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ON SPATIAL THINNING-REPLACEMENT
PROCESSES BASED ON VORONOI CELLS
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Abstract

We introduce a new class of spatial-temporal point processes based on Voronoi
tessellations. At each step of such a process, a point is chosen at random according
to a distribution determined by the associated Voronoi cells. The point is then removed,
and a new random point is added to the configuration. The dynamics are simple and
intuitive and could be applied to modelling natural phenomena. We prove ergodicity of
these processes under wide conditions.
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1. Introduction

A spatial point process is a stochastic model for the location of events in a space, and as such
it is a random element which takes discrete sets of points as its values. Trees in a forest, schools
in a city, or capillaries in a cross-section of a bodily organ are examples of situations that can be
modelled by a point process over a two-dimensional manifold; impurities in metals or positions
of submarines require models defined over three-dimensional manifolds. The one-dimensional
point process is often used as a model for events in time, but may also be applied to such
problems as the physical distribution of files on a hard-disk, where the underlying space can be
treated as an interval in R.

The Voronoi tessellation is a useful tool for the analysis of spatial point processes. This can
be defined for any locally finite set of points X in a metric space (M, d). With each x ∈ X we
associate its Voronoi cell

CX
x (M) := {y ∈ M : d(y, x) = min [d(y, x′) : x′ ∈ X]}.

(We will generally suppress the reference to M in the notation for the cell and just write
CX

x where the underlying set is clear from the context.) The tessellation produced by X is
TX = {CX

x : x ∈ X}, and the elements of X are called the generators of TX. Statistics drawn
from analysis of this structure provide an intrinsic description of the distribution pattern of the
set of generators and have accordingly been investigated extensively (see e.g. [8], [10], [11],
[12], [13]). The Voronoi tessellation is also a natural object of interest whenever concepts such
as catchment area or zone of influence are appropriate to the situation being modelled, as in most
of the examples mentioned above. When this is the case it is also very interesting to consider
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point processes evolving in time under laws which are determined by characteristics of the
Voronoi tessellation. A simple example is a process in which the lifetime of a point is a random
variable with distribution determined by its Voronoi cell. Examples of this kind of spatial-
temporal point process are the Hotelling processes [6], [9], which model the geographical
distribution of businesses competing for market share and the adjustment models for territorial
animal behaviour [5] (for further examples, see e.g. [10], [14]). One could also mention here
another family of dynamic point processes whose dynamics is related to the respective Voronoi
tessellations, and which converge to the so-called centroidal Voronoi diagrams (where the
generators are at the same time centroids of their cells). These include the random k-means
algorithm and stochastic versions of Lloyd’s algorithm; see e.g. [4].

As far as we know there has been no general treatment of Voronoi tessellation-based dynamic
models, although they promise to produce a rich class of stochastic objects typifying various
kinds of spatial clustering.

In this paper we consider some classes of such models viewed as discrete-time Markov
processes {Xn}n≥0, taking values in a fixed finite-dimensional configuration space. Let (M, d)

be a metric space and N a fixed positive integer representing the initial number of points in M .
The associated configuration space will be either X = ⋃N

k=1 Mk or X = MN , depending on
whether the process is of a thinning or thinning-replacement type. Any finite set of points X

generating a Voronoi tessellation can of course be represented in many different ways as a point
x ∈ X, since the order of the points is immaterial to the tessellation; however, it is convenient to
retain an ordering of the points in the configuration space. In the thinning-replacement process
the total number of points after each replacement remains constant, although the thinning and
replacement components are independent stochastic processes. Replacement will always be
determined by a probability measure µ on M , equivalent to the volume measure, whereas the
thinning follows a probability rule on theVoronoi tessellation. We tacitly assume that all subsets
of M or X appearing in this paper are measurable.

Let a selection function S : C → R
+ be given, defined on the space C of all possible

Voronoi cells from tessellations generated by finite sets in M . If x = (x1, . . . , xk) is the current
configuration, then in the next step exactly one point xJ , 1 ≤ J ≤ k, is chosen at random and
either removed (in a thinning process) or reassigned (in a thinning-replacement process) to a
random position. The probability of choosing the generator xj is proportional to the value of
the selection function S(Cx

xj
) on the respective Voronoi cell Cx

xj
, i.e.

Pr(J = j | x) := S(Cx
xj

)∑k
i=1 S(Cx

xi
)
. (1)

There are many quantifiable properties of a Voronoi cell upon which the function S can be
based. Some of these, such as volume, perimeter or surface area or suitable higher dimensional
generalisation, number of edges, number of faces, minimal or maximal internal angles etc.,
are properties of any closed simplicial complex in the same underlying space. Others, such as
the volume of the associated Voronoi flower (the Voronoi flower of Cx

xj
is the closure of the

set {z ∈ M : C
x∪{z}
xj

�= Cx
xj

}) or the distance to nearest neighbour, are specific to the Voronoi
structure but can be computed from the properties of the individual cell. A further generalisation
could allow S to be a function of xj and of x, for example the weighted sum of cell functions
in the original sense with weights determined by the number of edges in the smallest nearest-
neighbour arc to xj . In this sense, the degree of a selection function S could be defined as
the depth of the Voronoi nearest-neighbour relation required to fix its value. We will consider
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only the simplest kinds of first-degree selection functions. More specifically, we consider the
following two classes of such processes.

(A) The ‘volume-based’, or v-process class. We require enough additional structure for (M, d)

so that cell volume can be defined. Let M be a compact, piecewise-smooth manifold equipped
with a measure λ, which is equivalent to the volume measure on M with a density bounded
away from zero and from infinity. We assume that the value of S(Cx

xj
) is determined by the

value of λ(Cx
xj

):
S(Cx

xj
) = Sv(λ(Cx

xj
)).

Without ambiguity we drop the subscript in Sv and consider S : R
+ → R

+ to be a function of
λ(Cx

xj
). If S is increasing, then points with Voronoi cells of large volume are more likely to

be chosen to be culled or moved, and so the selection pressure favours points with small cells,
that is, points restricted by close neighbours. A decreasing S favours points with large cells,
that is, isolated points or points whose near neighbours fall within a limited arc. Functions of
the form S(v) = vα , α ∈ R, produce scale-independent models.

(B) The neighbour-based, or n-process class. The Voronoi tessellation determines for each
generator a set of its Voronoi-nearest neighbours. Formally, this set is defined as

[xj ]x := {xi from x with i �= j, such that Cx
xi

and Cx
xj

have a common facet}.
We now assume that S(Cx

xj
) = Sn(card([xj ]x)), for some Sn : {1, . . . , N} → R

+, where
again we drop the subscript when the context is clear. The n-process requires less structure on
(M, d), but the selection function S determines which, if any, types of cells are favoured by the
evolution.

Figure 1 to Figure 4 below illustrate some of the behaviours that were observed in simulations.
Figure 1 depicts side-by-side realisations of three different v-processes on a circle with S(v) =
vα , each having the same total number of points (N = 128), but different α values. The base
of each rectangle represents the circle M opened out into a line segment by a cut, whereas
the y-axis represents the time. The well-defined clustering observed in (c) was found to occur
when α > 1 and N is sufficiently large (for example, for α = 1.5, N = 10). The phase change
was observable even for values of α close to one, as seen in Figure 2, where the time scale has
been compressed by a factor of five from that of Figure 1, to bring it out more clearly.

Figure 3 shows the results of running four instances of the v-process on the unit square with
S(v) = vα and values of α ranging from −3.0 to 1.4. The phase change at α = 1 was observed
just as in the one-dimensional case. For values of α ≤ 1, a smooth gradation of the degree of
clustering was observed without apparent interference from edge effects.

Two instances of the n-process are shown in Figure 4. The n-processes produced a rich
collection of different clustering behaviours, among which it appears that selections which
favour cells with a greater than average number of neighbours (the average being six) led to
less clustered configurations, and vice versa.

In [3] we discuss the simulation results in more detail, and consider the problem of inferring
the selection function from the statistics of a given point pattern which has arisen from a
v- or n-process elsewhere. In particular, we employ Thiel’s redundancy measure [6], [10]
and Baddeley and van Lieshout’s J -function [2] as a first step in the characterisation of these
patterns.

Simulations appear to demonstrate ergodic-type behaviour for v-processes with S(v) = vα

when α ≤ 1, whereas for α > 1 the behaviour has a very different character which indicates

https://doi.org/10.1239/aap/1183667610 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667610


296 • SGSA K. A. BOROVKOV AND D. A. ODELL

(a) (b) (c)

Figure 1: Evolution of v-processes on a circle. Each of the three processes (for the selection functions
S(v) = vα with (a) α = −1.0, (b) α = 0.5, (c) α = 1.5, respectively) was run with N = 128 points for

T = 4096 steps (the vertical axis represents time).

(a) (b) (c)

Figure 2: Phase change in the v-process on circle. Here N = 128, T = 20 480, and S(v) = vα with
(a) α = 0.95, (b) α = 1.0, (c) α = 1.05.
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Figure 3: Realisations of four v-processes on [0, 1]2 with N = 2000, T = 24 000, and S(v) = vα for
α = −3.0, 0.2, 1.0, 1.4 (from left to right and top to bottom).

Figure 4: Realisations of two n-processes with N = 2000 and T = 16 000. The pattern on the left was
produced using the selection function S(n) = 0.1 + |n − 6|2 which ‘favours’ cells with six or close to six
sides, whilst that on the right was produced by S(n) = 1, for n �= 5 with S(5) = 5000, which strongly

‘disfavours’ cells with five sides. Note the apparent edge-effects in the former case.
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that ergodicity may not take place. In the present paper we solve the problem of ergodicity
raised by these observations.

In Section 2 we prove, under rather broad conditions, the ergodicity for both the n- and
v-processes. In Section 3 we present a crude explanatory model which explains the phase
change observed at α = 1 in the v-process with S(v) = vα .

Remark 1. Our process with replacement resembles a Gibbs sampler in that at each step only
one coordinate of the state is resampled. The main difference is that in a Gibbs sampler
the choice of the coordinate to be resampled is deterministic, but the new sample is from a
distribution conditioned on the other current points. In our case, the choice of point is from
a distribution conditioned by the set of current points, and the new sample is independent,
identically distributed. This latter choice could easily be modified so that the new positions of
the resampled coordinates are governed by a general set of conditional distributions, as in the
usual application of the Gibbs sampler.

2. Main results

In this section we consider only processes with replacement. Assume that M is a compact,
piecewise-C2 manifold in R

m, m ≥ 1, with or without boundary, endowed with the geodesic
metric d. Let µ be a probability and λ a measure on M , both equivalent to the volume measure
v on the manifold.

We define a discrete-time Markov n- or v-process with state space X = MN as follows. Let
x ∈ X, A be a Borel subset of X, z ∈ M , and � ⊆ M , such that

x[j, z] := (x1, . . . , xj−1, z, xj+1, . . . , xN),

Aj [x] := {z ∈ M : x[j, z] ∈ A} and

A[j, �] := {x[j, z] ∈ X : x ∈ A, z ∈ �}.
We also write, with a slight abuse of notation, x ∈ x when x = (x1, . . . , xN) and x = xj

for some j , 1 ≤ j ≤ N .
The transition probability function is given by

P(x, A) := Pr(Xn+1 ∈ A | Xn = x) =
N∑

j=1

µ(Aj [x])Pr(J = j | x), (2)

where Pr(J = j | x) is the selection probability function (1).

Theorem 1. (i) The n-process with replacement with an arbitrary selection function

S : {1, . . . , N} → R
+

which takes only positive values is Harris ergodic.

(ii) The v-process with replacement with a selection function S : (0, λ(M)] → R
+, such that

both S and 1/S are locally bounded, is Harris ergodic.

Recall that Harris ergodicity entails convergence to the stationary distribution in total vari-
ation (see, e.g. p. 560 of [7] or p. 154 of [1]).

Remark 2. It is not difficult to see that the assertion of part (i) holds under more general
conditions as well.
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Proof. (i) Denote by µ⊗N the N -fold product measure on X, and by P (k), the k-step
transition function generated by P . We start with the following lemma.

Lemma 1. The n-process with replacement, with M and µ as specified above, satisfies the
following Döblin condition: there exist ε < 1 and γ > 0 such that if µ⊗N(A) > ε for a
measurable A ⊆ X, then P (N)(x, A) ≥ γ for any x ∈ X.

Proof. Let B(z, δ) = {x ∈ M : d(x, z) < δ} be the δ-ball around the point z ∈ M , and
let H = ∏N

i=1 B(zi, δi) ⊂ X, for zi ∈ M and δi > 0. It suffices to find a constant k0 > 0,
independent of {zi, δi : 1 ≤ i ≤ N}, such that, for any x ∈ X,

P (N)(x, H) > k0µ
⊗N(H). (3)

Indeed, since any open subset of X can be approximated in µ⊗N -measure arbitrarily well by
disjoint unions of basic sets H , by the regularity of the measures on X (3) implies that

P (N)(x, A) > k0µ
⊗N(A), (4)

for any x ∈ X and A ⊆ X.
First, note that for any x = (x1, x2, . . . , xN) ∈ X and � ⊆ M , by (1) and (2),

P(x, {x}[j, �]) ≥ kµ(�), (5)

where

k = minj≤N S(j)

N maxj≤N S(j)
> 0. (6)

Therefore, for any y ∈ M and i �= j we also have P(x[i, y], {x[i, y]}[j, �]) ≥ kµ(�).
Considering that the Markov chain can proceed from x to the set {x}[i, B(zi, δi)][j, B(zj , δj )]
by first changing the value of the ith component and then that of the j th one, or vice versa,
from (5) we obtain

P (2)(x, {x}[i, B(zi, δi)][j, B(zj , δj )])
=

∫
B(zi ,δi )

∫
B(zj ,δj )

P (x, {x}[j, dyj ])P (x[j, yj ], {x}[j, yj ][i, dyi])

+
∫

B(zj ,δj )

∫
B(zi ,δi )

P (x, {x}[i, dyi])P (x[i, yi], {x}[i, yi][j, dyj ])

≥ 2k2
∫

B(zi ,δi )

µ( dyi)

∫
B(zj ,δj )

µ( dyj )

= 2k2µ(B(zi, δi))µ(B(zj , δj )).

Continuing in this way, we will clearly get

P (N)

(
x,

N∏
j=1

B(zj , δj )

)
≥ N ! kN

N∏
j=1

µ(B(zj , δj )),

which proves (3) and the lemma.
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Relation (4) clearly implies the irreducibilty of the n-process. Indeed, (4) also implies that,
for any x ∈ X and A ⊆ X,

P (N+1)(x, A) > kµ⊗N(A),

and hence the process is aperiodic. Now the desired assertion is immediate from Theorem 16.0.2
of [7, p. 391]. Part (i) of Theorem 1 is proved.

(ii) Ergodicity of the v-process requires more analysis. We wish to produce an argument
similar to that of Lemma 1. The measure µ determines probabilities for points entering the
configuration (the replacement points) and it will be sufficient for our arguments to note that,
for any fixed δ,

µδ := inf{µ(B(x, δ)) : x ∈ M} > 0,

as a consequence of the smoothness and compactness of M . Similarly we can define

λδ := inf{λ(B(x, δ)) : x ∈ M} > 0.

For the v-process we do not have a simple analogy to the lower bound derived from (6).
Here what is required is a positive lower bound for λ(B(x, δ) ∩ Cx

x ), which does not exist if x

is unrestricted. For example, if x ∈ ∂M , then a single other point in the configuration x can
cause the Voronoi cell around x to be arbitrarily small in volume and, consequently, the value
of the selection function may become arbitrarily small on this cell. So first we need to define
those points which are δ-far from the boundary.

For δ > 0, let Mδ := {x ∈ M : d(x, y) > δ for any y ∈ ∂M} be the inner parallel set to M;
if M is without a boundary, then Mδ := M . The smoothness of M guarantees that µ(Mδ) > 0
and λ(Mδ) > 0 for δ small enough. Take any x ∈ Mδ and x ∈ X, and define

n(x, x, δ) :=
{

card({y ∈ x : 0 < d(x, y) < 2δ}) for x ∈ x;
N otherwise.

So if x is such that n(x, x, δ) ≤ 1, then B(x, δ) intersects with at most two of the Voronoi cells
Cx

xj
. This means that if x ∈ Mδ is fixed, then for all δ > 0 sufficiently small, and any x ∈ X

such that n(x, x, δ) ≤ 1, we have, via the smoothness of M ,

λ(B(x, δ) ∩ Cx
x ) ≥ λδ/3. (7)

For δ > 0, define

Dδ := {(x1, . . . , xN) ∈ X : all xi ∈ Mδ and d(xi, xj ) > 2δ, i �= j}.
Clearly we can choose δ small enough that µ⊗N(Dδ) > 0. Now define a new measure φ on X

as follows:
φ(A) := µ⊗N(A ∩ Dδ).

Lemma 2. (i) There are δ > 0 and ε > 0 such that, for every x ∈ X,

P (N)(x, Dδ) > ε. (8)

(ii) There exists a γ > 0 such that for δ as above and any x ∈ Dδ , and any Borel subset A ⊆ X,

P (N)(x, A) ≥ γφ(A). (9)
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Proof. (i) Let δ0 > 0 be small enough that Mδ0 has positive µ measure (and hence positive
λ measure). By appealing to the smoothness structure of M or otherwise we can find N + 1
disjoint open subsets of Mδ0 . Denote these by L1, L2, . . . , LN+1 and fix them for the rest of
the proof. Let

δi := sup {δ : there are N disjoint balls B(zk, 3δ) ⊂ Li}, i = 1, . . . , N + 1.

Clearly,
δ := min

0≤i≤N+1
δi > 0.

Now, for any x = (x1, . . . , xN) ∈ X, at least one of the Li will be disjoint from {x1, . . . , xN }.
Therefore, for such an i, we can find z

(i)
1 , . . . , z

(i)
N ∈ Li such that

B(z
(i)
j , 3δ) ∩ B(z

(i)
k , 3δ) = ∅ for j �= k,

and
xk /∈ B(z

(i)
j , 3δ) for all k, j ∈ {1, . . . , N}.

Obviously,
∏N

j=1 B(z
(i)
j , δ) ⊂ Dδ.

As in Lemma 1, we consider a possible sequence of N steps of the Markov process in
each of which exactly one of the ‘coordinate points’ xm of x moves into a unique B(z

(i)

j ′ , δ),
j = 1, . . . , N . At each step, the probability of the chosen point landing in a B(z

(i)

j ′ , δ) is greater
than or equal to µδ , so we need only be concerned with the probability of all N original points
moving in N consecutive steps of the process. This will have a lower bound independent of the
initial state x if we can find a bound κ > 0 with the following property: whenever we are at a
stage at which some, but not all, of the xm have moved and are in corresponding sets B(z

(i)

j ′ , δ),
there exists a j such that xj has not moved yet, and

Pr(J = j | x′) > κ, where x′ is the current state of the process.

Let us assume that in the first k ≥ 1 steps, k different original points xi1 , . . . , xik have moved.
We denote their new positions by x′

i1
, . . . , x′

ik
. Write ν := {i1, . . . , ik}, ξ := {1, . . . , N} \ ν =

{j : xj has not moved}, and

S� :=
N∑

j=1

S(λ(Cx′
xj

)) =
(∑

j∈ν

+
∑
j∈ξ

)
S

(
λ

(
C

x′

xj

))
=: Sν

� + S
ξ
�.

Then p := S
ξ
�/S� = Pr(J ∈ ξ | x′) is the probability that at the next step one of the remaining

points will move.
If p > 1

2 , then, for some j ∈ ξ ,

Pr(J = j | x′) ≥ 1

2 card(ξ)
≥ 1

2N
; (10)

otherwise
S

ξ
� ≤ Sν

�. (11)

We have only to consider the latter case. For an x′
j , j ∈ ν, we have

x′
j ∈ B(z

(i)

j ′ , δ),
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for some j ′, and so not only do we have

d(x′
j , x

′
m) > 2δ,

when j �= m ∈ ν, but also for m ∈ ξ , since B(z
(i)

j ′ , 3δ) was free of any xk from the original
state x. This implies that for the set W := ⋃

j∈ξ B(xj , δ) we have Cx′
x′
i

∩ W = ∅ for i ∈ ν,
and therefore

W ⊂
⋃
j∈ξ

Cx′
xj

.

Hence,

max
j∈ξ

λ(Cx′
xj

) ≥ λ(W)

card(ξ)
≥ λδ

card(ξ)
≥ λδ

N
,

while, for all j ∈ ν,
λ(Cx′

x′
j
) ≥ λδ.

Owing to the local boundedness of S and S−1,

0 < b := inf
λδ/N≤v≤λ(M)

S(v) ≤ sup
λδ/N≤v≤λ(M)

S(v) =: B < ∞.

Therefore, by (1) and (11),

max
j∈ξ

Pr(J = j | x′) ≥ b

S
ξ
� + card(ν)B

≥ b

2NB
=: κ > 0. (12)

Clearly κ ≤ 1/2N , so from (10) and (12) we have, by a similar argument to that in the proof
of Lemma 1,

P (N)(x, Dδ) ≥ N ! κN−1µN
δ , (13)

which proves (8).

(ii) Let A ⊂ X and assume that φ(A) > 0. As in the proof of Lemma 1, it will suffice to restrict
attention to basic open sets

H :=
N∏

i=1

B(wi, ri) ⊂ Dδ, wi ∈ Mδ.

As in the proof of (i), we specify a possible sequence of N moves in the Markov process and
aim to produce a bound analogous to (13) for P (N)(x, H). The term µN

δ in (13) is easily seen
to be replaceable in this case by

N∏
i=1

µ(B(wi, ri)) = φ(H),

since it represents the product of the probabilities that the points move into the target sets; the
value κ from (i) is no longer valid, however, because, retaining the notation above, we do not
necessarily have d(xj , x

′
m) > 2δ when j ∈ ξ and m ∈ ν. Thus, if we can find a new constant

κ ′ > 0 such that, at every intermediate state x′,

max
j∈ξ

Pr(J = j | x′) > κ ′, (14)
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we will have
P (N)(x, H) > N ! κ ′N−1φ(H),

and (9) will have been proven.
As before, let x′ be the state of the process after k steps, and let j ∈ ξ . Since x ∈ Dδ , for

any other i ∈ ξ we have d(xj , xi) > 2δ. On the other hand, for all l, m ∈ ν we also have
d(x′

l , x
′
m) > 2δ, as these points will be part of the configuration that we will get after N steps,

which has to belong to H ⊂ Dδ . Let m ∈ ν be such that

d(x′
m, xj ) = min

i∈ν
d(x′

i , xj ).

If d(x′
m, xj ) < δ/2 then, for all other i ∈ ν, d(x′

i , xj ) > 3δ/2, and so the ball B(xj , 3δ/4) is

contained entirely within Cx′
xj

∪ Cx′
x′
m

, and hence, for sufficiently small δ > 0, by (7),

λ(Cx′
xj

) ≥ λδ/8.

Alternatively, d(x′
i , xj ) ≥ δ/2 for all i ∈ ν, and so B(xj , δ/4) ⊆ Cx′

xj
. In any case, λ(Cx′

xj
) ≥

λδ/8, and hence

Pr(J = j | x′) ≥ λδ/8

S�

.

We also have

S� ≤ card(ξ) sup
v∈[λδ/8,λ(M)]

S(v) + card(ν) sup
v∈[λδ,λ(M)]

S(v)

≤ N sup
v∈[λδ/8,λ(M)]

S(v) =: Q < ∞.

So we can take κ ′ := Q−1 infv∈[λδ/8,λ(M)] S(v) in (14). Lemma 2 is proved.

Following Section 5.4.3 of [7], aperiodicity for the v-process is defined as follows. Let

EDδ
:= {n ≥ 1 : there is a γn > 0 such that P (n)(x, A) ≥γnφ(A)

for any x ∈ Dδ and A ⊂ X}.
The v-process is called aperiodic if g.c.d.(EDδ

) = 1.

Lemma 3. The v-process is aperiodic.

Proof. It is enough to find γN+1 > 0 such that for any x ∈ Dδ , and any Borel subset A ⊆ X,

P (N+1)(x, A) ≥ γN+1φ(A).

From Lemma 2(ii),

P (N+1)(x, A) =
∫

X

P (x, dy)P (N)(y, A)

≥
∫

Dδ

P (x, dy)P (N)(y, A)

≥ P(x, Dδ)γ φ(A).
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Without loss of generality we can choose δ so small that for any N points zi ∈ Mδ , 1 ≤ i ≤ N ,
such that the balls B(zi, δ) are disjoint, we can find zN+1 ∈ Mδ with

B(zN+1, δ) ∩
⋃

1≤i≤N

B(zi, δ) = ∅.

For such a δ it is clear from (2) and the definition of µδ that P(x, Dδ) > µδ , which means that
we can take γN+1 := µδγ > 0.

Now the assertion of part (ii) of the theorem is an immediate consequence of Lemmas 2
and 3. Theorem 1 is proved.

3. Local behaviour – a crude explanatory model

Simulations of the v-process with S(v) = vα show avalanche-scale clustering leading to
the formation of a permanent tight cluster when α > 1 and N is sufficiently large, and a weak
variable clustering when α ≤ 1. It would be of interest to obtain some insight into the causes
of this phase-change type of phenomenon. In this section we will present a simplistic model at
a physicist’s level of rigour, which explains why such a transition occurs at the threshold value
α = 1.

Let A ⊂ M be some small, connected ‘test region’ and NA(x) := card({i : xi ∈ A}). We
consider the evolution of NA(Xn). Let

SB(x) :=
∑
xi∈B

S(λ(Cx
xi

)), B ⊂ M.

Given that Xn = x, at the following step of the process the probability of a point being lost
from A is

SA(x)

SM(x)
, (15)

while the probability of a fresh point entering A is µ(A). As the total number N of points in the
process is typically much larger than NA(Xn), it is natural to expect that, owing to the effect of
a law of large numbers, the relative fluctuations in SM(Xn) will be small compared to those in
SA(Xn) (this is borne out by the results of simulations). So let us assume, for simplicity, that
S = SM(Xn) is constant.

We wish to find an approximation to (15) as a function of NA = NA(Xn). Another
simplifying assumption (also supported by simulations) is that the conditional (given NA)
distribution of cell volumes for cells whose generators lie in A is the same, modulo scale, for
different values of NA. That is, for the conditional (on NA) distribution function of the volume
V of a randomly chosen cell with generator in A we have

Pr(V ≤ v | NA) = g(v/mA), v > 0,

for some g, where mA = E(V | NA). Furthermore, we can take

mA = N−1
A E

∑
Xn,i∈A

λ(C
Xn

Xn,i
| NA) ≈ βλ(A)/NA, (16)

where β is a quantity dependent only on the geometry of A and the order of magnitude of NA.
This reflects the fact that the union of the cells with generators in A overlaps A itself. A rough
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calculation shows that β = 1 + O(N−1
A ). When A is a square or a circle and NA is not often

less than 20, β can be considered to be in the range (1.0, 1.5]. Appealing to the law of large
numbers, we could write

SA(Xn) ≈ NA E(S(λ(C
Xn

Xn,I
)) | NA) = NA

∫ λ(M)

0
S(v) dg(v/mA),

where I stands for the index of a ‘typical’cell with a generator Xn,I ∈ A. Now, since S(v) = vα ,
using (16) the integral above becomes∫ λ(M)

0
vα dg(v/mA) = mα

A

∫ λ(M)/mA

0
wα dg(w)

≈ N−α
A (βλ(M))α

∫ ∞

0
wα dg(w),

making the natural assumption that the last integral converges. Combining these approxima-
tions, we get the following estimate for the probability that a point is removed from A in one
step:

SA(Xn)S
−1 ≈ N1−α

A (βλ(M))αS−1
∫ ∞

0
wα dg(w) = KN1−α

A ,

for some constant K . Thus, if �NA denotes the change in NA in one step of the v-process, we
have

E(�NA | NA) ≈ µ(A) − KN1−α
A . (17)

As the right-hand side of (17) is an increasing function of NA when α > 1, in this case
we have a positive feedback condition for the mean of the number NA of points in our test
region A. This means that the process is bound to quickly leave the ‘intermediate’ range of
states characterised by diffuse, roughly uniform spatial point distributions – an observation that
is in agreement with the simulation data. Note also that, once the ‘destabilising mechanisms’
have transformed the point distribution to a single (or a few) tight cluster(s), the assumptions
on which the crude local model was based are no longer valid.

On the other hand, when α ≤ 1, (17) expresses either neutral (α = 1) or negative feedback.
Hence we expect ‘local stability’ from the process behaviour: small clusters of points will form
and disappear without any ‘global’ dramatic changes for the whole picture. In such cases, we
can expect NA to take values close to Nµ(A), so we can estimate K using the equation

K(Nµ(A))1−α ≈ µ(A),

from which we conclude that

K ≈ µ(A)αNα−1, α ≤ 1.

This approximation is reasonably well supported by simulations.
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