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Abstract

Assume G is a graph with m edges. By T(n, G) we denote the classical Turan number,
namely, the maximum possible number of edges in a graph H on n vertices without a copy
of G . Similarly if G is a family of graphs then H does not have a copy of any member of
the family. A Zk-colouring of a graph G is a colouring of the edges of G by Zk , the additive
group of integers modulo k , avoiding a copy of a given graph H, for which the sum of the
values on its edges is 0 (mod k). By the Zero-Sum Turan number, denoted T(n, G, Zk),
k | m , we mean the maximum number of edges in a Zk -colouring of a graph on n vertices that
contains no zero-sum (mod k) copy of G . Here we mainly solve two problems of Bialostocki
and Dierker [6].

PROBLEM 1. Determine T(n , tK2 , Zk) for k \ t. In particular, is it true that T(n , tK2, Zk)
= T(n,(t + k- 1)#2)?

PROBLEM 2. Does there exist a constant c(t, k) such that T{n , Ft, Zk) <c(t, k)n , where
Ft is the family of cycles of length at least t ?

1991 Mathematics subject classification (Amer. Math. Soc): 05 C 55.

1. Introduction

In 1961, Erdos, Ginzburg and Ziv [14] proved the following theorem:

THEOREM A. Let {al, a2, . . . , aim+\)k-i} be a collection of integers. Then
there exists a subset I c {1 , 2 , . . . , (m + l)k - 1}, | / | = mk, such that
Zi€lat = 0 (modk).
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This theorem was the starting point of the seminal paper of Bialostocki
and Dierker [2], in which they introduced the concept of zero-sum colouring.

Graphs in this paper are finite and have neither multiple edges nor loops.
By R(G; k) we denote the least positive integer r such that in any k colour-
ing of the edges of the complete graph Kr, there is a monochromatic copy of
G. From now on we assume that G is a graph with m edges. By the Zero-
Sum Ramsey number, denoted R{G; Zk), k\m,we mean the least positive
integer r such that in any colouring of the edges of the complete graph Kr by
Zk, the additive group of integers modulo k, there is a copy of G such that
the sum of the values on its edges is 0 (mod k). The existence of R{G; Zk)
follows from the existence of the classical Ramsey number R{G; k), since,
following the definitions, we have

(1) R(G;Zk)<R(G;k).

By T(n, G) we denote the classical Turan number, namely, the maxi-
mum possible number of edges in a graph H on n vertices without a copy
of G. Similarly if G is a family of graphs, then H does not contain a
copy of any member of the family. By the Zero-Sum Turan number, de-
noted T(n, G, Zk), k | m , we mean the maximum number of edges in a
Zk-colouring of a graph on n vertices that contains no zero-sum (mod k)
copy of G.

There is a rapidly growing literature on zero-sum problems as can be indi-
cated from the list of references (which is by no means complete) [1-5, 8-13,
15, and 18].

Bialostocki and Dierker [2-6] raised several problems whose essence is
summarized in the following

PROBLEM 1. Determine T{n, tK2, Zk) for k\t. In particular, is it true
that T(n, tK2, Zk) = T(n,(t + k- l)K2)?

PROBLEM 2. Does there exist a constant c(t, k) such that T{n, Ft, Zk) <
c{t,k)n1

The connection between these problems and the above theorem is quite
obvious, and fortunately we are able to solve them completely.

Our notation is standard and follows [7, 16]. In particular, e(G) denotes
the number of edges of G.

A graph H is said to be a topological graph of a given graph G if H is
obtained from G by replacing some edges of G by paths, an operation also
called sub-division. The family of all topological graphs of a given graph G
will be denoted by TG.

Let H G TG. Observe that to every edge e of G there corresponds a
path P in H. This defines a natural one-to-one mapping a: E(G) —* {P e
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H : Pe is a path obtained by subdividing e € E(G)} .
We are ready now for our results.

2. Results and proofs

We start with a result from [12] whose simple proof is given in order to
keep this paper self-contained.

THEOREM 1 [12]. Let t > k > 2 be integers such that k\t. Then for every
graph G T(n, tG, Zk) < T(n, (t +k - l)G).

PROOF. Let H be a graph on n vertices with T(n, (t+k-l)G) + l edges.
Let c: E(H) —> Zk be a Zk-colouring of the edges of H. By the definition
of the classical Turan numbers, H must contain t + k - 1 vertex-disjoint
copies of G, denoted by Gt. Put at = 2~3e6£(G > c(e). Then by Theorem A,
as t = km, there is a subset / c {1, 2, . . . , (t + k - 1)} , \I\ = t, such that
£ \ g / a, = 0 (mod k). Hence \JieI Gi - tG has the required property.

We are able now to solve Problem 1.

T H E O R E M 2 . L e t t > k > 2 be integers such that k\t. Then for n > 5t,

PROOF. By Theorem 1, T(n, tK2, Zk) < T(n, (t + k - 1)K2). The Turan
numbers for matching were determined, 30 years ago, by Erdos and Gallai
(see [7]) who proved that for n > 5t,

Consider now the following construction. Color the edges of the complete
bipartite graph Kt_x n_t+l and the complete graph Kt_y by 0. In the vertex
class of cardinality n-t+\, colour by 1 the graph Kk] U Kk_{ n_t_k+2 •

It is easy to see that in the resulting graph H on n vertices there is no
zero-sum (mod k) copy of tK2 , and the number of edges in this graph is

as required.
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REMARK. Using the Erdos-Gallai Theorem, and their characterization of
the extremal graphs for every n , one can show with a little more effort that,
also for n <5t, T(n, tK2, Zk) = T(n , {t + k - \)K2). We omit the proof
and the construction.

The next result gives a solution to a much more general problem than
Problem 2, namely,

THEOREM 3. Let G be a non-empty graph. Then there exists a positive
constant c{G, k) such that T(n, TG, Zk) < c(G, k)n .

PROOF. Suppose e(G) = r (mod k). If r = 0 set G* = G. Otherwise,
subdivide edges of G to obtain a graph G* e TG such that k\e{G*). As
k | e(G*) it is clear that R(G*; Zk) is well defined.

CLAIM. T(n, TG, Zk) < T(n, TKR(G. z , ) .
Indeed, suppose H is a graph on n vertices and T(n, TKR{G..Z () +

1 edges, and let c: E{H) -> Zk be a Zk-colouring. By the definition of
Turan numbers, there exists a copy of a graph F e TKR,G.. z . in H. Now,
c: E(F) -> Zk induces another colouring / : E{KR,Q..Z .) —> Zk by f{e) —
c(Pe) where e and Pe are an edge of KR,G..Z . and the corresponding path
in F, and c{Pg) — ^2eeE,P } c(e), where addition is performed modulo k .

By the definition of R(G*, Zk) there exists a zero-sum copy (mod k) M
of G* (with respect to f) in KR(G.. z . .

Clearly the corresponding graph of M in F , namely, the graph induced
by the paths \JeeM Pa(e), where a is the natural mapping between KR^G*.Z }

and F, is a zero-sum (mod &) topological graph of G* (with respect to
c). Hence, T(n, TG, Zk) < T(n, TKR,G. z } ) , proving the claim.

Recall now the deep theorem of Mader [17] which, in a weak form, states
that T{n, TKJ < 3n2m~3.

Now, T{n, TG, Zk) < T{n, TKR(G..Z }) < 3n2R{G'''Zk)~3, which proves

the theorem with c(G,k) = 3- 2R{G' ;Z*}"3.
Let Ft be the family of cycles of length at least t. Then we have the

following corollary.

COROLLARY. T{n, Ft, Zk) < c(t, k)n.

PROOF. Set q = k\t/k] . Then from Theorem 3 we find that T(n, F(, Zk)
< T{n, TCa, Z,) < c(C , k)n = c(t, k)n .
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In the case of T(n, Pm, Zk), where Pm is a path on m edges, one can
improve considerably the upper bound of Theorem 3, namely,

THEOREM 4. T(n, TPm,Z.) < T{n,Pkm) < {km - l)n/2.

PROOF. Let H be a graph on n vertices and T(n, Pkm) + 1 edges. Then
H contains a path on km edges. Order the edges of that path by
e{,e2, ... ,ekm. Suppose c: E(H) -> Zk is given. Define at = Yl'j=1 c{ej).
Then we have a set A = {ax, a2, ... , akm] • Consider the subset

Be A, B = {am,a2m,...,akm}.

If a = 0 (mod k), then el, ... , ejm is a suitable path. If no ajm = 0
(mod k), then there must exist 0 < / < j < k such that aim = ajm (mod k),
so that the path starting with the edge eim+l and ending with the edge eJm is
zero-sum (mod k) on jm — im = (j-i)m edges. Hence, T(n, TPm, Zk) <
T(n, Pkm) < (km - l )«/2 , by the well-known Erdos-Gallai upper bound for
T(n,PJ (see [19]).

Theorem 3 suggests the following strong form of Mader's Theorem.

THEOREM 5. Let G be a non-empty graph and let k > 2 be an integer.
Then there exists a constant c(G, k) > 0 such that every graph on n vertices
and c(G, k)n + 1 edges contains a topological graph H e TG, such that
k\e(H).

PROOF. Let F be an arbitrary graph on n vertices and c(G, k)n + 1
edges, where c(G, k) is the constant from Theorem 3. Let c: E(F) -> Zk

be defined by c(e) = 1. By Theorem 3 there exists a zero-sum (mod k)
topological graph H of G. As c(e) = 1, e{H) = 5^£ £ ( f f ) c{e) = 0 (mod k).
Hence k \ e(H) as claimed.
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