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A convergent quasi-Hermite-Féjer

interpolation process

T.M. Mills

D.L. Berman has proved several divergence theorems about
"extended" Hermite-Fejér interpolation on the Chebyshev nodes of
the first kind. These are surprising in light of the classical
convergence theorem of L. Fejér concerning ordinary Hermite-Fejér
interpolation on these nodes. However there is one case which
has been neglected so far: the case of quasi-Hermite-Fejér
interpolation on these nodes. In this paper it is proved that
quasi-Hermite-Fejér interpolation polynomials on the Chebyshev
nodes converge uniformly to the continuous function being
interpolated. In addition, an estimate for the rate of

convergence is established.

1. Introduction
The following result proved by Fejér [3] is now classical:

THEOREM 1 (Fejér). Let f(x) be continuous on the interval
[-1, 1] and let Hn(f’ x) be the polynomial of degree 2on - 1 wniquely

determined by the conditions

B (fy 2,) = flg,) . k=12, ..., n,

0 s k

il
—
-
n
-
"
I
M

Hé(f’ xkn)
where

x, = cos((2k—l)ﬂ/2n) s k=1,2, ..., n,

kn
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and the dash in H;:z(f’ x) denotes differentiation with respect to «x .
Then Hn(f, x) converges to flx) wuniformly on the interval [-1, 1] as
n tends to infinity.

Throughout this paper xkn will be defined by (1) and denoted by xk

where there is no confusion.

In 1969, Berman [1], considered a related interpolation process. Let

Fn(f, x) be the polynomial of degree 21 + 3 uniquely determined by the

conditions
F S 1) = £ 5 F(F, -1) = £(-1) 5
Fi(f, 1) =0 5 ENf -1 =0
Fn(f, xk) = f(ack) ; Fy’t(f, xk) =0 for k=1,2, ..., n
One of his results is as follows:
2

THEOREM 2 (Berman). If flx) = x° , then the sequence (Fn(f’ x))
diverges for every x 1in the open interval (-1, 1) .
In a later paper, Berman [2], considered the polynomial An(f, x) of

degree 2n + 2 uniquely determined by the conditions

A(f, 1) = fQ) 5 A (f, -1) = f(-1) 5
Af, 1) =0 H
An(f; xk) = f(xk) 5 Aé(f, mk] =0 for K=1,2, ..., % .

Concerning this process he proved another divergence theorem:

THEOREM 3 (Berman). If f(x) = 2 s then the sequence (An(f, x))
diverges for every x 1in the open interval (-1, 1) .
In this paper we shall consider the polynomial Vﬁ(f, x) of degree

2n + 1 uniquely determined by the conditions
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v (F, 1) = £,

v.(f, -1} =f(-1) ,

n

(2)
Vn(f, xk) = f(xk) , K=1,2, ..o ,
vV(fom) =0, k=1,2, i

Such processes were called quasi-Hermite-Fejér interpolation processes by
Sz&sz [5]. We shall prove the following estimate which shows that if f

is continuous on [-1, 1] then Vn(f’ x) converges to f uniformly on
the closed intervel [-1, 1] .

THEOREM 4. rLet flx) be continuous on the interval [-1, 1] and
let w(f; 8) be the modulus of continuity of f . Then

1Y, (s @)-F@) < epu(fs n79) .

Here el (and later Cps C3s ven ) is an absolute constant

independent of f and n and |¢ff is the uniform norm on [-1, 1] .

2. Proof of Theorem 4
We shall prove the theorem by using a series of lemmas which will be

proved in the next section.

LEMMA 1. (Vn) i8 a sequence of uniformly bounded linear operators.

LEMMA 2. Let m = [ﬁ%j and let pm(x) be the best approximating
polynomial of degree m to f(z) in [-1, 1] . Then,

=

HVn(pm, x)-pm(x)H < cgw(f; n

The proof of the theorem is now gquite straight forward. By the

fundamental approximation theorem of Jackson,
L
Hf&)?muﬂlfcfﬂf;nz).

Hence,
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1A

v, (fs 2)-v,(p,» 2}l + 1V, (o, 2)-p ()| + llp,(2)-f(z)]

(HVan3+c2+c3)w(f; n_%)

1A

= ew(fs n_%]

and the theorem follows.

3. Proofs of the lemmas

Proof of Lemma 1. From Sz&sz' paper we know that

Vn(f, x) = f(1)

where

and

and

Let us set

https://doi.org/10.1017/S0004972700023868

Wl p 22y + pc) L2 g 2(g)
n 1-° 2
+ kzl f(xk) -I:;;ET vk(x)lk (x)
z, (x-z, )
uk(x) =1+ -k zf , k=1, 2, s M,
l-x
k
Tn(x)
Zk(x) = T' xk x—xk 3 k = l’ 2, 3 n 5
Tn(x) = cos(n(arc cos x))
ntl
v (fs x) = ZO £lay )by ()
and gx +1 = -1 Then
ntl
il = s Lyl
7

A
n
+
e
o
|t~
=
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where the supremum is taken over all « in [-1, 1] .

Now let « € (-1, 1) and suppose that J is an integer satisfying

1 <4 =<n and

(3) |x—xj| = Ix-xkl , k=1,2, ..., n .

Naturally 4 (n) . Should there be two such integers then pick either

=J
one. Since Vn(f’ xj) = f[xj) we may assume that x # xj .
To estimate HVnH consider the expression

J=1 n
(%) 2+ ) @]+ [n(x)] + I yla)
k=1 J k=j+1
and estimate each part in turn. If G =1 or = then one of these parts

will not occur.

Now
1—x2 x.(x—x.] o
h.(x) = 5 1+ 5 1.%(x)
J 1-z, 1-z. |9
dJd J
Furthermore
lz.(e-z.)| |¢t-t.] sinr,
d J < Jd_ . 4 < .
2 ~ sin t. sin £. ~ 75 °?
1-x. J J
J
where & = cos t , Xx. = cos tj , and Pj is some number between ¢ and
t. . Hence
J
I ‘ (1-27)1 ()
hox)] ¢
J 6 l—x.2
J
But Varma has shown in [6] that
n 2
i zk2(x> <8
k=1 1-z;,
and so we have
h.(z)| S e, .
(5) EREOIERS
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J-1
)

k=1

Now we estimate

fractions we get
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]hk(m)| . By decomposing hk(x) into partial

(l—xE)T 2(x) xT 2(x) (14x)T 2(x) (1-2)T 2(x)
(@) = —g e+ o E -5 T
n®(z-z,) n(z-z)  on®(1-x;) 2n” (14, )
Thus
(1-°)7 n2 () 1 1 1
(6) |h (x)l = + +
k nzﬁrmx ]2 n2|x—m I ng[l—x ] n2(1+x )
k k k k
= Ak + Bk + Ck + Dk .
It is known that
I c= 1
¢, = D, =1
k=1 Kok K
Hence
J-1
(1 Y c, =1
k=1
and
J=-1
(8) ) D, =1.
k=1
To estimate Ek , let k=4 -1 where 7 2 1 and note that
sin((t+tk)/2} = sin t/2 cos tk/2 + cos t/2 sin tp/2
> |sin /2 cos tk/Z - cos t/2 sin tk/2|
= sin(|¢-t,[/2)
> |t-tk|/w
= cg i/n .

Hence
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-1
2
By = 71|x-xkq

-1
= |2n® sin ((+;)/2)sin(]t-,|/2)

-1
< 2nzsin2([t—tk|/2)]
= c9i—2
So we obtain
jil jil -
(9) B, = ¢ -
k=1 k 9 1=1 10

Finally let us consider Ak :

T 2(x) = cos2 nt
n
= (cos nt - cos ntk)z
=l sine(n(t+tk]/2}sin2(n(t—tk)/2)
Therefore,
2 2
L (1=7)7, ()
k- n2[x z )2
k
. 2
3 sin® ¢ 1. sin (n(t-tk)/E)

sin®((t+t,)/2)  #° sin®((t-t,)/2)

From the inequalities

sin ¢ < sin ¢ + sin ¢

k
2 sin((t+tk)/2)

1A

and

o onosint (n(t-t,) /)
) 5 <ec
k=1 sin”((t-t,)/2)

11 °

it follows that
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(10) ) Ay Scqy -

By (7), (8), (9), and (10) we now have

J-1
(11) sup kzl |hk(x)| Sep, -
Similarly,
n
(12) sup k=§+j |hk(x)| < ey -

From (4), (5), (11), and (12), Lemma 1 now follows.
Proof of Lemma 2. From Sz3sz' work we know that since pm(x) is a
polynomial of degree m < o2on + 1 ,

pm(x) = Vn(pm’ .’L‘) + Qn(pm’ x) s

where
2 2
n (l—x )T (x)
o, %)= 1 prlx) - 5
=1 n (x—xk)
Hence
o @] = § lonte) S
1% , &)-p (z)| = p.(x
nvm m k=1 m\"k n2|x—xk|

Now a recent result of Szabados [4] states that

-1
lpp(x)] = e mo[fim ) lz| <1 .

NS
Consequently
-1 n
(13) ]Vﬁ[pm, x)—pm(x)I < cl6w[f; m ) kz uk(x) ,
=1
where
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(1-x2)Tn2(x)

u, (x) =
k %
2
n3/2[1—xk ] Ix—xkl

Once again let J be defined by (3). Then

I T Tou
(1k) u, (x) = u, () + u.(x) + x) .
k=1 K k=1 K J k=j+1 K

We begin by estimating uj(x) :

n 1 x2
(15) u.(x) < o === 1. (x)
J n3/2 1—x.2 J
%
=Ln"" .
J-1
Now we shall estimate n3/2 ) uk(x) . Writing
k=1
2 2 2
l-ax =1- x, + (x—xk) - Qx(x—mk) ,
we obtain
2 2 2
57T “(x) T T “(x)
3/2 - 2)% n n n
(16) = w (z) < [1—xk ) p— + |x—xk| F + |x| ~F
l—xk {l—xk ]

o

< n]Zk(x)I + 3/[l~xk2]

Now it is known that

n 5 %
(17) kzl [1—xk ] e nlnn
and

n
(18) kzl |2, ()] = eginn

Hence by (16), {17), and (18),

i-1
(19) I wle) =e

=] 19
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Similarly,
g %,
(20) (x) =ec,.. .
k=g+1 20

By (15), (19), and (20),
n
k£1 uk(x) S, -

Thus, returning to (13) we have

IA

HVn(pm, x}—pm(x)H Cle(f; mt ,

which proves Lemma 2,

References

[7] D.L. Berman, "A study of the Hermite-Fejér interpolation process",
Soviet Math. Dokl. 10 (1969), 813-816.

[2] D.L. Berman, "Extended Hermite-Fejér interpolation processes diverging

everywhere", Soviet Math. Dokl. 11 (1970), 830-833.

[3] Leopold Fejér, "Ueber Interpolation', Nachr. K. Ges. Wiss. Gottingen
Math.-Phys. KL. 1916, 66-91.

[4] J. Szabados, "On the convergence of Hermite-Fejér interpolation based
on the roots of the Legendre polynomials", Acta Sei. Math. 34
(1973}, 367-370.

[5] Paul Sz8sz, "On quasi-Hermite-Fejér interpolation", Acta Math. Acad.
Sei. Hungar. 10 (1959), 4k13-kL39,

{61 A.K, Varma, "On a problem of P, Turéan on lacunary interpolation",

Canad. Math. Bull. 10 (1967), 531-557.

Department of Mathematics,
Eastern Montana College,
Billings,

Montana,

USA.

https://doi.org/10.1017/50004972700023868 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700023868

