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Abstract

The one-dimensional problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with
length 2H and density ρ0≤ 100ρs, where ρs is the fuel solid-state density at atmospheric pressure and temperature of
4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is 1019 W/cm2 and duration is 50 ps. A
mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of
the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by
α-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave,
appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile
along the spatial variable x and with a weak dependence of the thermodynamic functions of x occurs. An appropriate
solution of the equations of hydrodynamics is found analytically up to an arbitrary constant, which can be chosen so
that the analytical solution describes with good accuracy the numerical one. The gain with respect to the energy of
neutrons G≈ 200 at Hρ0≈ 1 g/cm2, and G> 2000 at Hρ0≈ 5 g/cm2. To evaluate the ignition energy Eig of
cylindrical targets, the quasi-1D model, limiting trajectories of α-particles by a cylinder of a given radius, is suggested.
The model reproduces the known theoretical dependence Eig∼ ρ0

−2 and gives Eig= 160 kJ for ρ0= 100ρs≈ 22 g/cm3.

Keywords: Cylindrical targets for ICF; Flows with linear velocity profile; Ignition energy; Inertial confinement fusion;
Thermonuclear detonation wave

1. INTRODUCTION

High-gain targets for the inertial confinement fusion (ICF)
are meant for the ignition of a small part of the fuel with
the following propagation of the thermonuclear burn wave
on its main part. As the deuterium–tritium (DT) reaction
rate at the temperatures of about 10 keV is much higher
than the rates of other thermonuclear reactions, the ignition
of the equimolar DT mixture is considered commonly as
the primary task.
There are two approaches to ICF. One of the two is based

on compression of a spherical layer of the fuel by a single
driver providing sufficiently high values of density and tem-
perature (Lindl et al., 2004). At that, the thermonuclear burn
wave arises in the target volume. Another approach known as
the fast ignition is based on using two drivers (Basov et al.,
1992; Tabak et al., 1994; Gus’kov, 2013). The first driver

compresses the target up to necessary value of density,
while the second driver provides for fast rise of temperature.
As a variant of such approach, one can consider ignition at
the target center by a converging shock wave (Shcherbakov,
1983; Betti et al., 2007). A possibility of using multi-shock
wave compression for fast ignition is considered by Eliezer
and Martinez Val (2011).

The present paper is devoted to the variant of the fast igni-
tion for which the burn wave arises near the target surface
and propagates inside the target. Laser-generated beams of
electrons (Tabak et al., 1994), and ions (Roth et al., 2001;
Gus’kov, 2001; Caruso & Strangio, 2003; Honrubia et al.,
2010) as well as heavy ion beams (Churazov et al., 2001;
Medin et al., 2002; Gus’kov et al., 2010), macroparticles
(Caruso & Strangio, 2001), and high velocity flows of
matter (Gus’kov, 2013; Gus’kov & Zmitrenko, 2012) are
considered as a driver for the fast heat of the highly-
compressed fuel. Results of many theoretical works show ini-
tiation of burn waves propagating inside the target at certain
values of beam parameters.
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The contemporary concept of fast ignition assumes that the
fuel is compressed up to the initial density ρ0∼ 103ρs, where
ρs is the density of the solid-state DT-mixture at atmospheric
pressure and temperature of 4 K. Such preliminary compres-
sion of the fuel is a serious technical problem due to, partic-
ularly, Rayleigh–Taylor instability (Anisimov et al., 2013)
arising at the stage of deceleration of a heavy shell while
compressing the fuel. In the present paper, we study a possi-
bility to use targets with the fuel density ρ0≤ 100ρs. In this
connection, the work by Avrorin et al. (1984) should be men-
tioned, where propagation of thermonuclear detonation on
unevenly compressed and heated non-spherical target is stud-
ied numerically, in particular, from a small part of the hot
(T= 10 keV) and dense (ρ0≈ 900ρs) DT mixture to a cold
and much less compressed part (ρ0≈ 45ρs).
The first theoretical estimate of the ignition energy thresh-

old for DT fuel of the density ρ0 was obtained by Tabak et al.
(1994) in the form Eig∼ ρ0

−2. The similar estimate with an
improved value of the constant of proportionality was ob-
tained by Atzeni (1999). In many papers (see, for example,
Caruso & Pais, 1996; Atzeni, 1999; Churazov et al., 2001;
Caruso & Strangio, 2003), the ignition energy threshold is
determined from numerical solutions of the two-dimensional
(2D) axially symmetric problem with given radius and time
dependencies of the particle beam intensity. The improved
dependency Eig∼ ρ0

−1.85 based on results of many computa-
tions for ρ0≥ 50 g/cm3≈ 230ρs is proposed by Atzeni
(1999). Note also a number of simple burn models based
on ordinary differential equations of evolution, which
allow estimating of ignition parameters for uniformly
heated volumes of fuel (Nayak & Menon, 2012).
In the following three works, shell cylindrical targets with

pre-compressed DT fuel irradiated from the target end are
studied using 2D numerical codes. The initiation of a thermo-
nuclear burn wave in DT fuel of the density about 500ρs by a
heavy ion beam was considered by Churazov et al. (2001). A
possibility to decrease the ignition energy by heating a small
part of the fuel near the symmetry axis before the fuel density
reaches its maximal value was considered by Caruso and
Strangio (2003). Propagation of thermonuclear burn waves
within a gold shell for DT fuel density of 50, 100, and
200 g/cm3, as well as the ignition of such a target by
heavy ion beams were considered by Ramis and
Meyer-ter-Vehn (2014).
Symmetrically converging plane thermonuclear burn

waves initiated by laser pulses for the initial density ρ0=
ρs and 5ρs have been studied by Khishchenko and Char-
akhch’yan (2013) using the model of total absorption of
laser radiation in the point with the critical density. For
such kind of model, epithermal particles generated by laser-
plasma interaction and heating the domain of supercritical
density are ignored. A slow combustion wave arises only
after at least one interaction of the shock wave reflected
from the symmetry plane with the ablation front and moves
in the fuel preliminary compressed and heated by several
shock waves. The slow wave generates before itself a

compression velocity profile that increases rapidly the fuel
density. As a result, the slow combustion wave can transform
into two detonation waves moving in opposite directions.
After reflecting the slow or detonation wave from the sym-
metry plane, the intensive burning continues and increases
considerably the burn-up factor of the target.
Further (Charakhch’yan & Khishchenko, 2013), the study

of thermonuclear burn waves at ρ0= ρs and 5ρs was supple-
mented by the waves generated by proton beams. It was
shown that in spite of different ways of ignition, various
models of α-particle heat, whether the burn wave remains
slow or transforms into the detonation wave, and regardless
of way of such a transformation, the final value of the
burn-up factor depends essentially on the only parameter
Hρ0, as in the known approximate formulas for the fuel ex-
pansion in spherical geometry (Basko, 2009).
In the present paper, we extend our study to the more wide

range of the initial density 5ρs≤ ρ0≤ 100ρs. The one-
dimensional (1D) problem to be considered can be treated
as a rough model of burning the target shown in Figure 1.
The fuel of the initial density ρ0 is in the cylindrical channel
with the length of 2H surrounded by a shell of a heavy ma-
terial. Following, for example, Caruso and Strangio (2003),
the monoenergetic beam of protons of kinetic energy
1 MeV is considered as the ignition driver. The beam inten-
sity is 1019 W/cm2 and the duration is 50 ps. The beam of the
same energy with the intensity 1018 W/cm2 and the duration
500 ps is also considered. The burn-up factor and the gain ob-
tained from the 1D calculation should be considered as the
maximum possible values for the target of the same initial
density and length.
For the first time such type of target was suggested by

Pashinin and Prokhorov (1972), for compression of a
gaseous deuterium by laser pulses. Note that the target was
experimentally studied by Stöckl and Tsakiris (1991).
The heavy shell can be compressed by a magnetic field

(Prut et al., 1979) or by heavy ions depositing energy to a
certain shell of a multilayer target (Churazov et al., 2001;
Dolgoleva & Zabrodin, 2006). So we suppose that it is pos-
sible to create the configuration close to that shown in
Figure 1 with a cylinder of the fuel compressed to the neces-
sary density and with two holes for injecting the proton
beams.
Let us assume that the key effect determining the fuel ig-

nition is the heat by α-particles while the lateral expansion of
the fuel, the heat transfer from the fuel to the shell and the
self-radiation of plasma are insignificant. Such assumption
has certain grounds. For the initial density ρ0= 100ρs≈
22 g/cm3, the shell density in its compression can exceed
the above value more than ten times. For example, Ramis

Fig. 1. The target scheme.
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and Meyer-ter-Vehn (2014) considered the gold shell with a
density of 400 g/cm3. For the time 150 ps, during which a
detonation wave arises in our calculations (see Section 3),
the fuel radius in the target can be changed insignificantly.
In the case of compression by a strong magnetic field, the
heat flux between the fuel and the shell can be essentially di-
minished (Pashinin & Prokhorov, 1972). Finally, we refer to
the work by Churazov et al. (2001), where the ignition of a
similar target by a heavy ion beam is simulated numerically.
The authors conclude that the radiative transfer is not deter-
minative when the ignition.
If the above assumption is true, there is an interesting pos-

sibility to evaluate the ignition energy of the cylindrical
target Eig using 1D calculations. To ignite the target, it is nec-
essary to leave a significant part of the α-particles energy
within the fuel. To determine approximately the ignition
energy of the cylindrical target in Figure 1, we introduce
the parameter Rα and solve the 1D problem taking into ac-
count the escape of α-particles from a cylinder of the
radius Rα identifying the latter with the beam and the fuel ra-
diuses. If the solution of the 1D problem contains the thermo-
nuclear burn wave, we set Eig= πRα

2I(∞), where I= I(t) is
the proton beam energy inserted at the time t per unit of
cross-sectional area

I(t) =
∫t
0

Jb(t
′)dt′,

where Jb(t) is the beam intensity given in the 1D problem.
The trajectories of α-particles are relying straight lines. A

possibility to use strongly magnetized cylindrical shells con-
fining the trajectories of α-particles and therefore reducing
the beam area necessary for the ignition (Kemp et al.,
2003) is not considered here. For simulation of α-particle
transport, we use the track method (Brueckner & Jorna,
1973; Duderstadt & Moses, 1982) and its modification
that is a numerical method for the known Cauchy problem
for the kinetic steady-state homogeneous equation in
Fokker–Plank approximation (Gus’kov & Rozanov, 1982).
The argument in favor of the quasi-1D model described

above is its qualitative agreement with theoretical estimates
and numerical simulations of the fuel ignition by the particle
beam of the radius much less than the fuel size. Apart from
numerical results presented in Section 5, one can see such
agreement from the following simple reasoning. The mean
free-path length of α-particles during the isochoric heating
is about lα∼ ρ0

−1. The energy fraction of α-particles that re-
mains within the channel of the radius Rα can be estimated as
β≈ Rα/lα∼ Rαρ0. Assuming that β is independent of ρ0,
obtain Rα∼ ρ0

−1, and, setting that I(t) is also independent
of ρ0, obtain the known estimate Eig∼ ρ0

−2 (Tabak et al.,
1994).
A mathematical model is presented in Section 2. The target

ignition by proton beams of different intensity and the same

energy, as well as generation of a detonation wave are consid-
ered in Section 3. The detonation wave reflection from the
symmetry plane is studied in Section 4. Integrated character-
istics for the initial density 5ρs, 25ρs, and 100ρs are discussed
in Section 5. Conclusions are summarized in Section 6. Addi-
tionally, the track method for simulation of α-particle trans-
port and its modification using the known Cauchy problem
for the kinetic steady-state homogeneous equation in the
framework of Fokker–Plank approximation are described in
Appendix.

2. PROBLEM STATEMENT AND NUMERICAL
METHOD

We use an equation of state (EOS) of hydrogen p= pH(ρ, T),
ε= εH(ρ, T) based on the wide-range semiempirical EOS
model (Khishchenko, 2008). Here p is the pressure, ε is the
specific internal energy, ρ is the density, and T is the temper-
ature. The EOS provides for a good agreement with the Tho-
mas–Fermi model with quantum and exchange corrections
(Kalitkin, 1960; Kalitkin & Kuzmina, 1975) at high densities
(ρ≳2 g/cm3 for H) and low temperatures, as well as gets a
form of model for ideal-gases mixture of electrons and
nuclei at moderate densities and high temperatures.

At the initial point of time t= 0, a motionless plane layer
of the equimolar DT mixture occupies the domain 0≤ x≤H.
The one-temperature EOS of the medium is described by
formulas

p = p(ρ, T) = pH(A
−1ρ, T),

ε = ε(ρ, T) = A−1εH(A
−1ρ, T),

(2.1)

where A= 2.5 is the atomic weight of the mixture.
The initial density of the fuel is specified as ρ0= 5ρs, 25ρs,

and 100ρs, where ρs≈ 0.22 g/cm3. The initial temperature
whether equals 300 K while the initial pressure p0 is deter-
mined from the EOS, or is chosen (together with p0) on the
isentrope passing through the point (ρs, pa), where pa=
0.1 MPa. Numerical results in both cases are very close to
each other.

A free boundary with the pressure pa is initially at the point
x=H. The monoenergetic beam of protons of kinetic energy
1 MeV acts upon this boundary during τpb= 50 ps. With the
exception of the short time interval δτpb= 0.02τpb, the beam
has the constant intensity J0= 1019 W/cm2:

Jb(t) =
J0t/δτ pb, t ≤ δτ pb;
J0, δτ pb < t ≤ τ pb;
0, t > τ pb.

⎧⎨
⎩

The less intensive beam of the same energy with J0= 1018

W/cm2 and τpb= 500 ps is also considered. At the point
x= 0, we set the symmetry condition that is equivalent to
action of the identical proton beam on a symmetrical layer
of the fuel.
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Only the primary fusion reaction between deuteron and
triton with α-particle and neutron as the reaction products

D+ T � α(3.5MeV)+ N(14MeV), (2.2)

is taken into account. Neutrons are supposed to be escaped
from the fuel without interaction.
In computing of all of the coefficients entering into the

model, the plasma is supposed to be completely ionized.
A mathematical model is based on the equations of one-

fluid two-temperature hydrodynamics. Electron and ion
heat conduction, self-radiation of plasma and plasma heating
by both the proton beam and α-particles are taken into ac-
count (Afanas’ev et al., 1982):

dρ
dt

= −ρ
∂u
∂x

, (2.3)

ρ
du
dt

= − ∂p
∂x

, (2.4)

ρ
dεe
dt

= − pe
∂u
∂x

+ ∂
∂x

ϰe
∂Te
∂x

+ 3
2
nikB

Ti − Te
τT

+De +We

+ R, (2.5)

ρ
dεi
dt

= − pi
∂u
∂x

+ ∂
∂x

ϰi
∂Ti
∂x

+ 3
2
nikB

Te − Ti
τT

+ Di +Wi, (2.6)

where u is the mass velocity, d/dt= ∂/∂t+ u∂/∂x is the La-
grangian derivative with respect to time, pe and pi are the
electron and ion pressure, p= pe+ pi is the total pressure,
εe and εi are the electron and ion specific internal energy,
Te and Ti are the electron and ion temperature, ϰe and ϰi
are the electron (Kalitkin & Kostomarov, 2006) and ion
(Silin, 1971) heat conductivity. The third term in the right
parts of Eqs. (2.5) and (2.6) defines the energy exchange be-
tween electrons and ions, ni= ρ/(Amu) is the ion number
density, A is the atomic weight, mu is the atomic mass unit,
kB is the Boltzmann constant, τT is the temperature relaxation
time (Kalitkin & Kostomarov, 2006). Apart from Kalitkin &
Kostomarov (2006) and Silin (1971), for ϰe, ϰi and τT, we
used formulas from Charakhch’yan et al. (2011). The rest
terms in Eqs. (2.5) and (2.6) define the heating of electrons
and ions by the proton beam (De and Di) and by α-particles
(We andWi) as well as the energy exchange between electrons
and self-radiation of plasma (R). The radiation pressure and
the momentum transfer under deceleration of α-particles
are neglected in the equation of motion (2.4). We also
leave out of account terms describing the change of plasma
composition induced by reaction (2.2) in the equation of dis-
continuity (2.3).
EOS for electrons in Eqs. (2.3)–(2.6) is taken in a form,

which corresponds to thermal contribution of ideal electronic

gas in completely ionized plasma of hydrogen isotopes (with
taking into account degeneracy):

pe(ρ, T) = 2
3
ρεe(ρ, T), (2.7)

εe(ρ, T) = 3
2
RAT

βeT

3ρ2/3 + βeT
, (2.8)

where RA= kBNA(Amu)
−1, NA is the Avogadro constant,

βe = (π/3)2/3
mekB
h− 2 (Amu)

2/3,

me is the electron mass, ħ is the Planck constant.
EOS for ions in Eqs. (2.3)–(2.6) is taken as follows,

pi(ρ, T) = pH(A
−1ρ, T)− pe(ρ, T), (2.9)

εi(ρ, T) = A−1εH(A
−1ρ, T)− εe(ρ, T). (2.10)

So, in the case of temperature equality T= Te= Ti, the EOS
(2.1) is satisfied, pe+ pi= p(ρ, T), εe+ εi= ε(ρ, T).
It should be stressed that, at high temperatures, T≫3

βe
−1ρ2/3, relations (2.7) and (2.8) have forms of pressure
and internal energy of mono-particle ideal gas of Boltzmann,

pe(ρ, T) = ρRAT , εe(ρ, T) = 3
2
RAT .

The same relations take place at high temperatures for ionic
components (2.9) and (2.10) in the EOS model from Khish-
chenko (2008):

pi(ρ, T) = ρRAT , εi(ρ, T) = 3
2
RAT.

This implies in particular that for the problems in which the
temperature difference of electrons and ions occurs at a high
degree of plasma heating when the Boltzmann ideal gas ap-
proximation is applicable for all kinds of particles, and ioni-
zation is complete, EOS of hydrogen isotopes in Eqs.
(2.3)–(2.6) can be taken as follows (Charakhch’yan et al.,
2011),

pe = 1
2
p(ρ, Te), εe = 1

2
ε(ρ, Te), pi = 1

2
p(ρ, Ti),

εi = 1
2
ε(ρ, Ti),

(2.11)

where functions of p and ε correspond to the one-temperature
case (2.1). Such an approach to the separation of pressure and
internal energy on the electronic and ionic parts was used
previously (Khishchenko & Charakhch’yan, 2013; Char-
akhch’yan et al., 2013; Charakhch’yan & Khishchenko,
2013) with the EOS model from Khishchenko (2008).
Calculations presented further with taking into account the
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degeneracy of electrons by Eqs. (2.7) and (2.8) did not show
significant differences between the obtained results and the
case of using Eqs. (2.11).
The number of events of reaction (2.2) per unit time and

unit volume is as follows from Afanas’ev et al. (1982):

F = nDnT〈σv〉DT,

where nD and nT are the deuteron and triton number density
respectively, 〈σv〉DT is the ion-temperature dependence of the
reaction rate averaged over Maxwellian distribution of ions
(Brueckner & Jorna, 1973). The burnout of fuel nuclei is de-
scribed by the equation

dnj
dt

= −nj
∂u
∂x

− F, (2.12)

where subscripts j=D and T correspond to the cases of deu-
terium and tritium.
Our model of α-particle heat considers the fuel burnout,

but ignores the change of the density and EOS due to the
change of the plasma composition. The computations for
the model of local heat by α-particles performed previously
(Khishchenko & Charakhch’yan, 2013) show, that the differ-
ence between numerical results of simulations with and with-
out taking into account the change of the plasma composition
turns out insignificant.
Following Lindl (1995); Basko (2009), we introduce the

local burn-up factor

Bloc = nR
nR + nD

,

where the number density of the fusion reaction events nR is
defined by the equation

dnR
dt

= −nR
∂u
∂x

+ F, (2.13)

and by the initial condition nR= 0 at t= 0. Excluding the de-
rivative ∂u/∂x from (2.12) and (2.13), one can obtain the fol-
lowing ordinary differential equation along trajectories of
Lagrangian particles

dBloc

dt
= χB(1− Bloc), (2.14)

where the function χB= F/nD= nT〈σv〉DT is the burn-up
rate. The solution of (2.14) satisfying the initial condition
Bloc= 0 at t= 0 has the form

Bloc(s, t) = 1− exp −
∫t
0

χB(s, t
′)dt′

⎛
⎝

⎞
⎠, (2.15)

where

s(x, t) =
∫x
0

ρ(x′, t)dx′

is the Lagrangian coordinate.
We use two models of α-particle heat. The first one is the

track method (Brueckner & Jorna, 1973; Duderstadt &
Moses, 1982) based on simple physical reasons applying to
a discrete media. The domain of x is divided into cells by a
numerical grid. The number of α-particles per unit cross-
section area which are produced within a grid cell is divided
into several angular groups basing on the uniform directional
distribution of α-particles. The α-particles of one angular
group move along the ray intersecting one or more grid
cells and are decelerated in compliance with the equation

v
dv
dξ

= a(x, v), v(x0) = v0, (2.16)

where v is the α-particle velocity, v0≈ 13 Mm/s is the initial
α-particle velocity, a(x, v) is the deceleration (negative accel-
eration) of α-particles in plasma, x= x0+ ξμ, x0 is the center
position of the grid cell where the group of α-particles is pro-
duced, ξ is the coordinate along the ray, μ is the cosine of the
angle between the x-axis and the ray direction.

The deceleration a(x, v)= ae(Te(x), ρ(x), v)+ ai(Ti(x),
ρ(x), v), where the first term in the right-hand part is related
to electrons (Vygovskii et al., 1990) as well as the second
term—to ions (Sivukhin, 1964). The functions ae(Te, ρ, v)
and ai(Ti, ρ, v) from Gus’kov and Rozanov (1982) were
also used in our simulations and gave close results.

Solution of Eq. (2.16) together with condition v≥ vth(x),
where vth= (3kBTi/mα)

1/2 is the velocity of α-particle ther-
malization, mα is the α-particle mass, enables one to deter-
mine the contributions of the group to the right-hand parts
We and Wi of Eqs. (2.5) and (2.6) for the respective grid
cells (see Appendix).

If plasma is located within a cylinder, the α-particles es-
caping from the cylinder do not contribute to the plasma
heating. The 1D track method enables us to take into account
approximately the above three-dimensional effect. We intro-
duce a length parameter Rα and consider the solution of Eq.
(2.16) along the bounded interval 0≤ ξ≤ ξmax, where

ξmax = Rα(1− μ2)−1/2 (2.17)

corresponds to the intersection point of the ray and the lateral
boundary of the cylinder of the radius Rα, which symmetry
axis coincides with the x-axis.

Let Rα→ 0. Then ξmax→ 0 for all the interval−1≤ μ≤ 1
with the exception of its extreme points μ=±1. The right
parts of Eqs. (2.5) and (2.6), which are integrals along μ,
We→ 0, Wi→ 0, and the ignition is impossible. By increas-
ing Rα, one can determine its value, starting from which the
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burn wave arises, and interpret it as the beam radius neces-
sary for the ignition.
The second model of α-particle heat is based on the kinetic

steady-state equation for the distribution function f (x, v, μ)
in Fokker–Plank approximation. If all of the produced
α-particles have the same initial velocity v0, and the diffusion
of the function f (x, v, μ) in the velocity space can be ignored,
the known Cauchy problem for the kinetic homogeneous
equation arises (Gus’kov & Rozanov, 1982):

μv
∂f
∂x

+ ∂af
∂v

= 0, vth(x) ≤ v ≤ v0,

f (x, v0, μ) = − F̃(x, μ)
a(x, v0)

,

(2.18)

where F̃(x, μ) is the distribution function upon μ of the pro-
duction rate of α-particles in a unit volume near the point x.
Since

∫1
−1

F̃(x, μ)dμ = F(x),

for isotropic distribution of produced α-particles,
F̃(x, μ) = F(x)/2.
The right-hand parts of Eqs. (2.5) and (2.6) have the form

We,i(x) = −mα

∫1
−1

∫v0
vth(x)

f (x, v, μ)ae,i(x, v)vdvdμ.

As shown in Appendix, a minor modification of the track
method is a numerical method for the Cauchy problem
(2.18). The quasi-1D model is similar to that described
above for the track method.
The intensity of a monoenergetic proton beam is deter-

mined by the proton velocity v as J= npvmpv
2/2, where np

is the proton number density, mp is the proton mass. Protons
are supposed to be decelerated in the plasma according to Eq.
(2.16) for μ=−1 and x0= xb. The value of np is determined
by given values of the initial proton velocity and the boun-
dary beam intensity Jb(t). Assuming that np is independent
of x, the function J(x) is determined by the solution of Eq.
(2.16) v(x). The right-hand parts of Eqs. (2.5) and (2.6) are

De = ae
ae + ai

∂J
∂x

, Di = ai
ae + ai

∂J
∂x

.

Self-radiation of plasma is described by the steady-state
transfer equation in the diffusion approximation by solid
angle (Zel’dovich & Raizer, 1967). Similarly to Marchuk
et al. (2009), we take into account the cooling of electrons
by the inverse Compton effect using the known approximate
formula (Zel’dovich, 1975; Basko, 2009). Resulting

equations are as follows,

∂qn
∂x

= κ(Bn(Te)− un),
∂un
∂x

= −3κqn, (2.19)

where n is the frequency, Bn(Te) is the Planck function, κ=
κ(ρ, Te, n) is the absorption coefficient with accounting for
the induced emission. The term in the right-hand part of
Eq. (2.5) has the form

R = − ∂Q
∂x

− 4σTneU
mec2

kB(Te − Tr), (2.20)

where

Q =
∫∞
0

qndn, U =
∫∞
0

undn,

ne= zni is the electron number density, me is the electron
mass, c is the speed of light, σT is the Thomson scattering
cross-section of photons by free electrons, Tr is the photon
temperature determined by the equality

∫∞
0

Bn(Tr)dn = U.

Numerical method for the simulations is based on splitting
into physical processes. The Godunov first order accurate
method in Lagrangian variables (Godunov, 1959) is used
for the hydrodynamics equations. For the heat conduction
and the energy exchange between electrons and ions, the im-
plicit over time method is used. The uniform Lagrangian grid
contains from 350 to 700 nodes. Number of angular groups
in the track method varies from 12 to 24. The results of cal-
culations vary insignificantly when changing to double the
number of grid points and angular groups.
The grid on the frequency n for solving of Eqs. (2.19)

occupies the range from 4 to 8 decimal exponents. Number
of grid nodes per a decimal exponent varies from 5 to 20.
The integration with respect to the frequency in Eq. (2.20)
is performed by the trapezium method.

3. IGNITION

Let us consider the initial stage of the target ignition, which is
limited to the proton beam duration, t≤ τpb. Suppose the
heating by the proton beam is so fast that the motion of the
fuel and its density change can be ignored. Such kind of heat-
ing will be referred to as isochoric. If the thermonuclear reac-
tion and the plasma self-radiation are also ignored, the sum of
Eqs. (2.5) and (2.6) takes the form

ρ0
∂ε(x, t)

∂t
= ∂(J + qe + qi)

∂x
, qe = ϰe

∂Te
∂x

, qi = ϰi
∂Ti
∂x

,
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ε= εe+ εi. Integrating this equation with respect to time t
from 0 to τpb and with respect to the spatial coordinate x
from H− lp to H, where lp is the mean free-path length of
protons, setting the heat fluxes qe= qi= 0 at the boundaries
of the integration with respect to x and ignoring the initial
energy of the fuel, obtain

�ε = 1
lp

∫H
H−lp

ε(x, τ pb)dx = I

ρ0lp
, I =

∫τ pb
0

J(t′)dt′, (3.1)

where �ε is the average specific internal energy of plasma in
the heating region at t= τpb, I is the beam energy per unit
cross-sectional area. Since the dependence of the proton de-
celeration in plasma a on the density is close to the linear one,
the free-path length of protons lp∼ ρ0

−1. Therefore the aver-
aged internal energy �ε is independent of ρ0 and is determined
by only the beam energy I and by the initial proton energy
(1 MeV) which determines the free-path length.
Epithermal protons give up the greater part of their energy

to electrons, while ions are heated by both epithermal protons
and more hot electrons. For the given beam energy I, the ion
temperature at t= τpb increases both with increasing τpb and
with increasing ρ0 because the relaxation time of the electron
and ion temperatures τT∼ ρ−1. If the electron temperature at
t= τpb is much greater than the ion temperature, the latter can
be sufficient for the ignition after stopping the action of the
proton beam at t> τpb.
The isochoric heating violation is connected with the rar-

efaction wave moving at the speed of sound from the free
boundary into the target, and with the shock wave, arising
due to the rapid growth of pressure in the heating region.
As the condition of the isochoric heating violation, we take
the inequality csτpb> lp, where cs is the speed of sound.
Since lp∼ ρ0

−1, with increasing ρ0 one should decrease the
beam duration τpb to keep close to the isochoric heating,
which, as it follows from Eq. (3.1), needs the appropriate in-
crease in the beam intensity J0 to conserve the average inter-
nal energy in the heating region.
The ion temperature and the mass velocity profiles by the

Lagrangian variable with respect to the free boundary s− sb
at the time t= τpb for the beams of the same energy and dif-
ferent durations τpb= 50 and 100 ps, as well as for the two
values of the initial density ρ0= 25ρs and 100ρs are present-
ed in Figure 2. The parameter Rα limiting the trajectory of
α-particles is selected near the ignition boundary of the
target by at least one of the beams (Rα= 0.4 and 0.1 mm
for ρ0= 25ρs and 100ρs respectively).
First, we examine the case of ρ0= 25ρs (see Figs. 2a

and 2c).
At τpb= 50 ps, as follows from the corresponding velocity

profile (the solid line in Fig. 2c), the heating is almost iso-
choric: the formation of the shock wave has not started yet,
and the rarefaction wave occupies only a small part of the
heating region. Although the ion temperature (the solid line

in Fig. 2a) is relatively small, its subsequent growth due to
heating by more hot electrons leads to the target ignition.

With increasing the duration τpb up to 500 ps, the proton
beam heating is no longer isochoric. As seen in the velocity
profile (the dashed line in Fig. 2c), a continuous compression
wave is formed inside the heating region. Then this wave
should transform into a shock wave. A rarefaction wave ad-
joins the compression one, which in the absence of heat by
α-particles should lead to a rapid drop in the amplitude of
the shock wave. However, the ion temperature (dashed line
in Fig. 2a) is sufficient to ignite the target. Analysis of the
calculation results shows that a significant heating of the
plasma by α-particles takes place in the field of the compres-
sion wave in Figure 2c. As a result, the compression wave is
rapidly converted to the detonation wave of the well-known
type (Landau & Lifshitz, 1987) with a rarefaction wave,
which is adjacent to the detonation wave front.

We now turn to the case ρ0= 100ρs (see Figs. 2b and 2d).
When τpb= 50 ps, the ion temperature (the solid line in
Fig. 2b) is much greater than in the case of the same beam
and ρ0= 25ρs due to the decrease of the temperature relaxa-
tion time τT∼ ρ−1. As can be seen from the velocity profile
(the solid line in Fig. 2d), the shock wave begins to form, and
the rarefaction wave takes until a small portion of the heating
region. The ignition mechanism for these parameters will be
discussed below.

For the beam with τpb= 500 ps, the target does not ignite.
As can be seen from the velocity profile (dashed line in
Fig. 2d), the shock wave at t= τpb is too far away from the
heating region and no longer can transform into a detonation
wave. After some time, the rarefaction wave overtakes the
shock front and starts to reduce its amplitude. Calculations
show that for the fuel density ρ0= 103ρs, a similar flow pat-
tern without the target ignition occurs for the beam with
τpb= 50 ps.

The aforementioned lack of the ignition by the beam with
the intensity of 1018 W/cm2 for the fuel density ρ0=
100ρs≈ 22 g/cm3, and the ignition by the beam with the in-
tensity of 1019 W/cm2 for the same density, as well as the
lack of the ignition by this beam for the fuel density ρ0≈
220 g/cm3, correspond to the density dependence of the
minimum beam intensity required for ignition (Atzeni,
1999) based on results of two-dimensional calculations,
which gives a value of approximately 6 × 1018 W/cm2

for ρ0= 22 g/cm3 and about 5 × 1019 W/cm2 for ρ0=
220 g/cm3.

Results of calculations for a target with ρ0= 100ρs, Rα=
0.1 mm, and for the beam with τpb= 50 ps, J0= 1019 W/
cm2 are presented below. Consider first the case of the fuel
layer half-width H= 0.5 mm, which corresponds to the
value of the parameter Hρ0≈ 1 g/cm2.

Figure 3 shows the ignition process of the target. The func-
tions Te(x), Ti(x), ρ(x), u(x) and the burn-up rate χB(x), which
determines the local burn-up factor Bloc by Eq. (2.15), are
given at the termination of the beam 50 ps and three subse-
quent times 100, 150 and 200 ps. A small discontinuity in
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the function χB(x) is caused by the discontinuity in the ap-
proximation formula for 〈σv〉DT(Ti) from Brueckner and
Jorna (1973).
At t= 50 ps, the maximal ion temperature is about 100

MK, which is sufficient for the ignition. The shock wave
has not yet formed, and the burning wave, which can be iden-
tified with behavior of the function χB(x), is continuous. At
t= 100 ps, the shock wave is formed, and the burning
wave is a little behind it and still continuous. At t= 150
ps, the burning wave has caught up with the shock wave

and transformed it into the detonation one. Comparing func-
tions Ti(x) and χB(x) at t= 150 and 200 ps, one can see that
the temperature and the burn-up rate at the detonation wave
front quickly grow with time. Before the detonation wave
one can see a precursor caused by electron heat conduction
and α-particles (near the wave front) and by the self-radiation
of high-temperature plasma (at large distances from the
front).
To conclude this section, we present the numerical results

for the target with the initial density ρ0= 100ρs at different

Fig. 2. The ion temperature (a, b) and the mass velocity (c, d) as functions of the Lagrangian variable with respect to the free boundary
s− sb at t= τpb: ρ0= 25ρs, Rα= 0.4 mm (a, c) and ρ0= 100ρs, Rα= 0.1 mm (b, d) for different beams of the same energy, J0= 1019

W/cm2, τpb= 50 ps (solid lines) and J0= 1018 W/cm2, τpb= 500 ps (dashed lines).

Fig. 3. The temperature (a, the solid lines correspond to ions, the dashed lines—to electrons), the burn-up rate (b), the density (c) and the
mass velocity (d) spatial profiles in the formation of the detonation wave at t= 50 (1), 100 (2), 150 (3), and 200 ps (4) for the target with
ρ0= 100ρs, Rα= 0.1 mm, H= 0.5 mm and for the beam with τpb= 50 ps.
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values of Rα, those limiting trajectory of α-particles, and for
different models of α-particle transport: the Fokker–Plank
equation and the track method. Table 1 shows the values of
the burn-up factor for targets with two values of H= 0.5
(B0) and 2.5 mm (B1). These values correspond to a suffi-
ciently late point in time, when their significant growth
ceases. Zero values B0 and B1 means that their value is less
than 0.01, and are interpreted as a lack of ignition.
At Rα= 0.15 mm, the factors B0 and B1 are the same for

both models, and slightly differ from respective values at
Rα= 0.1 mm. At Rα= 0.05 mm, the Fokker–Plank equation
still leads to the ignition of the target with somewhat smaller
values of B0 and B1 compared with the case of Rα= 0.1 mm,
and in the case of the track method B1= 0. This means that
the detonation wave is not formed for H= 2.5 mm since the
shock wave at large distances is extinguished by the rarefac-
tion wave. If the symmetry plane is located close enough to
the edge of the target (H= 0.5 mm), the shock wave at the
moment of reflection is strong enough to ignite the target,
creating a reflected detonation wave. At Rα= 0.03 mm, the
ignition is possible only if H= 0.5 mm with small values
of B0. At Rα= 0.01 mm the ignition is absent. To estimate
the energy of ignition, we set Rα= 0.1 mm, wherein the reli-
able ignition occurs in both models.

4. REFLECTION OF DETONATION WAVE

In the case of H= 0.5 mm, reflection of the detonation wave
from the symmetry plane x= 0 is shown in Figure 4. The
functions Ti(x), ρ(x), u(x) and the local burn-up factor Bloc(x)
are presented in the six time points. The first two points (200
and 250 ps) meet the detonation wave before its reflection
from the symmetry plane. Note the relatively small values
of the local burn-up factor (about 0.05). Pay attention to
the velocity profile at t= 250 ps (curve 2 in Fig. 4d). One
can see that the precursor of the detonation wave transforms
into a flow with a linear velocity profile between the wave
and the symmetry plane. Such flows, which are characterized
by the dependence

u(x, t) = φ(t)x, (4.1)

are well known in hydrodynamics (Sedov, 1972) and com-
bined into a large family of solutions, each member of that
is determined by an arbitrary function of one argument and
three arbitrary constants. For all of these solutions, the fol-
lowing formula takes place

ρ(s, t) = ρ(s, t1) exp −
∫t
t1

φ(t′)dt′

⎛
⎜⎝

⎞
⎟⎠, (4.2)

which is obtained by integrating an ordinary differential
equation arising under the substitution (4.1) to the
equation of discontinuity (2.3). In the case under consider-
ation, since φ(t)< 0, the density in the region of the
precursor and, in particular, in the symmetry plane, grows
with time.

The last four points of time in Figure 4 (300, 350, 400, and
450 ps) give the flow pattern after reflection of the detonation
wave. One can see that the flow with a linear velocity profile
arises again between the reflected detonation wave and the
symmetry plane. Its special feature is the proximity of the
thermodynamic functions to the constant upon x value,
which depends on time. The local burn-up factor increases
significantly after reflection of the detonation wave and con-
tinues to grow because the burn-up rate χB(x,t) decreases with
time slowly enough, remaining almost constant function of x.
Note that the spatial homogeneity of the thermodynamic
functions after the reflected wave front is not typical for the
solutions of the equations of hydrodynamics in the case of
spherical or cylindrical geometry. For example, a well-
known solution on the problem of a converging spherical
shock wave (Guderley, 1942; Stanyukovich, 1955), extended
through time after the shock wave collapse, has zero density
at the point of symmetry (Goldman, 1973).

Solution of the equations of hydrodynamics with a linear
velocity profile and constant on x values of thermodynamic
functions is contained in the above-mentioned family from
Sedov (1972). It also can be obtained directly from the equa-
tion of motion (2.4). Putting in Eq. (2.4) ∂p/∂x= 0 and sub-
stituting the velocity in the form (4.1), we obtain an ordinary
differential equation φ̇+ φ2 = 0, whose solution has the
form

φ(t) = 1
C + t

, (4.3)

where C is an arbitrary constant. Substituting (4.3) to Eq.
(4.2), we obtain

ρ(t) = ρ0C

C + t
= ρ0Cφ(t), (4.4)

where constant ρ0 is chosen so that ρ(0)= ρ0.
Since the density ρ is independent of the spatial coordinate

x, the velocity has a linear profile along the Lagrangian coor-
dinate s= ρx, the slope of which, as follows from Eqs. (4.1),

Table 1. The burn-up factors for the targets with ρ0= 100ρs, H=
0.5 (B0) and 2.5 mm (B1), for different values of the parameter Rα

and different models of α-particle transport: the Fokker–Plank
equation (FP) and the track method (TM)

Rα,
FP TM

mm B0 B1 B0 B1

0.15 0.36 0.73 0.36 0.73
0.1 0.32 0.72 0.32 0.71
0.05 0.24 0.67 0.25 0
0.03 0.17 0 0.05 0
0.01 0 0 0 0
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(4.3), and (4.4), u/s= (ρ0C )−1, is independent of time.
Shown in Figure 5 velocity profiles along the Lagrangian
coordinate indicate that this property is satisfied with good
accuracy for the problem in the region between the symmetry
plane and the reflected detonation wave.
Using the simulation results, one can determine the ap-

proximate value of constant C in Eq. (4.3). It is convenient
to substitute time �t = t − t∗ for t in Eqs. (4.3) and (4.4),
where t∗ is the time point of appearance of the reflected det-
onation wave. Note that the density on the symmetry plane as
a function of time ρ(0, t) increases as the incident detonation
wave approaches to the symmetry plane, and begins to de-
crease in accordance with Eq. (4.4) after appearance of the
reflected wave. It is therefore natural to define the time of for-
mation of the reflected wave t∗ and constant ρ0 in Eq. (4.4) by
the condition maxt(ρ(0, t))= ρ(0, t∗) = ρ0. The result is ρ0≈
80 g/cm3, t∗ ≈ 270 ps.
The calculation results are compared with Eqs. (4.3) and

(4.4) for the four time points shown in Figure 4 after reflec-
tion of the detonation wave, t= 300, 350, 400, and 450 ps.
As the slope φ and density ρ for each time, the values at

the point x approximately two times less than the coordinate
of the front of the reflected detonation wave are selected. We
denote by �φ and �ρ the corresponding values included in Eqs.
(4.3) and (4.4). At first, we put �φ = φ and calculate C from
Eq. (4.3), then �ρ by Eq. (4.4) and the relative error of calcu-
lating the density δρ = |1− �ρ/ρ|. The results of calculations
are shown in the first three columns of Table 2. For the first
three values of t, constant C varies within 10% and the error
δρ is within 6%. At the last time point t= 450 ps, constant C
changes by about 10% more, and the error δρ grows to 14%.
Nevertheless, it is possible to select a single value of constant
C for all four points of time and get a relatively small magni-
tude errors δφ = |1− �φ/φ| and δρ. Such a possibility is
demonstrated in the last two columns of Table 2, where the
values of these errors are presented for C= 40 ps. It can be
seen that both errors are within 3%.
Let us consider now the target with the layer half-thickness

H= 2.5 mm, which corresponds to the value of the parame-
ter Hρ0≈ 5 g/cm2. Figure 6 shows the ion temperature, the
density, the mass velocity, and the local burn-up factor as
functions of x at eight points of time. The first four points

Fig 4. The spatial profiles of the ion temperature (a), the local burn-up factor (b), the density (c) and the mass velocity (d) in reflection of
the detonation wave at points of time 200 (1), 250 (2), 300 (3), 350 (4), 400 (5), and 450 ps (6) for the parameters of the problem, as shown
in Figure 3.

Fig. 5. Mass velocity profiles along the Lagrangian coordinate after reflec-
tion of the detonation wave for the same parameters of the problem and the
time points as in Figure 4.

Table 2. Comparison of simulated values of φ and ρ with the
analytical Eqs. (4.3) and (4.4): the value of C from Eq. (4.3) as well
as the relative error δρ for the given value φ and the relative errors
δρ40 and δφ40 for C= 40 ps at some points of time t

t, ps C, ps δρ δρ40 δφ40

300 41.6 0.02 0.03 0.02
350 39.8 0.03 0.02 0.001
400 37.6 0.06 0.02 0.01
450 33.2 0.14 0.003 0.03
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give a picture of the flow before the detonation wave reflec-
tion from the symmetry plane. Detonation wave intensity in-
creases with time, as can be seen from the profiles of the ion
temperature and the mass velocity, reaching values of the
order of 700 MK and 2 Mm/s at the instant of reflection.
Such a high velocity in the incident detonation wave at the
reflection leads to the ion temperature after reflection of
about 1.3 GK (see curve 5 in Fig. 6a). Further, as in the
above case H= 0.5 mm, the flow with a linear velocity pro-
file and the weak dependence of the thermodynamic func-
tions upon x arises between the reflected detonation wave
and the symmetry plane.
Note the rapid rise of the local burn-up factor after

reflection of the detonation wave as close to the symmetry
plane as in the periphery. At the last instant shown in Figure 6,
the local burn-up factor in the region 0≤ x≤ 3.5 mm,
containing about 80% of the fuel mass, varies from about
0.7 to 0.6.
The burn-up factor B(t) is presented in Figure 7 for the two

above values of H. The point of reflection of the detonation
wave t= t∗ is indicated. One can see that the expansion stage
t> t∗ gives the main contribution to the final value of the
factor in the case of H= 0.5 mm. For H= 2.5 mm the
burn-up factor increases from 0.4 to 0.7 at the expansion
stage.

5. INTEGRATED CHARACTERISTICS

Generalized characteristics of the target for three values of
the initial density ρ0= 5ρs, 25ρs, and 100ρs are shown in
Table 3. For ρ0= 100ρs, the characteristics are obtained by
the results of the above calculations with the parameter
Rα= 0.1 mm. For other values of ρ0, the parameter Rα is

chosen from the condition ρ0Rα= const. For each value of
ρ0 two values of the layer half-width H, corresponding
to the two given values of the parameter Hρ0≈ 1 and 5 g/
cm2, are chosen. Interpreting the parameter Rα as the radius
of the cylindrical target, shown in Figure 1, one can define
the target ignition energy Eig= πRα

2I(∞) and the mass M=
2HπRα

2ρ0. These values are given in the table together with
the values of the gain with respect to the energy of neutrons
and the burn-up factor after the burning process.

Fig. 6. Spatial profiles of the ion temperature (a), the local burn-up factor (b), the density (c) an the mass velocity (d) at the time points 0.2
(1), 0.4 (2), 0.6 (3), 0.8 (4), 1 (5), 1.2 (6), 1.4 (7) and 1.8 ns (8), corresponding to the incident (1–4) and the reflected (5–8) detonation
waves for H= 2.5 mm (another parameters of the problem are the same as in Fig. 3).

Fig. 7. The time dependence of the burn-up factor for H= 0.5 (1) and
2.5 mm (2) (another parameters of the problem are the same as in Fig. 3);
asterisks denote the instant of the detonation wave reflection.
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As in the case of the well-known approximate formula for
the expansion of a spherical target (Basko, 2009), the
burn-up factor B, as well as the gain G, are determined by
the parameter Hρ0. If Hρ0≈ 1 g/cm2, B≈ 0.3, G≈ 200. If
Hρ0≈ 5 g/cm2, the burn-up factor increases by more than
a factor of two, which, together with the increase in the
fuel mass five times, gives the gain G> 2000.
Since the parameter Rα, determined by the condition

Rαρ0= const, provides the target ignition, the ignition
energy decreases with increasing ρ0 under the law Eig∼
ρ0
−2 in accordance with the known theoretical estimate
(Tabak et al., 1994). For ρ0= 100ρs≈ 22 g/cm3, the igni-
tion energy Eig= 160 kJ.

6. CONCLUSIONS

Computational experiments with two proton beams of the
same energy and different intensities show that the beam in-
tensity required for the ignition increases with the initial fuel
density in accordance with a known formula, obtained by re-
sults of two-dimensional calculations.
If the target is ignited, a detonation wave, which is adja-

cent to the front of the rarefaction wave, occurs. The forma-
tion of the detonation wave precedes a short time interval
with a shock wave that goes ahead of a slow combustion
wave. When the combustion front overtakes the shock
wave, the latter transforms into the detonation wave.
There is no ignition if the distance between the shock

front and the region of the fuel heating by protons is too
large at the end of irradiation. Over time, the rarefaction
wave overtakes the shock front and reduces the intensity of
the shock wave.
For small values of Rα, limiting trajectories of α-particles,

and small target thickness (Hρ0≈ 1 g/cm2), the target igni-
tion is possible after the shock wave reflection from the sym-
metry plane. With increasing H, starting from a certain value,
the target ceases to ignite due to the aforementioned decrease
in the intensity of the shock wave that is overtaken by the rar-
efaction wave.
Upon reflection of the detonation wave from the symmetry

plane, the flow with the linear velocity profile along the spa-
tial variable x and with a weak dependence of the thermody-
namic functions upon x, close to one of the representatives of
a certain family of solutions of hydrodynamic equations,
occurs between this plane and the reflected detonation

wave. Combustion efficiency at this stage is largely due to
the spatial homogeneity of the burn-up rate (the product of
the DT reaction rate and the triton number density) whose in-
tegral along the trajectory of a Lagrangian particle defines the
local burn-up factor.
Solution of the equations of hydrodynamics with a linear

velocity profile and constant in x values of thermodynamic
functions is found analytically up to an arbitrary constant.
The possibility to choose this constant so that the solution de-
scribes with good accuracy the change in the density with
time after reflection of the detonation wave is shown.
For the parameter Hρ0≈ 1 g/cm2, the main contribution

to the final value of the burn-up factor B≈ 0.3 is given by
the expansion stage after reflection of the detonation wave.
For Hρ0≈ 5 g/cm2, the burn-up factor is increased by the
expansion stage from 0.4 to 0.7. At Hρ0≈ 1 g/cm2, the
gain with respect to the energy of neutrons G≈ 200. At
Hρ0≈ 5 g/cm2, the burn-up factor increases by more than
a factor of two, which, together with the increase in the
fuel mass five times, gives the gain G> 2000. The above
values of the burn-up factor and the gain should be consid-
ered as the maximum possible values for the real cylindrical
target of the same initial density and length.
The quasi-1D model, limiting trajectories of α-particles by

a cylinder of a given radius, reproduces known theoretical de-
pendence of the ignition energy Eig∼ ρ0

−2. For ρ0= 100ρs≈
22 g/cm3, the quasi-1D model gives Eig= 160 kJ.
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APPENDIX: TRACK METHOD OF PLASMA
HEATING BY CHARGED PRODUCTS OF A
THERMONUCLEAR REACTION AND KINETIC
FOKKER–PLANK EQUATION

We limit our consideration by plane 1D flows for which all of
the plasma parameters depend upon only one space variable
x. Without loss of generality, the domain 0≤ x≤ 1 can be

Table 3. The ignition energy for one proton beam Eig, the target mass M, the burn-up factor B and the gain G for three values of ρ0, the
cylinder radius Rα∼ρ0

−1 and different values of the layer half-width H determined by two given values of the parameter Hρ0

ρ0/ρs Rα, Eig,
Hρ0≈1 g/cm2 Hρ0≈5 g/cm2

mm MJ H, mm M, mg B G H, mm M, mg B G

5 2 62 10 275 0.34 200 50 1400 0.68 2000
25 0.4 2.5 2 11 0.33 200 10 55 0.68 2000
100 0.1 0.16 0.5 0.7 0.34 200 2.5 3.4 0.73 2200
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considered. The charged products of a thermonuclear reac-
tion will be referred to as particles. The deceleration
a(x, v)< 0, the number of the reaction events per unit time
and unit volume F(x) and the velocity of particle thermaliza-
tion vth(x) are supposed to be given.
To simplify calculations, at first we consider the problem

without particles entering the domain. At the end of the sec-
tion, we present the modification of the method for the con-
dition of completely elastic reflection of particles from one of
the boundaries, which simulates the symmetry condition at
this boundary.
Consider the track method (Brueckner & Jorna, 1973; Du-

derstadt & Moses, 1982) based on simple physical reasons
applied to a discrete media. F(x0) particles with the same
magnitude of velocity v0 are produced in unit volume per
unit time at the point x0. The particles move in straight rays
in all directions, which of them is given by the cosine μ of
the angle between the ray direction and the axis x, −1≤
μ≤ 1. Consider the particle velocity v(ξ, x0, μ) determined
by the Cauchy problem

v
∂v
∂ξ

= a(x, v), x = x0 + ξμ, v(0, x0, μ) = v0, (A1)

where ξ is the coordinate along the ray. Since a< 0, the par-
ticle velocity decreases. The maximal value of ξ for given x0
and μ is determined by the conditions

0 ≤ x0 + ξmaxμ ≤ 1, v(ξmax, x0, μ) = vth(x0 + ξmaxμ). (A2)

Let the grid xl, l= 1, 2, …, N+ 1, x1= 0, xN+1= 1 divides
the coordinate x into the cells of the size Δxl= xl+1− xl, l=
1, 2, …, N. For definiteness, assume the plasma parameters
are defined at the centers of the cells �xl = 0.5(xl + xl+1).
Number of particles produced in the cell j with unit cross-

section area per unit time, σj = F(�xj )Δxj. The particles are
divided into M angular groups with the constant step of μ,
Δμ= 2/M, basing on the isotropic angular distribution of
particles (σjΔμ/2 particles in the group). All particles of
one group m produced in the cell j move along the straight
ray with μ= μm=−1+ (m− 0.5)Δμ and are decelerated in
compliance with Eq. (A1) with x0 = �xj. We restrict our con-
sideration by the case of even values of M, for which μm≠ 0
at any m.
Let the particles of a certain angular group produced in the

cell j traverse the cell k of dimensionΔxk. If k= j, the boundary
condition for Eq. (A1) is given at the cell center, v= v0. Oth-
erwise, the boundary condition is given at one of the points
xk or xk+1 with a smaller value of ξ, v= vb0, where the velocity
vb0 has been obtained from computation of the previous cell. In
the most simple variant of the method, which is considered in
the present paper, the function a(x, v) within the cell supposes
to be of constant value ak = a(�xk , vb), where vb= vb0 at k≠ j
and vb= v0 at k= j. The velocity ve at the point with the
greater value of ξ is determined by the Cauchy problem

(A1) and the thermalization condition ve ≥ vkth = vth(�xk )

ṽ2e = v2b + 2akΔξ, ve = max (vkth, ṽe),

where Δξ= Δξk= Δxk/|μm| at k≠ j and Δξ= Δξk/2 at k= j.
If particles are thermalized ṽe ≤ vkth, computation of the given
angular group is terminated.

The energy transferred by particles of the angular group m
produced in the cell j to unit volume of the cell k in unit time

ψkjm = mpσjΔμ

2Δxk

v2b − v2e
2

=

= mpσjΔμ

4|μm|Δξk
min (−2akΔξk , v

2
b0 − (vkth)

2
, k = j,

min (−akΔξk , v
2
0 − (vkth)

2
, k = j,

{
(A3)

where mp is the particle mass. The total energy transferred to
unit volume of the cell k in unit time

wk =
∑M
m=1

∑k+Δk

j=k

ψkjm, (A4)

where k+ Δk is the number of the cell in which the particles
of group m, those are thermalized in the cell k, were pro-
duced. The sign of Δk depends of the sign of μm: Δk≤ 0 at
μm> 0 and Δk≥ 0 at μm< 0. The evident restriction on Δk
is 1≤ k+ Δk≤ N. To compute the sum (A4), the terms
ψkjm are computed step-by-step for all of the cells 1≤ j≤
N and the angular groups 1≤m≤M.

To study connection between the track method and the ki-
netic steady-state equation in Fokker–Plank approximation
(Gus’kov & Rozanov, 1982), it is necessary to formulate
the track method in terms of the mathematical physics
rather than algebraic equations, i.e. to find the limit of wk

at h=max(Δxl), Δμ→ 0.
Let, to begin with h→ 0. Then, the number of terms in the

internal sum of Eq. (A4) tends to infinity. Therefore, one can
reject the first term with j= k and the last term with j= k+
Δk. As a result, the internal sum in Eq. (A4) takes the form

Ψkm = −mpΔμ

2|μm|
∑k+Δk−sign(Δk)

j=k+sign(Δk)

a(�xk , vb0)F(�xj )Δxj. (A5)

Denote x = limh�0 �xk, x0 = limh�0 �xj. As long as limh→0xk
= limh→0 xk+1= x, limh→0vb0= v(ξ, x0, μm), ξ= (x− x0)/
μm, where v(ξ, x0, μm) is the solution of the Cauchy problem
(A1). As a result, obtain

lim
h�0

Ψkm = Ψ(x, μm) =

= mpΔμ

2μm

∫x+Δx

x

a(v(ξ, x0, μm), x)F(x0)dx0, (A6)
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where Δx is determined by thermalization condition at the
point x for particles of group m produced at the point x+ Δx:

v(− Δx/μm, x+ Δx, μm) = vth(x). (A7)

Disappearance of the modulus sign for μm under conver-
sion from the sum (A5) to the integral (A6) is due to that
the sum (A5) conserves its sign at changing the sign of Δk,
while the integral (A6) changes its sign at changing the
sign of Δx.
At μm→ 0, the function Ψ(x, μm) remains finite though μm

is in the denominator of the function. We limit our proof by
the simplest case a= const. Then the condition (A7) and the
Cauchy problem (A1) give Δx= μm(v0

2− vth
2 (x))/(2a), from

which

Ψ(x, 0) = mpΔμF(x)(v20 − v2th(x))
4

.

Finally, the required limit, which is the rate of energy
transfer to unit volume of plasma at the point x, is as follows:

W(x) = lim
h,Δμ�0

wk =

= mp

2

∫1
−1

∫x+Δx

x

a(x, v(ξ, x0, μ))F(x0)
μ

dx0dμ, (A8)

where v(ξ, x0, μ) is the solution of the Cauchy problem (A1),
Δx is determined by the condition (A7).
Now we consider the kinetic steady-state equation for the

distribution function f (x, v, μ) in the Fokker–Plank approxi-
mation. If all of the produced particles have the same initial
velocity v0 and the isotropic angular distribution, as well as
the diffusion of the function f (x, v, μ) in the velocity space
can be ignored, the considered equation reduces to the fol-
lowing Cauchy problem for the kinetic homogeneous equa-
tion (Gus’kov & Rozanov, 1982)

μv
∂f
∂x

+ ∂af
∂v

= 0, vth(x) ≤ v ≤ v0,

f (x, v0, μ) = − F(x, μ)
2a(x, v0)

.

(A9)

The rate of energy transfer to unit volume of plasma at the
point x has the form

WFP(x) =
∫1
−1

ΨFP(x, μ)dμ,

ΨFP(x, μ) = −mp

∫v0
vth(x)

f (x, v, μ)a(x, v)vdv.

(A10)

Instead of the velocity v, we introduce the variable η= v2/2,
setting f= f (x, η, μ), a= a(x, η), η0= v0

2/2, ηth(x)= vth(x)
2/

2. Then the function ΨFP from Eq. (A10) takes the form

ΨFP(x, μ) = −mp

∫η0
ηth(x)

f (x, η, μ)a(x, η)dη. (A11)

Using the change of variable x= x0+ ξμ, we introduce the
new independent variable ξ and the parameter x0, which
sense will be specified below. Equation (A9) takes the form

∂f
∂ξ

+ a
∂f
∂η

+ f aη = 0, f = f (x0 + ξμ, η, μ). (A12)

Its characteristics are determined by the differential equa-
tion dη= adξ and have the form of the one-parameter family

η(ξ, x0, μ) = η0 +
∫ξ
0

a(x0 + ξ′μ, η(ξ′, x0, μ))dξ
′
. (A13)

where the parameter x0 defines the characteristic that pass
through the point (x0, η0). Note, that the above family rewrit-
ten in another notations coincides with the family of solu-
tions of the Cauchy problem (A1).
Along the characteristics (A13), equation (A12) and the

boundary condition from the Cauchy problem (A9) take
the form

df
dξ

+ f aη = 0, f = f (x0 + ξμ, η(ξ, x0, μ), μ),

f (x0, η0, μ) = − F(x0)
2a(x0, η0)

,

that gives

f (x0 + ξμ, η(ξ, x0, μ), μ) = −F(x0)χ(ξ, x0, μ)
2a(x0, η0)

,

χ(ξ, x0, μ) = exp −
∫ξ
0

aη(x0 + ξ′μ, η(ξ′, x0, μ))dξ
′

⎛
⎝

⎞
⎠. (A14)

In Eq. (A11), the integration over η is replaced by the in-
tegration over x0 connected with η by Eq. (A13) and by the
relation x= x0+ ξμ= const. To simplify calculations, the re-
lation between the differentials dη and dx0 can be found by
going from the variable ξ to the variable x in Eq. (A13),
taking the differential of Eq. (A13) and setting dx= 0. As
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a result, we obtain

dη = − a(x0, η0)
μ

dx0. (A15)

The limits of integration η0 and ηth(x) are changed to x and
x+ Δx respectively, where Δx is determined by the condition
η(−Δx/μ, x+ Δx, μ)= ηth(x) similar to the condition (A7) in
the track method. By replacing the limits in Eq. (A11) and
using Eqs. (A14) and (A15), we obtain

ΨFP(x, μ) = mp

2

∫x+Δx

x

F(x0)χ(ξ, x0, μ)a(x, η(ξ, x0, μ))
μ

dx0. (A16)

One can see that the inverse change of variable η by variable
v in Eq. (A16) and the substitution (A16) into (A10) give the
function WFP(x) differed from the function (A8) in the track
method by only the multiplier χ(ξ, x0, μ), which is defined by
Eq. (A14). Therefore, the track method described at the be-
ginning of the section for finite numbers of the grid cells
on x and the angular groups on μ can be used as the numerical
method for the problem (A9), (A10) with the additional com-
putation of the function χ(ξ, x0, μ) along the every trajectory
of particles.
To compute the rate of the energy transfer to unit of

plasma volume separately for electrons and ions, the deceler-
ations of particles by plasma components ae(x, v) or ai(x, v)
should be used in Eq. (A3) instead of a(x, v).
If one of the boundaries, x= 0, for example, is the symme-

try plane, the condition of symmetrical reflection of the par-
ticle trajectory from the boundary at μ< 0

x = x0 + ξμ, ξ ≤ ξ∗ = −x0/μ,
−(ξ− ξ∗)μ, ξ> ξ∗,

{

is added to the problem (A1), and the condition x0+ ξmaxμ≥
0, that determines maximal ξ value, is removed from the con-
ditions (A2).
In the case of the quasi-1D model, the condition (2.17) is

added to the conditions (A2).
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