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SNOW-CRYSTAL GROWTH WITH VARYING SURFACE
TEMPERATURES AND RADIATION PENETRATION
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ABSTRACT. The temperature field is derived for a
sinusoidally varying surface temperature with varying solar
radiation penetration. The growth rates of snow crystals are
calculated to explain the rapidly growing layers of faceted
crystals (i.e. depth hoar) that form just below the surface
at high altitudes and in polar snow. The solutions also show
that a layer of wet snow can exist just below the surface
even on days when the surface temperature remains
sub-freezing.

explain the rapid growth of crystals near the surface. To
explain this near-surface growth, I begin by developing the
theory of spatial and temporal variations in temperature
with sinusoidally varying surface temperature and periodic
solar radiation at the surface. The calculated temperature
and temperature-gradient profiles are used to find the
profile of crystal growth to examine the near-surface
growth of faceted crystals.

THEORY
INTRODUCTION

where A(t) is an arbitrary function of time, T(O) is the
temporally averaged surface temperature, and u satisfies the
equation
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The propagation of temperature transients into a half-
space because of periodically varying surface temperatures,
but without radiation penetration, has been described by
Cars law and Jaeger (1959, p. 64). When solar radiation is
penetrating the surface and being absorbed in the snow,
there is an energy source which raises the temperature (n
according to

where a is defined by

It follows that A satisfies

The solution of u with the appropriate boundary condition
must now be sought.

A good approximation to the radiation boundary
condition of interest as shown in Figure 1 is given by

where p is the snow density, c is its specific heat, t is
time, k is the thermal conductivity of snow, ). is the
radiation absorption constant, let) is the radiation penetra-
ting the surface (after surface reflection), and z is the
depth below the surface. To solve this equation, I let

Most studies of seasonal snow covers have concentrated
on the basal layers because of the inherent interest in the
formation of depth hoar and because of the difficulties of
dealing with the complicated processes that occur near the
surface. Depth hoar is an extreme example of the faceted
crystals which grow in snow when the snow is subjected to
a large temperature gradient. These crystals have long been
of interest in avalanche studies because of the possibility
that slab avalanches are released as a result of low strength
in these buried layers. Faceted crystals are also produced in
the uppermost snow layers of the polar ice sheets (Schytt,
1958), where they have long been associated with "firn
quakes·, a sudden collapse of a sub-surface layer which is
detectable over some distance. These annually generated
layers have also proved useful as marker horizons (Gow,
1965).

While the temperature gradient in a basal layer may be
nearly constant, there are wide swings in the temperature
gradient near the surface because of the large diurnal
variations in temperature and solar radiation at the surface
of most seasonal snow covers. In polar snow these variations
occur annually.

There are two interesting effects from these surface
boundary conditions. First, sub-surface melting is sometimes
observed in a snow cover by radar observation when the
surface temperature is below the melting temperature
(personal communication from R. Berger, U.S. Army
CRREL). The absoption of radar energy is relatively high
when melt water is present, so the possibility of sub-surface
melting by penetrating solar radiation is of some
consequence to the interpretation of radar back-scatter from
snow covers. Secondly, as mentioned above, the formation
of faceted crystals of the depth-hoar type occurs most often
in the basal layers of snow covers but also just below the
surface in both seasonal and polar snows. In seasonal snow,
this phenomenon occurs at high elevations where the solar
radiation is strongest. In places, the formation of these
layers is thought to be responsible for avalanche release
once the weak layer of faceted crystals is buried by
subsequent snowfalls (LaChapelle, 1970; Akitaya and
Shimizu, 1987).

In polar snow, the observation of highly faceted
crystals seems most unusual because the temperature gradient
away from the annual cycle is much too small to explain
their growth. Thus, the strong temperature gradients
produced by the annual or diurnal temperature cycles must
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Fig. 1. Assumed form of penetrating solar radiation as
given by Equation (6). Note that the cycle starts at
sunrise.
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where I( is the thermal diffusivity, or k/pc. There are
additional terms of a transient nature in Equation (9) which
have been ignored because only the periodic solution is of
interest. The erfc term is also a transient term which must
be accepted because it would change the nature of the
solution if ignored. It arises because the penetration of solar
radiation would heat the snow by an amount equal to b/k>..n
at infinite time. This would happen much faster if it were
not for the steep temperature gradients associated with a
sinusoidal surface temperature. Ignoring the other transients
merely means that the solution is examined after a
sufficient number of cycles have passed to remove the
effects of those transients. However, the energy available
from radiation penetration is substantial compared to the
thermal mass of the snow, so this effect is examined in
more detail.

Since the initial temperature profile was not specified,
it occurs as dictated by the assumption that u(z,O) equals
zero. The profiles up to 100 cycles are shown in Figure 2
where it can be seen that, after the first cycle, the solution

where b is approximately equal to the peak of the radiation
that penetrates the snow surface and w is the frequency. I
assume a value for A(O) that eliminates eal in Equation (4);
then the boundary condition for u is

u(O,t) = a sin(wt - E) + (7)

>..b
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where the first term comes from the thermal boundary
condition,
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Fig. 2. Temperature profiles after repeated cycles of surface
temperature and solar radiation (see Table I for the
parameters used in each example).

where a is the amplitude of the surface-temperature
fluctuation, and E is the phase lag between n/2 and the
time of maximum surface temperature. I include E because
the surface-temperature peak normally lags the radiation
peak. No surface-energy fluxes were used to determine this
boundary condition but rather it is simply assumed as a
reasonable approximation to the usual situation.

The solution for u for this boundary condition is
obtained from the solution method for u(z,O) equals zero
given in Carslaw and Jaeger (1959, p. 63); then the solution
for T is obtained by reversing the transformation involving
u. If the average temperature profile T(z) was originally
non-zero, it has been transformed to zero by the solution
method and it is necessary to add it back into the solution.
Another way of thinking about this is that, if the
temporally averaged temperature gradient is not zero, the
temperature variable should be transformed such that the
gradient is zero, the partial differential equation solved in
the new variable, and then transformed back to the actual
temperature. The result is

T(O,t) = a sin (wt - E) + T(O) (8) changes rather slowly with time. The sub-surface
temperature does increase with time because of the
accumulated radiation but the transient part of the solution
is not large enough to be a significant factor overall. I can
ignore it and still draw valid conclusions from the second
cycle, 2n to 4n. For infinitely many cycles, the erfc term
would shift the entire solution to warmer temperatures by
b/k>..n, or 6.4·C for the example given in Figure 2.
However, if only a small part of I d were cloudy, the
cumulative effect of the erfc term could be eliminated by
the heat flow associated with the mean temperature
gradient.

A test of the solution is given in Figure 3 for two
values of the radiation parameter, b. Figure 3a shows the
symmetrical solution for no radiation input and the
sinusoidal boundary condition. Figure 3b shows the skewed
solution for a large input of radiation. Clearly, the radiation
input shifts the temperatures near the surface to higher
values and changes the nature of the temperature gradients.
These computed profiles are skewed in the same direction
as Weller and Schwerdtfeger's (1977) measured values at
Plateau Station in Antarctica. The temperature just below

T(z,t)
b z

T(z) + -erfc - +
k>..n 2(I(t)t

(9)
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EXAMPLES
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The temperature-gradient profiles over one cycle are shown
in Figure 4 for the same parameters as those used in
Figure 3b. These gradients are also skewed because of
solar heating over just part of the cycle. If it were not for

Fig. 4. Temperature-gradient profiles with strong solar-
radiation input .

these highly skewed gradients, the erfc term would have a
much greater effect than shown in Figure 2. There is also a
transient term in Equation (10), the derivative of the erfc
term in Equation (9), but it is negligible after the first
cycle.
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the surface reaches the melting temperature for a short
period in this example. The solution is not strictly correct
since Equation (I) did not include melting. However, the
effect is rather small because of the limited amount of
melting taking place. This highly skewed solution does show
that sub-surface melting can occur during periods when the
surface is entirely sub-freezing. However, I cannot explore
the full range of possibilities without expanding Equation
(J) to include phase change.

The temperature gradient which drives the vapor flux
and therefore controls crystal growth must also be calculated.
It is derived from Equation (9) as

Fig. 3. Temperature profiles for no solar
strong solar input (b). Notice that
sub-surface melting during part of the
input.

input (a) and a
there would be
cycle with solar

Three specific examples - a seasonal snow cover, a
high-altitude snow cover, and polar ice-sheet snow - are
given to illustrate the effects of radiation penetration on the
temperature field and grain growth in snow. These three
have significantly different conditions of radiation input,
average temperature, and temperature extremes.

Seasonal snow cover
I assume aIm depth with a 30 K temperature swing

in clear weather with strong radiational input during the
day. If the snow-soil contact is at 00 C, the daily average
temperature for various values of incoming solar radiation is
shown in Figure 5. A likely value for b in a mid-latitude
snow cover is about 70 W /m2, which indicates a temperature
rise of about 3·C at 0.15 m depth due to penetrating solar
radiation.

T'
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T'(z) +--- -- +-------+
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Fig. 7. Profiles of the daily average of the absolute value
of the temperature gradient for various values of the
amplitude (aJ of the surface-temperature variation.

different temperatures. When a temperature gradient exists
in the snow cover, that gradient causes heat and vapor flow
in the direction of lower temperatures, both processes being
greatly affected by the presence of the crystals. In the case
of vapor flow, the flow tends to be between adjacent
crystals with vapor moving from the warmer side of an air
space to the colder side. If natural convection occurs, that
also must be considered (Powers and others, 1985), but it is
not common.

The temperature is also important because it has a
large effect on the rate of growth of ice crystals. These
ideas are included in a model of the process (Colbeck,
1983), where the growth rate is given by
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Fig. 5. Average daily temperature profiles for various solar
inputs and a strong background temperature gradient.
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Fig. 6. Profiles of the daily average of the absolute value
of the temperature gradient for various values of solar
input.

(11)

where C is a shape factor that depends on particle size,
shape, and separation, D is the coefficient of diffusion of
water vapor in air, /J.a is given by

where g is a factor which accentuates the effect of
temperature differences due to local heat-flow paths, (J is
vapor density at ice saturation, and 13 is given by

where c is a constant, A is the surface area of the growing
crystal, and T is the temperature-dependence of crystal
growth found by Lamb and Hobbs (1971). Again, the sign
of the temperature gradient is ignored because vapor
flowing either upwards or downwards would cause crystal
growth. To put T in functional form, I assume an
approximation

where 2r is the size of the crystal. Equation (14) is a good
approximation but it does not include the two rises in the
original data that are associated with changes in the
dominant crystal type. There are other problems with using
this approach as well since, for a simple geometrical
arrangement of crystals in snow, the vapor pressure over
the growing crystals seems too high near the surface, as
described by Colbeck (1983). There it was shown that the
solution to this problem is simply to treat the geometrical
snow parameters as statistically distributed, but that it not
necessary here because only the growth is calculated.

(14)

(13)

(12)

l3 = cTA/411CD

T = 136eo.34oT r

M = glT' Ida/dT

The average value of the absolute temperature gradien
for different amounts of radiation is shown in Figure 6.
The absolute value is used because it is a measure of
crystal growth due to vapor flow, either upward or
downward. It seems from Figure 6 that the magnitude of
the penetrating radiation does not have too much effect on
the average of the absolute value of the temperature
gradient, or therefore, on vapor flow. In fact, it appears
that the vapor flow would decrease below about 0.25 m as
the radiation input increases. However, from the surface
down to about 0.25 m, the growth rate would increase with
increasing radiation. Nevertheless, it may be that the faceted
crystals that grow just below the surface are caused mostly
by diurnal temperature cycles, and not by radiation
penetration. Usually, the strongest diurnal temperature cycles
occur during periods of clear weather, so the two usually
occur together. The effect of temperature cycling i~ given
in Figure 7 where profiles of the average value of the
absolute temperature gradient are shown for various values
of a, the amplitude of the surface-temperature cycle. Near
the surface, the vapor would increase significantly with the
value 0& a; but there would be some vapor flow due to the
cyclic radiation input, even if there were no surface-
temperature oscillation. Thus, either radiation absorption or
surface-temperature cycling could cause an acceleration in
crystal growth just below the surface.

To examine this question further, I will consider the
combined effects of temperature and temperature gradient
on crystal growth. The temperature gradients are larger near
the surface but the temperature itself is often lower there
and both affect the rate of crystal growth. The temperature
gradient is critical to understanding the growth of crystals
because they grow by a process that has been characterized
as the "hand-to-hand delivery of water vapor", or the
exchange of vapor among neighboring ice crystals of
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Fig. 8. Profiles of the daily average of the crystal-growth
rate for various values of the solar input.
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Polar ice-sheet snow
Layers of hoar-type crystals have often been reported

near the surface of polar ice sheets (Mosley-Thompson and
others, 1985; Alley, 1988). Because of the reduced intensity
of solar radiation and the large amplitude of the seasonal
temperature variation, it seems safe to assume that the
formation of hoar crystals arises from the extreme
temperature change and that radiation penetration has rather
little to do with the problem. However, I will show that
this is not true. Since I am now dealing with a seasonal
wave which penetrates more deeply than the diurnal wave,
the density profile should be considered but it was not
included in the original equation. This does place a limit on
the value of the results but some general conclusions can be
made anyway. If the density were allowed to increase with
depth, it would reduce the effect of radiation penetration at
depth; the temperature increase at depth would be less than
suggested in Figure 10 and the layer of rapid growth would
be more concentrated near the surface than is shown in
Figure 12. This density effect would be somewhat decreased

2

Fig. 10. Annual average temperature profiles for various
solar inputs to polar snow.

a
240

would be very small. Accordingly, at depth the average of
the absolute value of the temperature gradient would go to
zero instead of the values of 0.15 °C/m assumed in Figures
6 and 7. Therefore, the growth rate would also go to nearly
zero below the surface zone of about 0.5 m. The value of b
could be around 126 W1m2 for high altitudes and the value
of a as high as 200 C. Thus, it is clear that there would be
a very large growth rate in a layer of up to 0.1 m depth.
These layers are often observed in the spring on south-
facing slopes (LaChapelle, 1970) so the process is referred
to as "radiation recrystallization", because of the role that
both short- and long-wave radiation have in producing the
large temperature cycles and sub-surface heating.

because the extinction coefficient would decrease as grain-
size increases with depth. However, the dominant effect, the
increased thermal conductivity due to increased density, is
discussed later.

The average annual temperature profile is shown in
Figure 10 for various values of radiation penetrating the
surface. Using 33 W/m2, which is a fairly high value for
the polar regions, I found that the temperature rise is about
3 K at 0.2 m, which seems negligible at these low
temperatures. The effect of this rise on crystal-growth rate
is much greater at higher temperatures but it is also
important here. Figure 11 shows how the crystal-growth rate
at 0.2 m depth varies throughout the year for varying
amounts of penetrating solar radiation. If 33 W1m2 is a
realistic value, the penetrating radiation doubles the growth
rate over what would result from temperature cycling alone.
These growth rates are somewhat lower than what was
calculated for the seasonal snow cover because of the
reduced temperatures. Even so, the total growth in polar
snow may be greater because of the longer time available
for growth. Most of the growth occurs in the late summer
to early fall because of the coincidence of higher
temperatures and higher temperature gradients; the peak
growth rate occurs between the peak of the temperature and
the peak of the temperature gradient at this depth. Growth
during the winter is reduced because of the low

"""c.
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3.21.6 2.4
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Fig. 9. Profiles of the daily average of the crystal-growth
rate for various values of the amplitude (a) of the
surface-temperature variation.

0.8

The effect of radiation penetration on the 24 h average
crystal growth is shown in Figure 8, where it can be seen
that there is a significant amount of growth near the
surface without any solar radiation, just due to the
sinusoidal surface temperature. However, it is also clear
that, just below the surface, the growth rate increases
strongly with increasing radiation penetration. This growth
suggests that, for typical values of solar radiation
penetrating mid-latitude snow covers, the growth rate just
below the surface could be much greater than it is at the
snow-soil interface. It also shows that below about 0.15 m
depth the growth rate is decreased by radiation penetration.
While sub-surface layers of large faceted crystals are
commonly observed in polar and high-altitude snow covers,
they are not so comon in low-altitude snow covers, thus
suggesting that I have overestimated this effect. Perhaps this
theory estimates the effect correctly but there are not
typically enough days of clear skies to sustain the high rate
of sub-surface growth suggested by Figure 8. The growth at
the base of the snow cover would proceed as suggested in
Figure 8 whether or not cloudy skies interrupt the strong
variations at the surface.

A similar effect can be seen in Figure 9, where it is
shown that there would be accelerated growth just below
the surface due to penetrating radiation, even in the
absence of a diurnal cycle in surface temperature (a = 0).
The rate of growth increases with the amplitude of the
temperature cycle, as would be expected, again suggesting a
very strong effect only near the surface.

High-altitude snow cover
I assume the incident radiation penetration is stronger

and the temperature cycles are more intense than in seasonal
snow covers. This is particularly true in the highest
mountains, which occur at low latitudes. In a deep glacial
snow cover the temperature and temperature-gradient
profiles would be similar to those shown in Figures 3b and
4 because the temperature gradient away from the surface

E 0.6
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DISCUSSION

depth, but the most rapid growth rate is shown to be
adjacent to the surface. In fact, the local density variations
would partly control the distribution of depth hoar, but
near-surface formation seems to be the rule (Gow, 1965;
Mosley-Thompson and others, 1985). Alley (1988) has
reported that well-developed depth hoar annually forms at
less than 0.2 m depth.

I have shown that the amount of solar radiation
absorbed beneath the surface of a snow cover can introduce
more energy into the snow than can be readily conducted
away. Therefore, the sub-surface temperature increases over
what it would be in the absence of solar input. The
resulting increases in temperature and temperature gradient
both contribute to increases in the crystal-growth rate to
form sub-surface layers of large, faceted crystals. There
would be a high growth rate without the solar input, just
because of the large temperature cycles, but solar input
definitely increases the sub-surface growth rate. If snow
were more conductive or less absorbing, the layer of
enhanced temperature would be much less pronounced. This
is shown in Figure 13 where the profiles of average daily
temperature are shown for pure ice, bubbly ice, and snow.
While the effect of penetrating radiation is clear for snow,
the effect is very small for bubbly ice and slightly reversed
for pure ice. For snow ()•. = 20/m), the e-folding distance,
or I/e decay depth, is 0.05 m and essentially all of the
radiation is absorbed in 0.5 m. For bubbly ice, the
absorption coefficient is 5/m (personal communication from
D. Perovich, U.S. Army CRREL), so that 88% of the
energy is absorbed in 0.5 m, but the thermal conductivity is
about 80% that of ice, according to the Schwerdtfeger

27r7r
Radians

Fig. 11. Distribution of crystal-growth rate at 0.2 m depth in
polar snow through an annual cycle for various solar
inputs.

temperatures, even though the temperature gradient goes
through a large peak. This corresponds to the observation
(Alley, 1988) that depth hoar in polar snow develops in late
summer to autumn.

The reduction of growth rate with depth is large
because of the larger temperature gradients and higher
temperatures just below the surface. Figure 12 shows a
rapid decay with depth in polar snow as was shown earlier
in Figures 8 and 9; thus, if depth hoar forms, I would
expect it to form close to the surface. This particular
example shows a layer of high growth rate at 0.2-0.3 m
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Fig. 12. Profiles of annual average growth rate in polar
snow for various solar inputs.

Fig. 13. Profiles of daily average temperature for snow,
bubbly ice. and clear ice.

TABLE I. PARAMETERS USED IN FIGURES

Figure Period a b p k T' T }. Material

°c W/m2 Mg/m3 W/moC °C/m K m-I

I 24 h or I year Snow
2 24 h 15 84 0.3 0.21 10 250 20 Snow
3a 24 h 15 0 0.3 0.21 0 258 20 Snow
3b 24 h 15 140 0.3 0.21 0 258 20 Snow
4 24 h 15 140 0.3 0.21 0 258 20 Snow
5 24 h 15 varies 0.3 0.21 15 258 20 Snow
6 24 h 15 varies 0.3 0.21 15 258 20 Snow
7 24 h varies 84 0.3 0.21 15 258 20 Snow
8 24 h 10 varies 0.3 0.21 15 258 20 Snow
9 24 h varies 84 0.3 0.21 15 258 20 Snow

10 1 year 20 varies 0.3 0.21 0 243 20 Snow
11 I year 20 varies 0.3 0.21 0 243 20 Snow
12 I year 20 varies 0.3 0.21 0 243 20 Snow
13 24 h 15 84 0.3 0.21 30 258 20 Snow
13 24 h 15 84 0.85 2.00 30 258 5 Bubbly

ice
13 24 h 15 84 0.917 2.24 30 258 0.5 Clear

ice
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(1963) formula. Although most of the energy is absorbed
fairly quickly, the high thermal conductivity allows it to be
conducted away more readily so that the energy does not
accumulate in the ice. For clear ice, the effect is even
more pronounced, since clear ice (Grenfell and Perovich,
1981) is less absorbing (>. = 0.5/m) and more conductive.
For clear ice, only 22% of the radiation would be absorbed
in 0.5 m. Thus, the effect of radiation penetration on ice is
very much less than it is on snow. If this were not true,
lake ice might "candle", or melt by internal radiation
absorption just below the surface on cool, clear days.

While radiation penetration increases the average
temperature and temperature gradient just below the surface
in snow, it decreases the average temperature gradient in an
intermediate layer below that. The effect of this is to
decrease the growth rate in that intermediate layer as shown
in Figure 8. This layer of smaller crystals would serve to
highlight to an observer the presence of a layer of rapidly
growing crystals in the near-surface layer. The entire
column is heated as shown in Figure 5, not because of
radiation absorption at greater depth but because of reduced
heat conduction up through the snow at that depth. The
amount of solar radiation reaching 0.5 m depth in snow is
not in itself sufficient to explain the temperature increase
shown in that example.

CONCLUSION

Profiles of temperature, temperature gradient, and
crystal-growth rate have been shown for a sinusoidally
varying surface temperature with solar-radiation input
during one-half of the period. Layers of faceted crystals
observed to grow just below the surface of high-altitude
snow covers and polar snow are explained by the combina-
tion of the high temperature gradients associated with the
periodic surface temperature, and the increased temperature
and temperature gradients due to solar radiation input. These
layers could occur with either radiation input or temperature
cycling, but the growth rate increases with both solar input
and the magnitude of the temperature cycle. In most cases,
the growth rate has a relative peak in a layer 0.05-0.1 m
below the surface for a seasonal snow cover, or 0.2-0.3 m
below the surface in polar snow. The highest growth rates
are calculated to be adjacent to the surface, but growth in
these layers would be strongly affected by the close
proximity of the atmospheric vapor sink.

The growth rates predicted for polar snow are
reasonable, although the quantitative results of these
calculations are questionable since the geometry of the snow
has not been adequately represented and Equation (14) needs
further experimental testing. The growth rates calculated for
the seasonal snow cover and shown in Figures 8 and 9
indicate that the growth rate in the near-surface layer at
0.05-0.1 m would be as high under some conditions (e.g.
a = 10°c and b = 63 W1m2) as the growth rate at the
warmer base of the snow cover. This result may be correct,
although these near-surface layers are not usually seen in
the seasonal snow cover, possibly because of the lack of
enough sequential days of cold, clear weather or the loss of

Colbeck: Snow-crystal growth

vapor to the atmosphere due to wind-pumping. They are
seen in high-altitude snow covers because of the extreme
radiational balances.
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