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Abstract

We show how to write the solution to the generalized drift Skorokhod problem in one-
dimension in terms of the supremum of the solution of a tractable unrestricted integral
equation (that is, an integral equation with no boundaries). As an application of our result,
we equate the transient distribution of a reflected Ornstein–Uhlenbeck (OU) process to
the first hitting time distribution of an OU process (that is not reflected). Then, we use
this relationship to approximate the transient distribution of the GI/GI/1 + GI queue
in conventional heavy traffic and the M/M/N/N queue in a many-server heavy traffic
regime.
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1. Introduction

The Skorokhod problem was originally introduced by Skorokhod [15] in order to study
continuous solutions to stochastic differential equations with a reflecting boundary at zero.

Definition 1.1. (Skorokhod problem.) Given a process X ∈ D([0, ∞), R), we say that the pair
of processes (Z, L) ∈ D2([0, ∞), R) satisfy the Skorokhod problem for X if the following
four conditions are satisfied:

1. Z(t) = X(t) + L(t) for t ≥ 0,

2. Z(t) ≥ 0 for t ≥ 0,

3. L is nondecreasing with L(0−) = 0,

4.
∫ ∞

0 1{Z(t) > 0} dL(t) = 0.

It is well known that, for each X ∈ D([0, ∞), R), the unique solution (Z, L) = (�(X),

�(X)) to the Skorokhod problem is

Z(t) = X(t) + sup
0≤s≤t

−X(s) ∨ 0 and L(t) = sup
0≤s≤t

−X(s) ∨ 0.
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Generalized drift Skorokhod 17

In subsequent papers, the Skorokhod problem has been extended to multiple dimensions and
also to include both smooth and nonsmooth domains (see, for example, [4], [6], [8], [13],
and [17]), although we do not treat such cases in the present paper. There is a useful integral
representation of the one-dimensional Skorokhod problem solution (see [2]). There is also an
explicit solution to the (one-dimensional) Skorokhod problem when there is an upper boundary
(see [9] and [10])) and to the (one-dimensional) Skorokhod problem in a time-dependent interval
(see [3]).

In this paper we study a generalization of the one-dimensional Skorokhod problem that
incorporates a state-dependent drift.

Definition 1.2. (Generalized drift Skorokhod problem in one dimension.) Given a process
X ∈ D([0, ∞), R) with X(0) = 0 and a Lipschitz continuous function f : R+ → R, we say
that the pair of processes (Z, L) ∈ D2([0, ∞), R) satisfy the Skorokhod problem for X with
state-dependent drift function f if the following four conditions are satisfied:

1. Z(t) = X(t) − ∫ t

0 f (Z(s)) ds + L(t) for t ≥ 0,

2. Z(t) ≥ 0 for t ≥ 0,

3. L is nondecreasing with L(0−) = 0,

4.
∫ ∞

0 1{Z(t) > 0} dL(t) = 0.

The unique solution to the generalized drift Skorokhod problem in one dimension can be
written in terms of the solution to the Skorokhod problem following a standard construction;
see, for example, [22]. Specifically, set

(Z, L) = (�(M(X)), �(M(X))) (1.1)

for M : D([0, ∞), R) → D([0, ∞), R), the mapping that sets M(X) = V for V that solves
the integral equation

V (t) = X(t) −
∫ t

0
f (�(V )(s)) ds for all t ≥ 0. (1.2)

Note that, since f : R+ → R is a Lipschitz continuous function, a standard Picard iteration
shows that there exists a unique solution to (1.2). The fact that (�(M(X)), �(M(X))) solves
the Skorokhod problem for M(X) (and so satisfies conditions 1–4 of Definition 1.1) shows that
conditions 1–4 of Definition 1.2 are satisfied. The uniqueness of representation (1.1) follows
from the uniqueness of the mappings M and (�, �).

Next, we observe that the solution Z can be represented in terms of an unrestricted integral
equation (that is, an integral equation with no boundaries). Specifically, note that, from (1.2),

V (t) − V (s) = X(t) − X(s) −
∫ t

s

f (�(V )(u)) du.

Since, when X(0) = 0,
�(V )(u) = sup

0≤r≤u

V (u) − V (r),

if we define
R(s, t) = V (t) − V (s)
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then

R(s, t) = X(t) − X(s) −
∫ t

s

f
(

sup
0≤r≤u

R(r, u)
)

du. (1.3)

Finally, it follows from (1.1) and the above displays that

Z(t) = sup
0≤s≤t

R(s, t). (1.4)

However, the integral equation (1.3) is not tractable.
In this paper we establish how to representZ in terms of the solution to a tractable unrestricted

integral equation. Specifically, we establish that

Z(t) = sup
0≤s≤t

Zs(t − s), t ≥ 0, (1.5)

for Zs = {Zs(t), t ≥ 0} that solves

Zs(t) = X(s + t) − X(s) −
∫ t

0
fe(Zs(u)) du, (1.6)

where fe : R → R is any extension of f : R+ → R that preserves the Lipschitz continuity
of f . For one example, let fe(x) = f (0) if x < 0 and fe(x) = f (x) if x ≥ 0. It is interesting
to observe that it follows from (1.4) and (1.5) that

sup
0≤s≤t

R(s, t) = sup
0≤s≤t

Zs(t − s).

As an application of representation (1.5), we show how to use (1.5) to write the transient
distribution of a reflected Ornstein–Uhlenbeck (OU) process in terms of the first hitting time
distribution of an unreflected OU process, which additionally yields a uniform integrability
result for reflected OU processes. Such a result can also be derived using duality theory (see,
for example, [5] and [14]); however, the proof methodology is much different, because there
is no sample path representation that is equivalent to (1.5) in either [5] or [14]. Because the
reflected OU process has been shown to approximate the GI/GI/1+GI and M/M/N/N queues
(see [20] and [16]), we see that the transient distribution of the number-in-system process for the
GI/GI/1+GI and M/M/N/N queues can be approximated by the first hitting time distribution
of an OU process (that is not reflected).

The remainder of this paper is organized as follows. In Section 2 we prove (1.5). In Section 3
we apply (1.5) in the context of a reflected OU process. In Section 4 we perform simulation
studies that support approximating the transient distribution of the number-in-system process
for the GI/GI/1 + GI and M/M/N/N queues with the first hitting time distribution of an OU
process (that is not reflected).

2. The generalized drift Skorokhod problem solution (in one dimension)

In this section we establish (1.5).

Theorem 2.1. Let (Z, L) be the unique solution to the generalized Skorokhod problem for X

with X(0) = 0, and with state-dependent drift function f that is Lipschitz continuous. For
each s ≥ 0, let Zs be defined as in (1.6). Then, for each t ≥ 0,

Z(t) = sup
0≤s≤t

Zs(t − s).
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Proof. We first claim that, for each 0 ≤ s ≤ t ,

Zs(t − s) ≤ Z(t).

To see this, first recall from (1.6) that Zs(t − s) is the solution to the equation

Zs(u) = X(s + u) − X(s) −
∫ u

0
fe(Zs(v)) dv, (2.1)

evaluated at the point u = t − s, where fe : R �→ R is an arbitrary Lipschitz extension of
f : R+ �→ R. Next, it is straightforward to see from condition 1 of Definition 1.1 that Z(t) is
the unique solution to the equation

Z(s + u) = Z(s) + (X(s + u) − X(s) + L(s + u) − L(s)) −
∫ u

0
fe(Z(s + v)) dv (2.2)

for u ≥ 0, also evaluated at the point u = t − s (note that in (2.2) we have replaced f by fe).
Subtracting (2.1) from (2.2) we therefore obtain

(Z(s + u) − Zs(u)) = Z(s) + L(s + u) − L(s) −
∫ u

0
(fe(Z(s + v)) − fe(Zs(v))) dv

for u ≥ 0. Note also that by the Lipschitz continuity of fe we have, for some constant K > 0,

(Z(s + u) − Zs(u)) ≥ Z(s) + L(s + u) − L(s) − K

∫ u

0
|Z(s + v) − Zs(v)| dv (2.3)

for u ≥ 0. Now consider the solution Ws = {Ws(u), u ≥ 0} to the ordinary differential
equation

Ws(u) = Z(s) + L(s + u) − L(s) − K

∫ u

0
|Ws(v)| dv, u ≥ 0. (2.4)

We claim that

Ws(u) = Z(s)e−Ku +
∫ u

0
eK(v−u) dL(s + v), u ≥ 0.

This may be verified by noting that Ws(u) ≥ 0 for u ≥ 0, since Z(s) ≥ 0 and L is a
nondecreasing function. Subtracting (2.4) from (2.3) and using Gronwall’s inequality, it follows
that Z(s +u)−Zs(u) ≥ Ws(u) ≥ 0, and so Z(s +u) ≥ Zs(u), which, evaluating at u = t − s,
yields Zs(t − s) ≤ Z(t), our desired result. We have therefore shown that

Z(t) ≥ sup
0≤s≤t

{Zs(t − s)}. (2.5)

It now remains to reverse the direction of the inequality in (2.5). In order to do so, it
suffices to show that there exists at least one point s� such that Zs�(t − s�) = Z(t). Let
s� = sup{s ≤ t : Z(s) = 0} be the last time at which the process Z hit zero. Note that s� is well
defined since Z(0) = 0. Also, note that L(s) = L(s�) for s ≥ s�. Thus, by (2.2) we have

Z(s� + u) = X(s� + u) − X(s�) −
∫ u

0
fe(Z(s� + v)) dv, u ≥ 0,

and so, Z(s� + u) = Zs�(u) for 0 ≤ u ≤ t − s�, and, in particular, Z(t) = Zs�(t − s�), which
completes the proof.
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3. Reflected OU processes

In this section we let the process X in the definition of the generalized Skorokhod problem
be a Brownian motion with constant drift θ and infinitesimal variance σ 2 defined on a suitable
probability space (�, F , P). We also set f (x) = γ x for x ≥ 0 and some γ ∈ R. The resulting
process Z, defined sample pathwise as the solution to the generalized Skorokhod problem for X

and f , is referred to as a (σ, θ, γ ) reflected OU process, which has initial condition Z(0) = 0.
It is immediate that the following definition of a reflected OU process is equivalent to the
prescription given above.

Definition 3.1. (Reflected OU process.) Let B = {B(t), t ≥ 0} be a standard Brownian
motion defined on a probability space (�, F , P), and let σ > 0, and θ, γ ∈ R. We say that
the process Z is a (σ, θ, γ ) reflected OU process if the following four conditions are satisfied
P-almost-surely:

1. Z(t) = σB(t) + θt − γ
∫ t

0 Z(s) ds + L(t) for t ≥ 0,

2. Z(t) ≥ 0 for t ≥ 0,

3. L is nondecreasing with L(0−) = 0,

4.
∫ ∞

0 1{Z(t) > 0} dL(t) = 0.

Now, for each s ≥ 0, recall from (1.6) the definition of the associated unreflected processes

Zs(u) = (σB(s + u) + θ(s + u)) − (σB(s) + θs) − γ

∫ u

0
Zs(v) dv

for u ≥ 0, where here we have set X(t) = σB(t) + θt , and we take the natural extension
fe(x) = γ x for x ∈ R. For clarity of exposition in the sequel, we now hold t ≥ 0 fixed and
define the new process

Yt (u) = Zt−u(u), 0 ≤ u ≤ t.

Since {Yt (u), 0 ≤ u ≤ t} is just the process {Zs(t − s), 0 ≤ s ≤ t} run backwards in time, it
follows that

sup
0≤u≤t

{Yt (u)} = sup
0≤s≤t

{Zs(t − s)},

and so it follows from Theorem 2.1 that if Z is a (σ, θ, γ ) reflected OU process then

Z(t) = sup
0≤u≤t

{Yt (u)}. (3.1)

In preparation for our next result, we now say that a process X is a (σ, θ, γ ) OU process
starting from X(0) (note the absence of reflection here) if it is the unique strong solution to the
stochastic differential equation

X(t) = X(0) + σB(t) + θt −
∫ t

0
γX(s) ds

for t ≥ 0, where B is a standard Brownian motion. We then make the following claim regarding
the process {Yt (u), 0 ≤ u ≤ t}.
Proposition 3.1. The process {eγ uYt (u), 0 ≤ u ≤ t} is equal in distribution to a (σ, θ, −γ )

OU process on [0, t] which starts from 0.
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Proof. First note that, since X(t) = σB(t) + θt is a Brownian motion with infinitesimal
variance σ 2 and constant drift θ , it follows that, for each s ≥ 0, the process Xs = {X(s + t) −
X(s), t ≥ 0} is also Brownian motion with the same parameters and so, for each s ≥ 0, the
process Zs = {Zs(u), u ≥ 0} is an OU process whose explicit solution is given by

Zs(u) = θ

γ
(1 − e−γ u) +

∫ u

0
σeγ (v−u) dBs(v), u ≥ 0,

where Bs = {B(s + t) − B(s), t ≥ 0}.
Setting Yt (u) = Zt−u(u), it therefore follows that

Yt (u) = θ

γ
(1 − e−γ u) +

∫ u

0
σeγ (v−u) dBt−u(v).

However, since dBt−u(v) = dB(t −u+v), the change with respect to v, it follows that making
the change of variable ζ = u − v, the above becomes

Yt (u) = θ

γ
(1 − e−γ u) +

∫ u

0
σeγ (v−u) dB(t − u + v)

= θ

γ
(1 − e−γ u) +

∫ 0

u

σe−γ ζ dB(t − ζ )

= θ

γ
(1 − e−γ u) −

∫ u

0
σe−γ ζ dB(t − ζ ).

However, it is clear that the above, as a process, is also equal in distribution to

θ

γ
(1 − e−γ u) +

∫ u

0
σe−γ t dB(t), u ≥ 0.

Multiplying both sides of the above by eγ u, we then obtain

eγ uYt (u) = − θ

γ
(1 − eγ u) +

∫ u

0
σe−γ (t−u) dB(t),

which is just an OU process on [0, t] with infinitesimal variance σ 2, constant drift θ , and linear
drift −γ .

The following is our main result of this section, relating the distribution of the supremum
appearing in (3.1) to the first hitting distribution of an OU process. Let

σx = inf{t ≥ 0 : U(t) = x},
where U = {U(t), t ≥ 0} is an OU process with parameters (σ, −γ x + θ, −γ ) and started
from 0. In other words, σx is the first hitting time of x by U . We then have the following
proposition.

Proposition 3.2. For each t ≥ 0,

P(Z(t) ≥ x) = P(σx ≤ t).
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Proof. Note that, for each x ≥ 0,
{

sup
0≤u≤t

Yt (u) ≥ x
}

= {inf{u : Yt (u) ≥ x} ≤ t}

= {inf{u : eγ uYt (u) ≥ eγ ux} ≤ t}
= {inf{u : x(1 − eγ u) + eγ uYt (u) ≥ x} ≤ t}.

Now, by Proposition 3.1, {x(1 − eγ u) + eγ uYt (u), u ≥ 0} is simply an OU process with
infinitesimal variance σ 2, constant drift −γ x + θ , and linear drift −γ . The result then follows
immediately.

Sigman and Ryan [14] established an equivalent result to Proposition 3.2; however, their
proof methodology is much different. In particular, Sigman and Ryan related the transient
distribution of any continuous-time, real-valued stochastic process that can be defined
recursively (either explicitly in discrete time or implicitly in continuous time, through the
use of an integral equation) to the ruin time of a dual risk process. There is no result in [14]
that is equivalent to Theorem 2.1, which is the basis for our proof of Proposition 3.2.

3.1. Computing the first hitting time

In order to use Proposition 3.2 to compute P(Z(t) ≥ x), it is necessary that the distribution
of σx is known. Fortunately, there are various results in the literature available for computing
the first hitting time distributions of OU processes. Linetsky [11] provided a spectral expansion
for the first hitting time of OU processes and the results of Alili et al. [1] provide three different
means to compute various probabilities associated with this hitting time. In what follows, we
use the results in [1].

Let p
(σ,θ,γ )
x0→x denote the density of the distribution of σx for a (σ, θ, γ ) OU process, so that

we may write

P(σx ≤ t) =
∫ t

0
p

(σ,θ,γ )
x0→x (s) ds, t ≥ 0.

Alili et al. [1] showed how to calculate p
(1,0,γ )
x0→x when γ > 0. Since we are interested in the

more general case, we first express p
(σ,θ,γ )
x0→x in terms of p

(1,0,γ )
x0→x . In order to do this, note that,

since a (σ, θ, γ ) OU process starting from x0 has the same distribution as a (1, θ/σ, γ ) OU
process starting from x0/σ , it follows that

p
(σ,θ,γ )
x0→x (t) = p

(1,θ/σ,γ )
x0/σ→x/σ (t), t ≥ 0. (3.2)

Next, Remark 2.5 of [1] shows that

p
(1,θ/σ,γ )
x0/σ→x/σ (t) = p

(1,0,γ )
x0/σ−θ/σγ→x/σ−θ/σγ (t), t ≥ 0. (3.3)

When x − θ/γ = 0, the above expression may be immediately evaluated because

p
(1,0,γ )
ζ→0 (t) = |ζ |√

2π

(
λ

sinh(λt)

)3/2

exp

(
− λζ 2e−λt

2sinh(λt)
+ λt

2

)
, (3.4)

as is found in [12] and reproduced in Equation (2.8) of [1]. Otherwise, when x − θ/γ 
= 0,
one must appeal to one of the three representations in [1] (one that hinges on an eigenvalue
expansion, one that is an integral representation, and one that is given in terms of a functional
of a three-dimensional Bessel bridge) in order to compute P(σx ≤ t).
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To compute the transient distribution of the (σ, θ, γ ) reflected OU process Z, we first apply
Proposition 3.2, and then use the distributional equalities (3.2) and (3.3) as follows:

P(Z(t) ≥ x) = P(σx ≤ t) (3.5)

=
∫ t

0
p

(σ,−γ x+θ,−γ )
0→x (s) ds

=
∫ t

0
P

(1,(−γ x+θ)/σ,−γ )
0→x/σ (s) ds

=
∫ t

0
p

(1,0,−γ )
θ/σγ−x/σ→θ/σγ (s) ds.

We double check the calculation (3.5) by recalling that it also follows [14]. Specifically,
Proposition 4.3 of [14] establishes that

P(Z(t) ≥ x) = P(σR ≤ t), (3.6)

where σR is the first time a (σ, −θ, −γ ) OU process with initial point x > 0 becomes negative.
To see that (3.5) and (3.6) are equivalent, first observe that

P(σR ≤ t) =
∫ t

0
p

(σ,−θ,−γ )
x→0 (s) ds

=
∫ t

0
p

(1,−θ/σ,−γ )
x/σ→0 (s) ds

=
∫ t

0
p

(1,0,−γ )
x/σ−θ/σγ→−θ/σγ (s) ds,

where the second and third equalities follow from (3.2) and (3.3). Then, since symmetry implies
that

p
(1,0,−γ )
θ/σγ−x/σ→θ/σγ (s) = p

(1,0,−γ )
x/σ−θ/σγ→−θ/σγ (s),

we conclude that P(σx ≤ t) = P(σR ≤ t).

3.2. Uniform integrability

It is well known (see, for example, Proposition 1 of [19]) that if γ > 0 then, for a (σ, θ, γ )

reflected OU process, Z(t) ⇒ Z(∞) as t → ∞, where Z(∞) is a normal random variable with
mean θ/γ and variance σ 2/(2γ ) conditioned to be positive. We now show that the sequence
of random variables {Z(t), t ≥ 0} is uniformly integrable as well.

Proposition 3.3. If γ > 0 then, for a (σ, θ, γ ) reflected OU process started at the origin, the
sequence of random variables {Z(t), t ≥ 0} is uniformly integrable.

Proof. First note that, without loss of generality, we may assume that σ = 1 since otherwise
we may rescale. Now recall that, by Proposition 3.2, it follows that P(Z(t) ≥ x) = P(σx ≤ t),
where σx = inf{t ≥ 0 : Ut = x} and Ut is an OU process with parameters (1, −γ x + θ, −γ )

started from 0. Hence, is suffices to show that there exists a function g integrable on R
+ such

that P(σx ≤ t) ≤ g(x) for all x, t ≥ 0.
Next, it follows from (3.5) that P(σx ≤ t) = ∫ t

0 p
(1,0,−γ )
θ/γ−x→θ/γ (s) ds. Remark 2.4 of [1] shows

that

p
(1,0,−γ )
θ/γ−x→θ/γ (s) = exp

(
γ

(
θ2

γ 2 −
(

θ

γ
− x

)2

− s

))
p

(1,0,γ )
θ/γ−x→θ/γ (s).
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(We note that there is a missing negative sign in the display appearing in Remark 2.4 of [1];
specifically, the correct equation is p

(λ)
x→a(t) = exp(−λ(a2 − x2 − t))p

(−λ)
x→a(t).) Hence,

P(σx ≤ t) = exp

(
−γ

(
x2 − 2

θ

γ
x

)) ∫ t

0
exp(−γ s)p

(1,0,γ )
θ/γ−x→θ/γ (s) ds

≤ exp

(
−γ

(
x2 − 2

θ

γ
x

))
,

where the last inequality follows since
∫ ∞

0
p

(1,0,γ )
θ/γ−x→θ/γ (s) ds = 1.

Finally, since, for γ > 0,
∫ ∞

0
exp

(
−γ

(
x2 − 2

θ

γ
x

))
dx < ∞,

the proof is complete.

4. Approximating the transient distribution of the GI/GI/1 + GI and M/M/N/N

queues

In this section we perform simulation studies that support using the first hitting time
distribution of an OU process (that is not reflected) to approximate the transient distribution of
the number-in-system process for the GI/GI/1 + GI queue (Section 4.1) and the M/M/N/N

queue (Section 4.2).

4.1. The GI/GI/1 + GI queue

The M/M/1 + M queueing model assumes that customers arrive according to a Poisson
process with rate λ to an infinite waiting room service facility, that their service times form an
independent and identically distributed (i.i.d.) sequence of exponential random variables having
mean 1/µ > 0, and that each customer independently reneges if his/her service has not begun
within an exponentially distributed amount of time that has mean 1/γ > 0. Theorem 2 of [18]
supports approximating the number-in-system process Q = {Q(t), t ≥ 0} by a (

√
2λ, λ−µ, γ )

reflected OU process Z.
The more general GI/GI/1 + GI queueing model assumes that the customer arrival process

is a renewal process with rate λ, that the service time distribution is general with mean 1/µ, and
that each customer independently reneges if his/her service has not begun within an amount of
time that is distributed according to some probability distribution function F . In the case that
F has a density and F ′(0) > 0 is finite, Theorem 3 of [20] combined with the arguments in
the proof of Theorem 2 of [18] shows that Q may be approximated by a (

√
2λ, λ − µ, F ′(0))

reflected OU process. Note that this is consistent with the approximation for Q in the previous
paragraph since the value of the density of an exponential random variable at 0 is equal to
its rate.

Our results in Section 3 (specifically, Proposition 3.2 and (3.5)) then imply for the M/M/1+
M case that

P(Q(t) ≥ x) ≈ P(Z(t) ≥ x) =
∫ t

0
p

(1,0,−γ )

(λ−µ−γ x)/γ
√

2λ→(λ−µ)/γ
√

2λ
(s) ds, (4.1)
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Figure 1: Simulated and approximated results for the M/M/1 + M queueing model when λ = µ = 0.5,
γ = 0.001, so that PR = 3.41%, and λ = µ = 0.5, γ = 0.01, so that PR = 9.79%. PR is the steady-state

percentage of arriving customers that renege.

when Q(0) = 0. For the GI/GI/1+GI case, we may replace γ with F
′
(0) in the above. Hence,

we have an approximation for the transient distribution for the number-in-system process in a
GI/GI/1 + GI queue. Note that the theory in [18] and [20] suggests that the approximation in
(4.1) will be good when λ and µ are close, and when γ is small compared to λ and µ (that is,
the percentage of customers reneging is not too large). For related work, we refer the interested
reader to Fralix [7], who derived the time-dependent moments of an M/M/1 + M queue, and
then used those to obtain the time-dependent moment expressions for a reflected OU process.

We now proceed to verify approximation (4.1) in an M/M/1 + M model via simulation.
Note that even in the case of an M/M/1+M model, the problem of finding an exact expression
for its transient distribution appears to be very difficult (as is suggested by the computations
in [21], which provide some performance measure expressions in terms of transforms for a
many-server model with reneging). The plots in Figure 1 reveal that approximation (4.1) is
very accurate, both for calculating the probability that the system is nonempty for a range of
t values, and for finding the entire distribution of Q(t) for a fixed t . The simulation results
shown are averaged over 10 000 runs, stopped at the relevant time value. Note that we chose
λ = µ so that we could use the very simple expression (3.4) when computing P(Z(t) ≥ x).
When λ 
= µ, there is another source of error that comes into approximation (4.1) that is due
to the methodology in [1] for computing the hitting time density function of an OU process.
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Figure 2: Simulated and approximated results for the GI/GI/1+GI queueing model when the interarrival
and service time distributions are gamma(2,2) and the reneging distribution F is uniform on [0, 1000].

The plots in Figure 2 verify approximation (4.1) in a GI/GI/1 + GI queueing model. Note
that the relevant approximating reflected OU process is exactly the same as in the M/M/1 + M
queueing model in Figure 1(a) and (c). We observe that the transient distribution approximation
is good for ‘medium’ t but not for ‘small’ t . (The simulation results in [20] imply that the
approximation is good for ‘large’ t , when the system is close to its steady state.) The GI/GI/1+
GI queue that we simulated had simulated steady-state mean number-in-system 18.12, and
simulated mean number-in-system at times t = 100, t = 200, and t = 500 of 7.73, 10.43, and
14.43, respectively. Then, the displayed P–P plots for P(Q(t) < x) in Figure 2 are such that
the transient distribution is relevant (and not the steady-state distribution).

4.2. The M/M/N/N queue

The M/M/N/N queueing model assumes that customers arrive at rate λ > 0 in accordance
with a Poisson process to a service facility with N servers and no additional place for waiting,
and that their service times form an i.i.d. sequence of exponential random variables with mean
1/µ. Any arriving customer that finds N customers in the system is blocked from receiving
service, and so is lost. Suppose that we let the number of servers in the system be a function of
the arrival rate λ, and assume that

Nλ = λ + β
√

λ

µ
for β ∈ R. (4.2)
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Figure 3: Simulated and approximated results for the M/M/N/N queueing model.

Then, Srikant and Whitt [16] showed that

Nλ − Qλ

√
λ

⇒ Z as λ → ∞,

where Z is a (
√

2, β, µ) reflected OU process. Hence, our results in Section 3 (specifically,
Proposition 3.2 and (3.5)) imply that

P(Q(t) ≤ x) = P

(
N − Q(t)√

λ
≥ N − x√

λ

)
(4.3)

≈ P

(
Z(t) ≥ N − x√

λ

)

=
∫ t

0
p

(1,0,−µ)

(N−2λ/µ+x)/2
√

λ→(µN−λ)/
√

λ
(s) ds,

when Q(0) = N .
In Figure 3 we compare simulated results for the M/M/N/N queue to values obtained

using the approximation in (4.3). We see that the approximation becomes more accurate as N

becomes larger, which is as expected. Note that, by (4.2), this also implies that the utilization
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is close to 1. The simulation results shown are the average over 10 000 runs, stopped at the
relevant time value.
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