = δ µr−3P22(sin φ) cos(2λ), where
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we define δ = −C22R
2. We then use again some spherical trigonometry to switch into

the canonical variables and we introduce the useful shortcuts (s, c) = (sin I, cos I).
And last, we express the perturbation of the Earth as usual for a third body by

γ HE(0)
2 = γ a3

⊕r−3
⊕ r2P20(cos ψ), ψ being the angle between the Earth and the satellite,

and with γ = −µ⊕a−3
⊕ . In summary, we will write in our case:

H(0) = H(0)
0 + H(0)

1 + ε H(0)
2 + δ HB(0)

2 + γ HE(0)
2 (2.1)

along with the definitions:

H(0)
1 = −n H (2.2)

H(0)
2 =

µ

4r3

(
1 − 3c2 − 3s2 cos(2f + 2g)

)
(2.3)

HB(0)
2 =

3µ

4r3

{
2s2 cos(2h) + (c + 1)2 cos(2f + 2g + 2h)

+(c − 1)2 cos(2f + 2g − 2h)
}

(2.4)

HE(0)
2 = a3

⊕r−3
⊕ r2P20(cos ψ) (2.5)

Note that we directly choose to class the perturbations by their order of magnitude: n
is first order, while the others are second order.

We come back to the choice of the variables now. There remains the variable r and
f to be expressed as a function of (l, g, h) in order to be able to apply a canonical
perturbation method. It turns out that the functions r = r(l, g, h) and f = f(l, g, h)
cannot be expressed in a closed form; so we prefer to use the following set of auxiliary
variables (ξ, f, g, h, a, n, e, η, s, c), which is closed and allow high eccentricities:

ξ = a
r = 1+e cos f

1−e2 = 1
1−e cos E f

a = L2

µ n = µ2

L3

e =
√

1 −
(

G
L

)2
η =

√
1 − e2 = G

L

s = sin I =
√

1 −
(

H
G

)2
c = cos I = H

G

g h

(2.6)

The only drawback of this set (2.6) is that it is redundant and that we need to perform
partial derivatives of them with respect to the canonical variables (l, g, h, L,G,H); but
it is not too burdensome; the result is given in the Table 2. We have for example:

dA
dl = ∂A

∂l + ∂A
∂ξ

∂ξ
∂l + ∂A

∂f
∂f
∂l

= ∂A
∂l + ∂A

∂ξ

(
−ξ2e sin f

η

)
+ ∂A

∂f

(
ξ2η

) (2.7)

Note that the quantity ∂f
∂l = ξ2η plays an important role, since it will allow us to

switch the integration from l to f . In this new set of variables (2.6), the factor µr−3

appearing in (2.3) and(2.4) may be written ξ3n2.

3. Development of the third body perturbation
We come back to the expression (2.5) of the perturbation of the Earth HE . The cos ψ

may be computed with:
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Table 2. Table of partial derivatives

∂/∂L ∂/∂G ∂/∂H ∂/∂l

ξ
ξ2η2

na2e
cos f − ξ2η

na2e
cos f 0 −ξ2e

η
sin f

a
2

an
0 0 0

n − 3

a2
0 0 0

s 0
c2

na2ηs
− c

na2ηs
0

c 0 − c

na2η

1

na2η
0

e
η2

na2e
− η

na2e
0 0

η − η

na2

1

na2
0 0

f
1 + ξη2

na2e
sin f −1 + ξη2

ηna2e
sin f 0 ξ2η

cos ψ =
�r.�r⊕
rr⊕

= A⊕(cos h cos(f + g) − c sin h sin(f + g))

+ B⊕(sin h cos(f + g) + c cos h sin(f + g)) + C⊕ s sin(f + g) (3.1)

where �A⊕ = (A⊕, B⊕, C⊕) is the direction of the Earth from the Moon. We now use the
lunar theory ELP2000 (Chapront-Touzé & Chapront 1991), which gives the position of
the Moon with respect to the Earth, in the spherical coordinates (V,U,R), where V is
the geocentric longitude (U and V are referred to the mean dynamical ecliptic and mean
equinox of date).

The position of the Moon is described by a series of periodic functions mainly of
the fundamental arguments D, l′, l, F , but also of the arguments of the other planets
Me, V e, Te,Ma, Ju, Sa. All these arguments are taken as linear function of time. We
recall that D is the secular part (nonperiodic part) of the difference between the mean
longitude of the Moon and the geocentric mean longitude of the Sun, l′ is the secular part
of the geocentric mean anomaly of the Sun, l is the secular part of the mean anomaly of
the Moon, and F is the secular part of the difference between the mean longitude of the
Moon and the longitude of its ascending node on the mean ecliptic of date.

The authors of ELP2000 give the number of terms to take into account for each series in
order to achieve several levels of precision; we follow the low precision recommendations,
since we do not need a very long term accuracy: the duration of a lunar mission is
typically much less than a century. So we will take only some leading terms and use the
following simplified expressions for U and V :

V = L + α and U = β with α = SV + 10−3S′
V and β = SU (3.2)
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and with

SV =
NV =29∑

n=1

vn sin(i1,nl + i2,nD + i3,nl′ + i4,nF )

S′
V = v′

1 sin(18V e − 16Te − l + 26.5426◦) (3.3)

SU =
NU =14∑

n=1

vn sin(j1,nl + j2,nD + j3,nl′ + j4,nF )

from which we can then deduce

A⊕ = − cos U cos V = − cos β (cos L cos α − sinL sin α)
B⊕ = − cos U sin V = − cos β (sin L cos α + cos L sin α) (3.4)
C⊕ = − sin U = − sin β

Since the quantities α and β are small, they may be expanded into series developments
like sin x ≈ x − x3/6; the exact level of truncation must be determined. Now the series
which gives cos ψ may be built, and we end up with about 32 044 terms (see Table 4).
That series must further be put as argument into P20(x) = (3x2 − 1)/2, which generates
even more terms.

4. Perturbation Method using several parameters
We use here the Lie Transform (Deprit 1969) as canonical perturbation method, with

the parameter ε. The initial Hamiltonian (input) is written H(0) =
∑

i�0
εi

i!H
(0)
i ; while

the transformed Hamiltonian (output) is written H0 =
∑

i�0
εi

i!H
(i)
0 . This transformation

is symbolized by the Lie triangle, which may be adapted to the case (2.1):

H(0)
0

H(0)
1 H(1)

0

H(0)
2 H(1)

1 H(2)
0

H(0)
3 H(1)

2 H(2)
1 H(3)

0

...
...

...
...

. . .

H(0)
0 = − µ2

2L2

H(0)
1 = −n H H(1)

0

εH(0)
2 + δHB(0)

2 + γHE(0)
2 H(1)

1 H(2)
0

0 H(1)
2 H(2)

1 H(3)
0

...
...

...
...

. . .

Figure 2. The classical Lie triangle and our specific Lie triangle.

The triangle is filled by the way of the following recursive formula, where the Wk are
the generating functions and (A;B) is the Poisson parenthesis:

H(j)
i = H(j−1)

i+1 +
i∑

k=0

Ck
i

(
H(j−1)

i−k ;Wk+1

)
(4.1)

(A;B) =
∑

i

(
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)
(4.2)
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We may write H(i)
0 as H(i)

0 in order to remember that the fast angle l has been eliminated;
we always put the periodic part in the generator Wi.

For the first order: as H(0)
1 is already independent of l here, we have H(1)

0 = H(0)
1 =

−n H and W1 = 0. For the second order, we have:

ε H(2)
0 + δ HB(2)

0 + γ HE(2)
0 = ε H(0)

2 + δ HB(0)
2 + γ HE(0)

2 +
(
H(0)

0 ;W2

)
(4.3)

and we choose:

ε H(2)

0 + δ HB(2)

0 + γ HE(2)

0 =
1
2π

∫ 2π

0

(
ε H(0)

2 + δ HB(0)
2 + γ HE(0)

2

)
dl = . . . (4.4)

while
(
H(0)

0 ;W2

)
reduces to n∂W2

∂l which has then to be integrated with respect to l.
Higher orders may be achieved by the same way, provided we are able to compute

the integrals. Some tricks are given in the literature, such as Aksnes (1971). The terms
containing the factor (f − l) receive a special treatment, as (f − l) is indeed well known
to play an important role in the problem of the artificial satellite (see Metris 1991). The
third order will contain the combinations of perturbation parameters (εn , δn , γn ) and
the fourth order will contain (ε2, δ2, γ2, εδ, εγ, δγ, εn2, δn2, γn2). We can easily select an
isolated effect by putting the other parameters to zero.

5. Results obtained by the symbolic manipulation software MM
We used a specific FORTRAN code called the MM, standing for “Moon’s series Manip-

ulator”, which has been developed at our University. In this tool, each expression is given
by a series of linear trigonometric functions, with polynomial coefficients. The concern
to keep linear expression is motivated by the fact that we want to keep easy integrations.
An example of such a series is given in the Table 3.

It is of course impossible to give all the results here, since the series may contain a
lot of terms, but we give explicitly some of them here, and we comment the others. For
example, we retrieve the known results for the first order effect of J2 only. First, the
expression of εH(2)

0 is the same as the one given by (−F ∗
1 ) defined in (13) of Brouwer

(1959), when setting 2k2 = ε. Secondly, the expression of εW2 is also the same as the
one given by (−S1) defined in (15) of Brouwer (1959). And thirdly, when writing the
first order averaged equations of motion, we retrieve the two classical formulae giving
the effect of J2 on g and h (Szebehely 1989; Roy 1968; Jupp 1988). The associated
peculiar value of the inclination which makes ġ vanish, known as the critical inclination
Ic = 63◦26′, is quite famous (Szebehely 1989).

Some partial results (the terms in ε2, εδ and δ2) of the computation of the fourth-order
averaged Hamiltonian are given explicitly in the Table 3; the series has been multiplied
by a factor F = 64a2η7

3n2 to make it more readable, and the variable nδ represent the
exponent in the perturbative parameter δ: for an expression of order p + 2, we then have
terms containing factors like εp−nδ δnδ . We retrieve also some known results for the effect
of J2

2 only: the expression of ε2HX (4)

0 is the same as the one given by (−2F ∗
2 ) defined in

(29) of Brouwer (1959). Moreover, the generator in ε2 has been computed and validated:
the exact equivalence with Kozai’s S2 (given by equation (3.2) of Kozai 1962) has been
established elsewhere, using the relationships of Shniad (1970) for the correspondence
between generators of von Zeipel (Si) and the ones of Lie (Wi).
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Table 3. The series (ε2 HX (4)
0 + ε δ HY(4)

0 + δ2 HZ(4)
0 ) ×F

f g h ξ a n e η c s (f − l) nδ coefficient

cos 0 0 0 0 0 0 0 0 2 0 0 0 0.800 × 101

cos 0 0 0 0 0 0 0 0 4 0 0 0 −0.400 × 102

cos 0 0 0 0 0 0 0 1 0 0 0 0 −0.400 × 101

cos 0 0 0 0 0 0 0 1 2 0 0 0 0.240 × 102

cos 0 0 0 0 0 0 0 1 4 0 0 0 −0.360 × 102

cos 0 0 0 0 0 0 2 0 0 0 0 0 0.500 × 101

cos 0 0 0 0 0 0 2 0 2 0 0 0 −0.180 × 102

cos 0 0 0 0 0 0 2 0 4 0 0 0 0.500 × 101

cos 0 2 0 0 0 0 2 0 0 2 0 0 −0.200 × 101

cos 0 2 0 0 0 0 2 0 2 2 0 0 0.300 × 102

cos 0 0 2 0 0 0 0 0 0 2 0 1 −0.128 × 103

cos 0 0 2 0 0 0 0 0 2 2 0 1 0.160 × 103

cos 0 0 2 0 0 0 0 1 0 2 0 1 −0.480 × 102

cos 0 0 2 0 0 0 0 1 2 2 0 1 0.144 × 103

cos 0 0 2 0 0 0 2 0 0 2 0 1 −0.520 × 102

cos 0 0 2 0 0 0 2 0 2 2 0 1 −0.200 × 102

cos 0 2 2 0 0 0 2 0 0 0 0 1 −0.400 × 101

cos 0 2 2 0 0 0 2 0 1 0 0 1 0.520 × 102

cos 0 2 2 0 0 0 2 0 2 0 0 1 0.560 × 102

cos 0 2 2 0 0 0 2 0 3 0 0 1 −0.600 × 102

cos 0 2 2 0 0 0 2 0 4 0 0 1 −0.600 × 102

cos 0 2 −2 0 0 0 2 0 0 0 0 1 −0.400 × 101

cos 0 2 −2 0 0 0 2 0 1 0 0 1 −0.520 × 102

cos 0 2 −2 0 0 0 2 0 2 0 0 1 0.560 × 102

cos 0 2 −2 0 0 0 2 0 3 0 0 1 0.600 × 102

cos 0 2 −2 0 0 0 2 0 4 0 0 1 −0.600 × 102

cos 0 0 0 0 0 0 0 0 0 0 0 2 −0.176 × 103

cos 0 0 0 0 0 0 0 0 2 0 0 2 0.384 × 103

cos 0 0 0 0 0 0 0 0 4 0 0 2 −0.800 × 102

cos 0 0 0 0 0 0 0 1 0 4 0 2 −0.720 × 102

cos 0 0 0 0 0 0 2 0 0 0 0 2 −0.540 × 102

cos 0 0 0 0 0 0 2 0 2 0 0 2 0.156 × 103

cos 0 0 0 0 0 0 2 0 4 0 0 2 0.100 × 102

cos 0 0 4 0 0 0 0 0 0 4 0 2 −0.800 × 102

cos 0 0 4 0 0 0 0 1 0 4 0 2 −0.720 × 102

cos 0 0 4 0 0 0 2 0 0 4 0 2 0.100 × 102

cos 0 2 0 0 0 0 2 0 0 2 0 2 −0.360 × 102

cos 0 2 0 0 0 0 2 0 2 2 0 2 0.600 × 102

cos 0 2 4 0 0 0 2 0 0 2 0 2 0.300 × 102

cos 0 2 4 0 0 0 2 0 1 2 0 2 0.600 × 102

cos 0 2 4 0 0 0 2 0 2 2 0 2 0.300 × 102

cos 0 2 −4 0 0 0 2 0 0 2 0 2 0.300 × 102

cos 0 2 −4 0 0 0 2 0 1 2 0 2 −0.600 × 102

cos 0 2 −4 0 0 0 2 0 2 2 0 2 0.300 × 102

All these checks and some symmetry considerations (especially by the way of the
tracer η) give good confidence in the new results, which contain other effects than J2;
for example, the cross effect εδ may be rewritten in full as:
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HY(4)

0 ×F =
[

32 s2(5c2 − 4) cos(2h)

+48 η s2(3c2 − 1) cos(2h)

−4 e2 s2(5c2 + 13) cos(2h)

−4 e2 (cos(2g + 2h) + cos(2g − 2h))

+52 e2 c (cos(2g + 2h) − cos(2g − 2h))

+56 e2 c2 (cos(2g + 2h) + cos(2g − 2h))

−60 e2 c3 (cos(2g + 2h) − cos(2g − 2h))

−60 e2 c4 (cos(2g + 2h) + cos(2g − 2h))
]

(5.1)

A critical issue by making such computations is the rapid growth of the number of
terms in the series (typically ten thousands of terms here). Needless to say, quite a big
work of simplification has to be made, especially because of the redundancy (η ↔ e)
and (c ↔ s) of the set (2.6). Among these simplifications are some series of the kind(
e2η−7 − e2η−9 + e4η−9

)
which in fact cancel to zero. Some substitutions like (s2 → 1−

c2) for example may cancel a lot of terms, while the reverse operation of combining some
terms may also make the expressions more compact, all simplifications being made before.
The third body perturbation series contains quite a lot of terms; the series expressing
cos(ψ) only is already about 32 044 terms. We show in the Table 4 the extreme coefficients
of the trigonometric variables and the extreme exponents of the polynomial variables
which appear during the computation of cos(ψ).

Table 4. Extreme coefficients (or exponents) appearing in the computation of cos(ψ).

f g h L D l′ l F V e Te c s coefficient

min 1 1 −1 −1 −12 −4 −9 −8 −54 −48 0 0 0.20037083 × 10−14

max 1 1 1 1 12 4 9 8 54 48 1 1 0.49740618 × 100

Numerical accuracy considerations are also required (we are working in double preci-
sion) and some terms must therefore be removed. We may also always reject during the
computation the terms which are of lower magnitude than others, by a skilful choice.

6. Conclusions
We have achieved, among others, second order results for the combined effect of J2 and

C22, and introduced the third body effect. The averaged Hamiltonians and the generators
for the first and second order effects of J2 have been validated by comparison with the
results of Brouwer (1959) and Kozai (1962). More detailed results will be published in a
forthcoming paper.

We could add even more perturbations (Sun, other lunar harmonics like C31, librations,
etc.) provided our symbolic manipulation software is able to handle them. We could also
eliminate the next fastest angle (g or h) in order to obtain the secular motion. One future
aim is to validate theoretically these results by numerical integrations of the several
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effects. An experimental validation could also be followed by a comparison with data of
a real lunar satellite.
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Discussion

Mikhail Marov: I am just wondering: You limited yourself only to the J2 harmonic.
What about other even harmonics, say 4, say 6, and some others. The lunar field is quite
well known at a very high order of expansion. Why did you neglect it?

Bernard De Saedeleer: We can’t always take it into account. In fact, I just submit-
ted an article to Celestial Mechanics which computes the average Hamiltonian for the
horizontal effect, even or odd. You can always introduce more and more terms, if you
want. You just have to compute the corresponding Hamiltonian. It can be done.

Mikhail Marov: But at the beginning you mentioned you also took into account the
mascons. I guess at a level of J2 is hardly possible to account for the mascons.

Bernard De Saedeleer: No. Of course, the J2 is just a one big feature of the potential.
If you want really to have the resolution of the mascons . . .

Mikhail Marov: . . . more subtle effects?

Bernard De Saedeleer: Yes. If you want to have more precise effects, you go into
more numerical analysis – it becomes more numerical. If you want to have a model 16×16,
you have all those coefficients, and it becomes more and more complicated.

Mikhail Marov: If you will limit yourself with such a theory, it will be hardly possible
to predict accurately orbits – especially the low orbit lunar satellites.

Bernard De Saedeleer: Yes, you can always refine it.
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