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Abstract

We study mean-variance hedging under portfolio constraints in a general semimartingale
model. The constraints are formulated via predictable correspondences, meaning that the
trading strategy is restricted to lie in a closed convex set which may depend on the state
and time in a predictable way. To obtain the existence of a solution, we first establish the
closedness in L2 of the space of all gains from trade (i.e. the terminal values of stochastic
integrals with respect to the price process of the underlying assets). This is a first main
contribution which enables us to tackle the problem in a systematic and unified way. In
addition, using the closedness allows us to explain and generalise in a systematic way
the convex duality results obtained previously by other authors via ad-hoc methods in
specific frameworks.
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1. Introduction

Mean-variance hedging and mean-variance portfolio selection are two classical problems
in finance. The latter is also called the Markowitz problem and involves finding a trading
strategy whose resulting final wealth has an optimal risk–reward profile, where reward and
risk are measured via the mean and variance. Understanding and solving this problem is vastly
simplified by a good knowledge about the general mean-variance or quadratic hedging problem.
We study this in a general semimartingale financial market with general convex constraints on
strategies.

In more mathematical terms, let S = (St )0≤t≤T be an R
d -valued semimartingale modelling

the discounted prices of d risky assets. A self-financing trading strategy is described by its initial
wealth x ∈ R and an R

d -valued predictable process ϑ = (ϑt )0≤t≤T describing the number of
shares held dynamically over time. Its resulting final wealth is

VT (x, ϑ) := x +
∫ T

0
ϑs dSs =: x +GT (ϑ),

and if the FT -measurable random variable H gives the time-T payoff of a financial product,
mean-variance hedging for H requires solving the (linear-quadratic control) problem

minimise E[|H − x −GT (ϑ)|2]
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Convex duality in mean-variance hedging under convex trading constraints 1085

either over ϑ ∈ �S(C) for fixed x or over (x, ϑ) ∈ R×�S(C). The space�S(C) of ‘allowed’
integrands of course imposes a square-integrability condition on the stochastic integral process∫
ϑ dS, and the argument C in brackets indicates that we have trading constraints in the sense

that ϑt (ω) must lie in a convex closed subset C(ω, t) of R
d . This can depend on ω and t in

a predictable way, as made precise later, and it is worth pointing out that the C(ω, t) need
not be cones in general. One strength of our contribution is that the above setup is essentially
the most general formulation for mean-variance hedging under constraints. Under very weak
local square-integrability and no-arbitrage-type assumptions on S, we give in Theorem 3.1 a
necessary and sufficient condition (jointly on S and C) for the space GT (�S(C)) to be closed
in L2(P). This allows us to easily prove in Theorem 4.1 the existence of a solution to the mean-
variance hedging problem for any H ∈ L2(P). To obtain more information on the structure of
this solution, we then use convex duality tools. We introduce a dual problem whose variables
and objective function both involve the constraints C through their support function. We then
prove in Theorems 5.1 and 5.2 the existence of a solution to the dual problem, show how it is
related to the solution of the primal problem, and give properties of the corresponding (primal
and dual) value functions. There are two sets of results because we give two formulations—one
in terms of static variables and the other in terms of dynamic variables.

Conceptually and resultwise, our duality approach is analogous to the classical convex
duality techniques familiar from utility maximisation problems; see, for example, the work
by Cvitanić and Karatzas [5], Kramkov and Schachermayer [18], and Karatzas and Žitković
[17]. However, the mathematics are somewhat different since our ‘quadratic random utility’
U(x, ω) = − 1

2 |x −H(ω)|2 is not increasing in x and the duality is taken in a different space.
A fairly close precursor of our work is due to Labbé and Heunis [19], who studied the same
problem when S is given by a complete Itô process model and the constraints do not depend
on ω and t . Their duality is very similar to parts of our Theorem 5.2, but their formulations
and in particular their proofs strongly depend on the availability and use of Itô’s representation
theorem. We do not need that at all, since S and the underlying filtration F are general in our
setting.

The paper is structured as follows. Section 2 contains a precise problem formulation,
including basic results on correspondences that we use for the modelling of constraints.
Section 3 contains the central closedness result for GT (�S(C)), and in Section 4 we use
this to prove existence of a solution to the mean-variance hedging problem under constraints.
Finally, in Section 5 we present the duality results. We first give a careful motivation for the
way the dual problem is set up, both for static and dynamic variables. Then we prove the main
duality theorems in those two settings, and we close the section with more detailed comments
on and comparison to the literature.

2. Formulation of the problem

Let (�,F ,P) be a probability space with a filtration F = (Ft )0≤t≤T satisfying the usual
conditions of completeness and right continuity, where T > 0 is a fixed and finite time horizon.
Hence we can and do choose, for every local P-martingale, a version whose trajectories are
right continuous with left limits (RCLL). For all unexplained notions concerning stochastic
integration, we refer the reader to [24].

We consider a financial market consisting of one riskless asset, whose (discounted) price
is 1, and d risky assets described by an R

d -valued semimartingale S. We denote by H2(P)
the Banach space of all square-integrable semimartingales, i.e. special semimartingales Y with
canonical decomposition Y = Y0 +MY +AY , where MY is a square-integrable martingale Y
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null at 0, MY ∈ M2
0(P), and AY is a predictable finite variation RCLL process null at 0, such

that

‖Y‖H2(P) := ‖Y0‖L2(P) + ‖([MY ]T )1/2‖L2(P) +
∥∥∥∥

∫ T

0
|dAYs |

∥∥∥∥
L2(P)

< ∞.

Note that H2
loc(P) coincides with the semimartingale space S2

loc(P). We suppose that S
is a locally square-integrable semimartingale, denoted by S ∈ H2

loc(P), with canonical
decomposition S = S0 + M + A. Then there exists a predictable increasing RCLL process
B, e.g. B = ∑d

i=1(〈Mi〉 + ∫ |dAi |), with 〈Mi,Mj 〉 � B and Ai � B for i, j = 1, . . . , d.
We define an R

d×d -valued predictable process cM and an R
d -valued predictable process a by

(cM)ij = d〈Mi,Mj 〉/ dB and ai = dAi/ dB. We set � := �× [0, T ] and PB := P ⊗B,
and view R

d -valued predictable processes as P -measurable random variables, i.e. elements of
L0(�,P ; R

d). For trading strategies, we take

� := �S :=
{
ϑ ∈ L(S)

∣∣∣∣
∫
ϑ dS ∈ H2(P)

}
,

where L(Y ) denotes the space of all R
d -valued, Y -integrable, predictable processes for a

semimartingale Y . Note that we work with processes without identifying ϑ and ϑ ′ when∫
ϑ dS = ∫

ϑ ′ dS; hence we write L(S), not L(S). By the uniqueness of the canonical
decomposition we have �S = L2(M) ∩ L2(A) with

L2(M) :=
{
ϑ ∈ L0(�,P ; R

d)

∣∣∣∣ ‖ϑ‖L2(M) :=
(

E

[∫ T

0
ϑ�
s c

M
s ϑs dBs

])1/2

< ∞
}
,

L2(A) :=
{
ϑ ∈ L0(�,P ; R

d)

∣∣∣∣ ‖ϑ‖L2(A) :=
(

E

[(∫ T

0
|ϑ�
s as | dBs

)2])1/2

< ∞
}
.

The wealth process generated up to time t ∈ [0, T ] by a self-financing trading strategy ϑ with
initial capital x ∈ R is

Vt (x, ϑ) := x +
∫ t

0
ϑs dSs =: x +Gt(ϑ),

where the processG(ϑ) denotes the cumulative gains from trading. The set of all outcomes of
self-financing trading strategies with zero initial wealth is

GT (�S) = {GT (ϑ) | ϑ ∈ �S},
and the set of attainable payoffs is

A(�S) = R +GT (�S).

In contrast to strategies, we identify here final wealths that are equal P-almost surely (P-a.s.).
Owing to the definition of�S , the setsGT (�S) and A(�S) are thus linear subspaces of L2(P)
by the following result.

Proposition 2.1. Let Y be a semimartingale in H2(P), and let Y ∗
t := sup0≤s≤t |Ys |. Then

E[(Y ∗
T )

2] ≤ 8‖Y‖2
H2(P).

Proof. See Theorem IV.5 of [24].
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A square-integrable FT -measurable random variable H is called a contingent claim. We
assume that an investor wants to hedge a contingent claim by means of a self-financing trading
strategy. However, since the market is usually incomplete, perfect replication of the contingent
claim, in the sense that H = VT (x, ϑ), P-a.s. for some x and ϑ , is in general impossible. So
the investor wants to optimise the hedging performance of his trading strategy according to
some criterion. One possible choice, especially when the investor simultaneously considers
buying or sellingH , is the minimisation of the mean-squared hedging error, which leads to the
approximation problem

E

[∣∣∣∣H − x −
∫ T

0
ϑs dSs

∣∣∣∣2]
= min
(x,ϑ)∈R×�S

!
For a fixed initial capital x ∈ R, we obtain the problem of mean-variance hedging, i.e.

E

[∣∣∣∣H − x −
∫ T

0
ϑs dSs

∣∣∣∣2]
= min
ϑ∈�S

!
Mathematically, this amounts to projectingH − x ontoGT (�S) orH onto A(�S). Therefore,
a solution for every H ∈ L2(P) exists if and only if GT (�S) and A(�S) are closed in L2(P).
Note that both problems are naturally studied in L2(P) rather than L2(P).

Before we introduce the mean-variance hedging problem under trading constraints, we make
the following simple observation. In the unconstrained case, when GT (�S) and A(�S) are
closed linear subspaces, the problem admits a unique solution by elementary Hilbert space
arguments. Under trading constraints, this is still true if the subsets in which we want to
find the best approximation are closed and convex subsets of L2(P). Despite its simplicity,
this observation is very useful. We shall see that mean-variance hedging problems can be
embedded into this framework even under the additional constraint that the trading strategy
only takes values in a closed convex set, which is allowed to depend on the state ω and time t
in a predictable way. This allows us to treat these problems in a systematic and unified way.

To model ‘predictable trading constraints’, we formulate them via predictable correspon-
dences. This idea is analogous to [15], where it is used to study the existence of the numéraire
portfolio under predictable convex constraints.

Definition 2.1. A mapping C : � → 2R
d

is called a correspondence. We say that a corre-
spondence C is predictable if C−1(F ) = {(ω, t) | C(ω, t) ∩ F �= ∅} is a predictable set
(i.e. in P ) for all closed F ⊆ R

d . The domain dom(C) of a correspondence is given by
dom(C) = {(ω, t) | C(ω, t) �= ∅}.A (predictable) selector of a (predictable) correspondence
C is a (predictable) process ψ with ψ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ dom(C).

For convenience, we recall some results on predictable correspondences which ensure the
existence of predictable selectors in all situations relevant for us.

Proposition 2.2. (Castaing.) For a correspondence C : � → 2R
d

with closed values, the
following statements are equivalent:

(a) C is predictable,

(b) dom(C) is predictable and there exists a Castaing representation of C, i.e. a sequence
(ψn) of predictable selectors of C such that

C(ω, t) = {ψ1(ω, t), ψ2(ω, t), . . .} for each (ω, t) ∈ dom(C).

In particular, every predictable closed-valued C admits a predictable selector ψ .
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Proof. See Corollary 18.14 of [1] or Theorem 1B of [26].

Proposition 2.3. Let C : � → 2R
d

be a predictable correspondence with closed values, and
let f : �× R

m → R
d and g : �× R

d → R
m be Carathéodory functions, which means that

f (ω, t, y) and g(ω, t, x) are predictable with respect to (ω, t) and continuous in y and x.
Then the mappings C′ and C′′ given by C′(ω, t) = {y ∈ R

m | f (ω, t, y) ∈ C(ω, t)} and
C′′(ω, t) = {g(ω, t, x) | x ∈ C(ω, t)} are predictable correspondences (from � to 2R

m
) with

closed values.

Proof. See Corollaries 1P and 1Q of [26].

Proposition 2.4. Let Cn : � → 2R
d

for each n ∈ N be a predictable correspondence with
closed values, and define the correspondences C′ and C′′ by C′(ω, t) = ⋂

n∈N
Cn(ω, t) and

C′′(ω, t) = ⋃
n∈N

Cn(ω, t). Then C′ and C′′ are predictable and C′ is closed valued.

Proof. See Theorem 1M of [26] and Lemma 18.4 of [1].

For a predictable correspondence C : � → 2R
d \ {∅}, we denote by

C := CS := {ψ ∈ L(S) | ψ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ �}

the set of C-valued or C-constrained integrands for S and by

�S(C) = �S ∩ C = {ϑ ∈ �S | ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ �}

the set of all C-constrained trading strategies. With this formulation, the set of all outcomes
of C-constrained self-financing trading strategies with zero initial wealth is

GT (�S(C)) = {GT (ϑ) | ϑ ∈ �S(C)},

and the set of payoffs that are attainable with C-constrained trading strategies is

A(�S(C)) = R +GT (�S(C)).

Note that one can, for example, model prohibition of short-selling or rectangular constraints in
this formulation; see Examples 4.1 in Section 5.4 of [16]. The mean-variance hedging problem
under trading constraints is now formulated as

E

[∣∣∣∣H − x −
∫ T

0
ϑs dSs

∣∣∣∣2]
= min
ϑ∈�S(C)

!

for a fixed initial capital x ∈ R, and we also study

E

[∣∣∣∣H − x −
∫ T

0
ϑs dSs

∣∣∣∣2]
= min
(x,ϑ)∈R×�S(C)

!

when including the initial capital into the approximation problem. As already explained above,
these problems admit solutions if GT (�S(C)) and A(�S(C)) are closed and convex subsets
of L2(P). By the convexity of C, the convexity of GT (�S(C)) and A(�S(C)) immediately
follows. The closedness will be established in the next section.
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3. The closedness of GT (�S(C)) and A(�S(C))

In this section we show that the set of all outcomes of C-constrained self-financing trading
strategies with zero initial wealth and the set of all payoffs that are attainable withC-constrained
trading strategies are both closed in L2(P). To that end, we use the concept of E -martingales,
which was introduced and developed by Choulli, Krawczyk and Stricker in [4] to deduce the
closedness of the analogous subspaces in the unconstrained case. For easy reference, we start
by briefly recalling some definitions and results.

For a semimartingale Y , we denote its stochastic exponential by E(Y ). Throughout this
paper, let N be a fixed local P-martingale starting at 0. For any stopping time τ , we denote
the process Y stopped at τ by Y τ and the process Y started at τ by τY = Y − Y τ , but
we set τE = τE(N) = E(N − Nτ ). So, for the stochastic exponential, τE(N) denotes a
multiplicative rather than an additive restarting. Since N is P-a.s. RCLL, it has at most a
finite number of jumps with �N = −1, and, moreover, each τE(N) can jump to 0 at most
once. Therefore, we can define an increasing sequence of stopping times by T̂0 = 0 and

T̂n+1 = inf{t > T̂n | T̂nE(N)t = 0} ∧ T = inf{t > T̂n | �Nt = −1} ∧ T , and (T̂n) tends to T
stationarily; this follows from the representation of the stochastic exponential in Theorem II.37
of [24].

Definition 3.1. An adapted RCLL process Y is an E -local martingale if the product of T̂nY and
T̂nE is a local P-martingale for any n ∈ N. It is an E -martingale if, for any n ∈ N, we have

E[|Y
T̂n
T̂nE

T̂n+1
|] < ∞ and the above product is a (true) P-martingale.

The next two propositions, which are Corollaries 3.16 and 3.17 of [4], give some information
about the structure of E -martingales.

Proposition 3.1. LetY be a special semimartingale, and letY = Y0+MY+AY be its canonical
decomposition. Then Y is an E -local martingale if and only if [MY ,N ] is locally P-integrable
and AY = −〈MY ,N〉.
Proposition 3.2. A semimartingale Y = Y0 +MY −〈MY ,N〉 with E[Y ∗

T (
T̂nE)∗T ] < ∞ for any

n ∈ N is an E -martingale.

We also need the following definitions.

Definition 3.2. We say that E is regular if T̂nE is a P-martingale for any n.

Definition 3.3. We say that E satisfies the reverse Hölder inequality R2(P) if there exists a
constant c ≥ 1 such that E[|tET |2 | Ft ] ≤ c for any t .

The next proposition is a partial statement of Proposition 3.9 of [4].

Proposition 3.3. Assume that E satisfies R2(P). Then E is regular if and only if τE is a
P-martingale for any stopping time τ , and in that case, τE is a P-square-integrable P-martingale.

Finally, a combination of Theorem 4.9 of [4] and Proposition 2.1 gives the following
equivalence of norms.

Proposition 3.4. Assume that E is regular and satisfies R2(P). Then there exists a constant c
such that

1

c
‖Y‖H2(P) ≤ ‖YT ‖L2(P) ≤ c‖Y‖H2(P)

for every E -martingale Y . We write this for short as ‖Y‖H2(P) ∼ ‖YT ‖L2(P).
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Note that, when 0E(N) is a strictly positive P-martingale, the definition of an E -local
martingale coincides with the notion of a local martingale under the measure Q defined by
dQ = 0E(N)T dP. This will be called the classical case.

As explained in the previous section, we consider a possibly incomplete financial market
composed of one riskless asset, whose price is 1, and d risky assets described by an R

d -valued
semimartingale S ∈ H2

loc(P) with canonical decomposition S = S0 + M + A. We suppose
that there exists N ∈ M0,loc(P) such that S is an E -local martingale. By Proposition 3.1, this
implies that 〈M,N〉 exists andA = −〈M,N〉. Moreover, we assume that E(N) satisfiesR2(P),
so N is locally P-square-integrable and in bmo2, i.e. there exists a constant c > 0 such that
E[〈N〉T − 〈N〉t | Ft ] ≤ c for all t ∈ [0, T ]; see Proposition 3.10 of [4]. An application of the
Kunita–Watanabe decomposition yieldsN = − ∫

λ dM +L with λ ∈ L2(M) and L ∈ M2
0(P)

strongly P-orthogonal to M , and, hence, S satisfies the structure condition, i.e.

S = S0 +M +
∫

d〈M〉λ.
SinceN is in bmo2,

∫
λ dM is also in bmo2, which implies by Theorem 3.3 of [9] the inequality

D2(P), i.e. there exists a constant c > 0 such that ‖ϑ‖L2(A) ≤ c‖ϑ‖L2(M) for all ϑ ∈ L2(M).
As a consequence, we have �S = L2(M). To motivate the closedness proof under trading
constraints, we give below the argument for the unconstrained case, which is due to Choulli et
al. [4, Theorem 5.2].

Proposition 3.5. Assume that E = E(N) is regular and satisfies R2(P), and that S ∈ H2
loc(P)

is an E -local martingale. Then the following statements hold.

(a) For each σ -field B0 ⊆ F0 and each Y0 ∈ L2(B0), the process Y0 + ∫
ϑ dS ∈ H2(P) is

an E -martingale.

(b) The spacesGT (�S), A(�S), andL2(B0)+GT (�S) for any σ -field B0 ⊆ F0 are closed
in L2(P).

Proof. (a) The stochastic integral
∫
ϑ dS is for each ϑ ∈ �S a special semimartingale

in H2(P) with canonical decomposition
∫
ϑ dS = ∫

ϑ dM + ∫
ϑ dA. Since S is an E -local

martingale, we have A = −〈M,N〉 by Proposition 3.1; so
∫
ϑ dA = −〈∫ ϑ dM,N〉, and,

therefore,
∫
ϑ dS is an E -local martingale again by Proposition 3.1. Since E is regular and

satisfiesR2(P), Proposition 3.3 states that τE is a square-integrable martingale for each stopping
time τ . By Doob’s inequality and Proposition 2.1, {τE}∗T and {G(ϑ)}∗T are in L2(P) so that
{G(ϑ)}∗T {τE}∗T is in L1(P) for every stopping time τ . Proposition 3.2 now implies that G(ϑ)
is an E -martingale. ReplacingG(ϑ) by Y0 shows in the same way that the constant process Y0
is an E -martingale for any Y0 ∈ L2(B0), and, hence, so is Y0 +G(ϑ).

(b) Let (Y n0 +GT (ϑ
n)) be a sequence in L2(B0) + GT (�S) converging to H in L2(P).

By part (a), each Yn0 +G(ϑn) is an E -martingale and, therefore, the sequence (Y n0 +G(ϑn))

is a Cauchy sequence in the Banach space H2(P) by Proposition 3.4, and, hence, convergent
to some Y ∈ H2(P) which satisfies YT = H . Since the space (of processes) Y0 + G(�S) is
closed in H2(P) (either by the construction of the stochastic integral as in Section IV.2 of [24]
or by Theorem V.4 of [20]), there exists some ϑ ∈ �S with Y = Y0 + G(ϑ), and, therefore,
L2(B0) + GT (�S) is closed in L2(P). Choosing first B0 = {∅, �} and then Yn0 = 0 for all
n ∈ N in the above argument, we obtain the closedness of A(�S) andGT (�S) inL2(P), which
completes the proof.

Remark 3.1. Assuming that there existsN ∈ M0,loc(P) such that E(N) is regular and P-square-
integrable and such that S is an E -local martingale implies the weak no-arbitrage condition that
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GT (�S) admits no approximate profits in L2; this means that 1 /∈ GT (�S), where the overline
denotes the closure in L2(P). See Section 4 of [27].

To obtain the closedness under constraints, we observe the following. If (Y n0 +GT (ϑ
n))

is a sequence in L2(B0) + GT (�S(C)) converging to some H in L2(P), then there exist,
under the assumptions of Proposition 3.5, some Y0 ∈ L2(B0) and some ϑ ∈ �S such that
Y0 +GT (ϑ) = H and (Y n0 +G(ϑn)) converges to Y0 +G(ϑ) even in H2(P). The question is
then whether ϑ can be chosen to be C-valued. In general (even if S is a martingale), the answer
is negative, as a simple counterexample in Section 3 of [6] illustrates. The reason behind this is
that the linear dependence of the different components of S can make some of the risky assets
redundant in the sense that one of them can be replicated on some predictable set by trading
in the other ones. As a consequence, there may exist different strategies with the same gains
process, and so a trading strategy is not uniquely determined (even up to indistinguishability)
by its gains process. Indeed, by the construction of the stochastic integral, two strategiesψ and
ϕ in �S have the same gains process up to indistinguishability if and only if cM(ψ − ϕ) = 0
and a�(ψ − ϕ) = 0, PB -almost everywhere (PB -a.e.); see Lemma 5.1 of [6]. Therefore, the
convergence of the gains processes G(ϑn) need not imply the pointwise convergence of the
strategies ϑn, and so the pointwise closedness of C(ω, t) is not sufficient to deduce that ϑ can
be chosen to be C-valued. However, the convergence of the gains processes is sufficient to
prove that we do get a convergent sequence (ψn) of modified strategies which have the same
gains processes as the strategies ϑn. This sequence is given by the projection of (ϑn) on the
predictable range of S.

Proposition 3.6. For each R
d -valued semimartingale Y , there exists an R

d×d -valued pre-
dictable process �Y , called the projection on the predictable range of Y , which takes values
in the orthogonal projections in R

d and has the following property. If ϑ ∈ L(Y ) and ϕ is
predictable, then ϕ is in L(Y ) with

∫
ϕ dY = ∫

ϑ dY (up to indistinguishability) if and only if
�Yϑ = �Yϕ, PB -a.e. We choose and fix one version of �Y .

Proof. See Lemma 5.3 of [6].

Remark 3.2. Suppose that S satisfies the structure condition. Then the construction of the
stochastic integral gives

∫
ψ dS = 0 if and only if

∫
ψ dM = 0, and, therefore, that �S and

�M coincide (PB -a.e.). Since
∫
ψ dM = 0 if and only if cMψ = 0, PB -a.e., we see that

ψ = ϑ − �Mϑ is PB -a.e. valued in Ker(cM), the kernel of the matrix cM . Moreover, since
�M is an orthogonal projection, so is Idd×d −�M , and, therefore, �M = �S can be chosen
as the pointwise orthogonal projection on range(cM(ω, t)), the range of the matrix cM(ω, t),
which is equal to Ker(cM(ω, t))⊥.

Using the projection on the predictable range, we can now prove the closedness in the
constrained case.

Theorem 3.1. Assume that E = E(N) is regular and satisfies R2(P), and that S ∈ H2
loc(P)

is an E -local martingale. Let C : � → 2R
d

be a predictable correspondence with closed
values and such that �S(C) is nonempty. Then the spaces GT (�S(C)), A(�S(C)), and
L2(B0)+GT (�S(C)) for any σ -field B0 ⊆ F0 are closed inL2(P) if and only if the projection
of C on the predictable range of S is closed, i.e. �S(ω, t)C(ω, t) is closed PB -a.e.

Proof. For the ‘⇐’ part, let (Y n0 +GT (ϑ
n)) be a sequence in L2(B0) + GT (�S(C))

converging to H in L2(P). Then there exist some Y0 ∈ L2(B0) and some ϑ ∈ �S such that
Y0 +GT (ϑ) = H , P-a.s., and (Y n0 +G(ϑn)) converges to Y0 +G(ϑ) in H2(P), by the proof
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of Proposition 3.5. The convergence in H2(P) implies the convergence in the semimartingale
topology by Theorem V.14 and the lemma preceding Theorem IV.12 of [24]. By Theorem 4.5
of [6], the space of stochastic integrals of C-valued integrands is closed in the semimartingale
topology if the projection of C on the predictable range of S is closed. Thus, there exists
ϑ̃ ∈ �S(C) such thatG(ϑ̃) = G(ϑ), and, therefore, L2(B0)+GT (�S(C)) is closed inL2(P).
As in the proof of Proposition 3.5, choosing B0 = {∅, �} and Yn0 = 0 for all n ∈ N gives the
closedness of A(�S) and GT (�S).

For the ‘⇒’ part, first note that, for any stopping time τ , the projection �S
τ

on the
predictable range of Sτ simply �SI[[0,τ ]], where [[0, τ ]] denotes, as in [24], the stochastic
interval from 0 to τ and I· denotes the indicator funtion. Recall that S ∈ H2

loc(P). Arguing
by contradiction, we choose a stopping time τ such that Sτ ∈ H2(P) and �S

τ
is not closed.

Applying Lemma 4.4 of [6] with Sτ and using the fact that
∫
ϕ dSτ = ∫

ϕI[[0,τ ]] dS for any
ϕ ∈ L(S) implies that there exist ϑ ∈ L(S) and a sequence (ψn) of C-valued integrands such
that (

∫
ψnI[[0,τ ]] dS) converges to

∫
ϑI[[0,τ ]] dS in the semimartingale topology, but there is

no C-valued integrand ψ such that
∫
ψI[[0,τ ]] dS = ∫

ϑI[[0,τ ]] dS. An inspection of the proof of
Lemma 4.4 of [6] shows that we can chooseϑ and (ψn) such that (�Sϑ)I[[0,τ ]] and (�Sψn)I[[0,τ ]]
are uniformly bounded and (�Sψn)I[[0,τ ]] → (�Sϑ)I[[0,τ ]] uniformly in (ω, t). Since∫

ψnI[[0,τ ]] dS =
∫
(�Sψn)I[[0,τ ]] dS and

∫
ϑI[[0,τ ]] dS =

∫
(�Sϑ)I[[0,τ ]] dS,

we have, by dominated convergence,
∫
(ψnI[[0,τ ]] + ϕI]]τ,T ]]) dS → ∫

ϑ̃ dS in H2(P) for any
ϕ ∈ �S(C), with ϑ̃ = ϑI[[0,τ ]] + ϕI]]τ,T ]], and, hence, also GT (ψnI[[0,τ ]] + ϕI]]τ,T ]]) → GT (ϑ̃)

in L2(P) by Proposition 2.1. But, because there exists by construction of ϑ̃ no C-valued
integrandψ withG(ψ) = G(ϑ̃) and sinceG(ϑ̃) is uniquely determined in H2(P)by its terminal
valueGT (ϑ̃) by Proposition 3.4, there cannot be any ψ ∈ �S(C)withGT (ψ) = GT (ϑ̃). This
contradicts the closedness of GT (�S(C)) in L2(P) and, therefore, completes the proof.

For a better understanding of our assumptions, we now spell them out in a multidimensional
Itô process model. This is one standard example of a financial market, and it illustrates that our
assumptions are weaker than those in [13], [14], and [19].

Example 3.1. Let W be an R
n-valued Brownian motion on a filtered probability space

(�,F ,F,P) with a filtration satisfying the usual conditions. Note that, for our results, F need
not be the P-augmentation of the filtration generated by W ; we do not use Itô’s representation
theorem. Let S̄ = (S̄i)i=1,...,d be the undiscounted price processes of the d risky assets, and let
S̄0 be the undiscounted price of the bank account. These processes are given as the solutions
to the stochastic differential equations (SDEs)

dS̄it = S̄it

(
µit dt +

n∑
j=1

σ
ij
t dWj

t

)
, S̄i0 = si0,

for i = 1, . . . , d with constants si0 > 0 and

dS̄0
t = S̄0

t rt dt, S̄0
0 = 1,

with predictable R
d -, R-, and R

d×n-valued processes µ, r , and σ that are P-a.s. on [0, T ]
Lebesgue-integrable and Lebesgue-square-integrable, respectively. In our abstract setup, we
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consider the discounted prices Si = S̄i/S̄0. The SDEs for the Si then take the form

dSit = Sit

(
(µit − rt ) dt +

n∑
j=1

σ
ij
t dWj

t

)
, Si0 = si0,

and we explicitly have

d〈M〉t = diag(St )σtσ
�
t diag(St ) dt =: cMt dt,

and

dAt = diag(St )(µt − rt1) dt =: at dt

with 1 = (1, . . . , 1)� ∈ R
d . Up to integrability conditions onµ, r , and σ , the process S satisfies

the structure condition if and only if (µ− r1) ∈ range(σσ�) dP ⊗ dt-a.e., since Sit > 0 for
i = 1, . . . , d. For a sufficient condition for this, we assume that σσ� is dP ⊗ dt-a.e. invertible,
which means that n ≥ d and that σ has dP ⊗ dt-a.e. full rank d. This condition also
implies that �S = Idd×d and, therefore, that the projection of any closed-valued predictable
correspondence C on the predictable range of S is closed. A natural candidate to obtain a
local martingale N such that S is an E(N)-martingale is N = − ∫

λ dM = − ∫
ϕ dW , where

ϕ = σ�λ = σ�(σσ�)−1(µ− r1) is the instantaneous market price of risk. Here we make the
frequently used assumption that the mean-variance tradeoff (MVT) process

Kt :=
∫ t

0
λ�
s d〈M〉sλs =

〈∫
λ dM

〉
t

=
〈∫

ϕ dW

〉
t

=
∫ t

0
|ϕs |2 ds,

which coincides in this setup with the integrated squared market price of risk, is uniformly
bounded in t and ω. This is sufficient to guarantee that E(− ∫

λ dM) is a true martingale and
satisfies R2(P) by Proposition 3.7 of [4]. As M is continuous, E(− ∫

λ dM) is strictly positive
and dP̂ = E(− ∫

λ dM)T dP defines an equivalent local martingale measure (ELMM) for the
process S, the so-called minimal martingale measure; see [27]. Thus, we can conclude that if
the MVT process K is uniformly bounded in t and ω, and σσ� is dP ⊗ dt-a.e. invertible, the
assumptions of Theorem 3.1 are satisfied and GT (�S(C)) and A(�S(C)) are closed in L2(P)
for all closed-valued predictable correspondences C. If we suppose in addition that S̄0

T and
1/S̄0

T are in L∞(P), which holds for instance if r is uniformly bounded in t and ω, then also the
corresponding sets S̄0

T GT (�S(C)), S̄
0
T (x +GT (�S(C))), and S̄0

TA(�S(C)) of undiscounted
payoffs attainable with constrained trading strategies considered in [13], [14], and [19] are
closed in L2(P).

Our assumptions are clearly far less restrictive than completeness of the (unconstrained)
financial market. The latter is imposed in [13] and [19] by the conditions that µ, r , and σ are
uniformly bounded in t and ω, that σ−1 exists and is uniformly bounded in t and ω as well, and
that F is the P-augmentation of the filtration generated by W . The last two assumptions allow
us to use Itô’s representation theorem and then rewrite integrals of W as integrals of S.

In [13] and [19], the constraints are not formulated in terms of the number of shares ϑi ,
but in terms of the cash amounts πi := ϑiS̄i invested in the different assets. To see that this
can also be handled in our formulation, let Cπ be a closed-valued predictable correspondence
which describes constraints on the cash amounts. Extending [13] and [19], this need not be
deterministic. Since S̄i > 0, we can define the correspondence Cϑ by

Cϑ(ω, t) := diag(S̄i(ω, t))−1Cπ(ω, t),
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which is, by Proposition 2.3 again, a closed-valued predictable correspondence and describes
by definition the same constraints as Cπ , but in the number of shares. Alternatively, we can
consider the dynamics of the gains process parametrised in cash amounts, i.e.

dGt(ϑ) = ϑ�
t diag(St )(µt − rt1) dt + ϑ�

t diag(St )σt dWt

= π�
t

1

S̄0
t

(µt − rt1) dt + π�
t

1

S̄0
t

σt dWt

= π�
t dXt,

G0(ϑ) = G0(π) = 0,

with the discounted returns process

dXt = 1

S̄0
t

(µt − rt1) dt + 1

S̄0
t

σt dWt, X0 = 1,

as the integrator. Then we can apply our results to the stochastic integrals
∫
π dX with

π ∈ �X(Cπ) :=
{
π ∈ L(X)

∣∣∣∣
∫
π dX ∈ H2(P) and

π(ω, t) ∈ Cπ(ω, t) for all (ω, t) ∈ �
}

rather than
∫
ϑ dS with ϑ ∈ �S(C

ϑ) to show that GT (�X(Cπ)) = GT (�S(C
ϑ)) is closed

in L2(P). In this parametrisation, each (undiscounted) payoff in S̄0
T (x +GT (�X(C

π))) is the
final value V̄T (x, π) of the wealth process of a self-financing trading strategy, where V̄ (x, π)
is given by the solution of the SDE

dV̄t (x, π) = (V̄t (x, π)rt + π�
t (µt − rt1)) dt + π�

t σt dWt, V̄0(x, π) = x.

For no short-selling constraints, i.e. Cπ = [0,+∞)d , Jin and Zhou [14] did not (and did not
need to) assume invertibility of σσ� to obtain a solution to the constrained Markowitz problem.
The reason behind this is that as [0,+∞)d is a polyhedral set, all its projections are closed. Of
course, our results cover this case as well.

To obtain (the existence of) a solution to the mean-variance hedging problem under
constraints, we assume in addition to the conditions of Theorem 3.1 that C : � → 2R

d
also

takes convex values. This gives the following relations to predictable convexity and stability
which come up naturally in dynamic portfolio optimisation problems. The notion of predictable
convexity was introduced in [11] to obtain an optional decomposition theorem under constraints,
and stability of a set of strategies is usually assumed to establish a dynamic programming
principle. The next result and its proof are inspired by Theorems 3 and 4 of [8].

Proposition 3.7. Assume that E = E(N) is regular and satisfies R2(P), and that S ∈ H2
loc(P)

is an E -local martingale. Let C ⊆ �S be nonempty and such that GT (C) is closed in L2(P).
Then the following statements are equivalent.

(a) The set C is predictably convex, i.e. for all ϑ and ϕ in C and all [0, 1]-valued predictable
processes k, the strategy kϑ + (1 − k)ϕ is in C.

(b) The set C is convex and stable, i.e. for all ϑ and ϕ in C, all t ∈ [0, T ], and all F ∈ Ft ,
the strategy ϑIFc + (ϑI[[0,t]] + ϕI]]t,T ]])IF is in C.
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(c) There exists a predictable correspondence C : � → 2R
d

with nonempty, closed, and
convex values such that the projection of C on the predictable range of S is closed, i.e.
�S(ω, t)C(ω, t) is closed PB -a.e., and

G(C) = {G(ϕ) | ϕ ∈ C} = {G(ϑ) | ϑ ∈ �S(C)} = G(�S(C)).

Proof. The implication (a)⇒(b) is obvious. For the remaining implications, we observe that,
by Proposition 3.4, the closedness of GT (C) in L2(P) is equivalent to that of G(C) in H2(P).
The equivalence (c)⇔(a) then follows from part 2 of Remark 4.12 of [6], and (b)⇒(a) from
(the arguments in the proof of) Lemma 11 of [8].

4. Existence of a solution

Having established the closedness of GT (�S(C)) and A(�S(C)), we are able to prove the
existence of a solution to the mean-variance hedging problem under trading constraints by using
the best approximation theorem in Hilbert spaces; see Theorem 1.4.1 of [2]. Although this looks
very easy, it is worth pointing out that our result is given for a very general framework. It covers
for instance the existence of a solution in the Itô process setting of Labbé and Heunis [19], Hu
and Zhou [13], and Jin and Zhou [14]. We also emphasise that our approach provides a unified
treatment for the above papers, which use different and more situation-based arguments like
convex duality for Itô processes, Itô’s representation theorem, linear-quadratic optimal control,
and backward SDE techniques.

Theorem 4.1. Assume that E = E(N) is regular and satisfies R2(P), and that S ∈ H2
loc(P)

is an E -local martingale. Let C : � → 2R
d

be a predictable correspondence with closed
convex values such that �S(C) is nonempty. Then the following statements hold for every
H ∈ L2(P).

(a) There exists a solution ϑ̂(x) ∈ �S(C) to the problem

E[|x +GT (ϑ)−H |2] = min
ϑ∈�S(C)

!

(b) There exists a solution (x̂, ϑ̂(x̂)) ∈ R ×�S(C) to the problem

E[|x +GT (ϑ)−H |2] = min
(x,ϑ)∈R×�S(C)

!

Proof. By Theorem 3.1,GT (�S(C)) and A(�S(C)) are closed and convex subsets ofL2(P).
Therefore, Theorem 1.4.1 of [2] implies the existence of a unique best approximation ofH − x
by an element in GT (�S(C)). This can be identified uniquely with an element G(ϑ̂(x)) in
G(�S(C)) which gives some ϑ̂(x) ∈ �S(C) and proves (a). In the same way, we obtain a
unique element v̂ in A(�S(C))which is the best approximation toH inL2(P), and v̂ can again
be identified with an element (x̂, ϑ̂(x̂)) in R ×�S(C).

Remark 4.1. (a) As explained in Example 3.1, the assumptions of Theorem 4.1 are satisfied
in the Itô process framework of [13] and [14]. By the argument in the proof of Theorem 11 of
[14], obtaining a solution to the constrained Markowitz problem, i.e.

minimise var[V̄T (x, π)] = E[|V̄T (x, π)|2] − z2

subject to π ∈ �X(Kπ) and E[V̄T (x, π)] = z
(4.1)

for z ≥ x E[S̄0
T ] and a predictable correspondenceKπ with closed and convex cones as values,
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is equivalent to finding a solution to

E

[(
V̄T (x, π)−

(
m1 −m2E

(
−

∫
λ dM −

∫
r dt

)
T

))2]
= min
π∈�X(Kπ )

!

for a suitable pair (m1,m2) ∈ R
2 of Lagrange multipliers. Therefore, the existence of a

solution to (4.1) follows from Theorem 4.1. The dynamic structure of this solution in a general
semimartingale framework is established in [7], which generalises the results obtained for a
complete Itô process model in Theorem 6.3 of [13].

(b) The problem studied in [19] in an Itô process framework is

E
[ 1

2 (ā|V̄T (x, π)|2 + c̄VT (x, π))
] + q = min

π∈�X(Cπ )
!,

where ā > 0 and 1/ā are in L∞(P), c̄ ∈ L2(P), q ∈ R, and Cπ ≡ K ⊆ R
d is a fixed closed

and convex set; see Equation (5.2) of [19]. To obtain a solution to this problem, we observe
that āS̄0

T (x +GT (�X(C
π))) is convex and closed inL2(P), since ā and 1/ā are inL∞(P), and

that we can write

E

[
1

2
(ā|V̄T (x, π)|2 + c̄VT (x, π))

]
+ q = 1

2
E

[∣∣∣∣āV̄T (x, π)+ c̄

2ā

∣∣∣∣2]
− E

[∣∣∣∣ c̄2ā
∣∣∣∣2]

+ q.

Then the existence of a solution follows as in the proof of Theorem 4.1 by the best approximation
theorem.

In order to also handle constraints on the trajectory of the wealth process, we use a simple
martingale argument which already appears in [3], in a complete Itô process model. For that,
we define the set of ELMMs for S with P-square-integrable density by

P
2
e(S) =

{
Q ∼ P

∣∣∣∣ S is a local Q-martingale and
dQ

dP
∈ L2(P)

}
.

Proposition 4.1. Suppose that S ∈ H2
loc(P) and that P

2
e(S) �= ∅. Let J be a closed interval

in R. Then the following statements hold for any ϑ ∈ �S and any x ∈ R.

(a) G(ϑ) takes values in J , P-a.s. if and only if its final value GT (ϑ) does.

(b) The wealth process V (x, ϑ) takes values in J , P-a.s. if and only if its final value VT (x, ϑ)
does.

Proof. Since V (x, ϑ) = x + G(ϑ), the proofs for (a) and (b) are completely analogous,
and the ‘only if’ part is obvious. For the ‘if’ part, choose Q ∈ P

2
e(S) and write J = [b1, b2]

with b1, b2 ∈ R. Because Q and P are equivalent, we can write a.s. without specifying which
measure is meant. Moreover, the density process ZQ is strictly positive and can be represented
as a stochastic exponential ZQ = E(LQ) with LQ = ∫

(1/ZQ
−) dZQ. In the proof of part

(a) of Proposition 3.5, the only point where we use the assumption that R2(P) is satisfied is
when ensuring that τE(N) is a P-square-integrable P-martingale for all stopping times τ by
Proposition 3.3. However, as this is already known for ZQ = E(LQ), we can apply the same
arguments here to show thatG(ϑ) is a Q-martingale for all ϑ ∈ �S . Hence, b1 ≤ GT (ϑ) ≤ b2
a.s. implies that b1 ≤ Gt(ϑ) ≤ b2 for all t ∈ [0, T ] a.s. For an infinite interval, the argument
is analogous.
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Combining the previous result with the L2-closedness of the space of terminal gains allows
us to solve the mean-variance hedging problem also under constraints on the trajectory of the
wealth process, again via the best approximation theorem.

Proposition 4.2. Suppose thatS ∈ H2
loc(P) and that there exists Q ∈ P

2
e(S) such that its density

processZQ satisfiesR2(P). Then the following statements hold for everyH ∈ L2(P) and every
closed interval J in R.

(a) With Gc(�S) = {GT (ϑ) ∈ GT (�S) | Gt(ϑ) ∈ J for all t ∈ [0, T ], P-a.s.}, there exists
a unique solution ĝ(x) ∈ Gc(�S) to the problem

E[|x + g −H |2] = min
g∈Gc(�S)

!

(b) With Ac(�S) = {VT (x, ϑ) ∈ A(�S) | Vt (x, ϑ) ∈ J for all t ∈ [0, T ], P-a.s.}, there
exists a unique solution v̂ ∈ Ac(�S) to the problem

E[|v −H |2] = min
v∈Ac(�S)

!

Proof. Thanks to Proposition 3.5, GT (�S) and A(�S) are closed in L2(P). By Proposi-
tion 4.1, we have

{GT (ϑ) ∈ GT (�S) | Gt(ϑ) ∈ J for all t ∈ [0, T ], P-a.s.} = {g ∈ GT (�S) | g ∈ J,P-a.s.},
{VT (x, ϑ) ∈ A(�S) | Vt (x, ϑ) ∈ J for all t ∈ [0, T ], P-a.s.}= {a ∈ A(�S) | a ∈ J,P-a.s.}.

Moreover, we have {g ∈ GT (�S) | g ∈ J,P-a.s.} = GT (�S) ∩ {f ∈ L2(P) | f ∈ J, P-a.s.}
and {v ∈ A(�S) | v ∈ J,P-a.s.} = A(�S) ∩ {f ∈ L2(P) | f ∈ J, P-a.s.}. Since J ⊆ R

is closed, the set {f ∈ L2(P) | f ∈ J, P-a.s.} is closed in L2(P) and, therefore, so are
{g ∈ GT (�S) | g ∈ J,P-a.s.} and {a ∈ A(�S) | a ∈ J,P-a.s.}. An application of the best
approximation theorem completes the proof.

5. Convex duality

While the existence result in Theorem 4.1 is valid in a general framework, its easy proof has
the drawback that it only gives the existence of a solution without any further properties. This
is one motivation to study mean-variance hedging problems under trading constraints by means
of convex duality. Typically, this provides additional insights into the structure of the solution,
e.g. that the value functions of the primal and dual problems are continuously differentiable,
strictly concave or convex, respectively, and conjugate to each other. Moreover, the solution of
the primal problem is linked via the inverse of the ‘marginal utility’ to the solution of the dual
problem.

The general outline of these arguments follows the classical approach of Kramkov and
Schachermayer [18] of maximising the expected utility from terminal wealth. The main idea
we adopt from there is to treat the problem first as a static optimisation problem. This can
be handled easily since we can apply duality theory in a Hilbert space. The obtained duality
and existence results are then transferred back to the level of stochastic processes. As for the
existence of a solution, the required condition to establish this dual formulation is the closedness
of the setGT (�S(C)). Of course, there is a lot of related work in the literature; we discuss this
in more detail in Section 5.3.
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To emphasise the analogy with utility maximisation, we rewrite the mean-variance hedging
problem as a maximisation problem. This is then our primal problem and consists of finding
the optimal trading strategy over time.

Primal Problem. (Stochastic processes.)

E
[− 1

2 |x +GT (ϑ)−H |2] = max
ϑ∈�S(C)

! (5.1)

The objective function in (5.1) is U(x, ω) = − 1
2 |x −H(ω)|2, which depends on the state

ω and is strictly convex and continuously differentiable in x. Its derivative and the inverse of
that are U ′(x, ω) = −x +H(ω) and I (y, ω) = (U ′)−1(y, ω) = −y +H(ω). Since U fails to
be monotonic in x, it is not a utility function in the proper sense. But, as it satisfies the other
properties of a utility function and represents our preferences, we call it a ‘quadratic utility
function’.

Now observe that (5.1) involves only the terminal wealth x + GT (ϑ). Hence, we do not
change the optimal value if we regard (5.1) as an optimisation problem over the set of square-
integrable random variables defined by

C(x) = {f ∈ L2(P) | f = x +GT (ϑ) for some ϑ ∈ �S(C)} = x +GT (�S(C)).

This leads to the corresponding static optimisation problem, which runs only over a set of
random variables.

Primal Problem. (Random variables.)

E[U(f )] = E
[− 1

2 |f −H |2] = max
f∈C(x)

! (5.2)

By construction, both problems have the same value function

u(x) = sup
ϑ∈�S(C)

E[U(x +GT (ϑ))] = sup
f∈C(x)

E[U(f )].

5.1. Duality for static variables

If C : � → 2R
d

is a predictable correspondence with closed convex values and the
assumptions of Theorem 3.1 are satisfied, it follows from there that GT (�S(C)) is a closed
convex subset of L2(P). Thus, the set of primal variables has the general structure

C(x) = x + Gc,

where
Gc is a nonempty, closed, and convex subset of L2(P). (5.3)

Moreover, the assumptions of Theorem 3.1 also imply that with G = span{Gc}, the set

P
2
s (G) =

{
Q � P

∣∣∣∣ Q is a signed measure with Q[�] = 1,
dQ

dP
∈ L2(P), and

dQ

dP
∈ G⊥

}

of signed G-martingale measures is nonempty, where G⊥ denotes the orthogonal complement
of G in L2(P). Hence, we also suppose in our abstract static setting that

P
2
s (G) �= ∅. (5.4)
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We emphasise that these simple structural properties will be enough to establish the desired
duality results in the static setting. To obtain a dual characterisation of the primal variables,
we use the following characterisation of closed convex sets K in a Hilbert space H; see Theo-
rem 2.5.1 of [2]. For any k ∈ H,

k ∈ K ⇐⇒ (h, k)H ≤ sup
k′∈K

(h, k′)H =: δ(h|K) for all h ∈ H,

where (·, ·)H denotes the scalar product in H and

δ(h|K) := sup
k′∈K

(h, k′)H

is the support function of K. It is easy to see that the support function of a general nonempty
set is positively homogeneous, convex, lower semicontinuous, and bounded from below by
− mink∈K ‖k‖H‖h‖H, which is finite if K is nonempty; see Proposition 2.5.1 of [2]. Applying
this characterisation to Gc and L2(P), we obtain, for any g ∈ L2(P),

g ∈ Gc ⇐⇒ E[hg] ≤ sup
g′∈Gc

E[hg′] =: δ(h|Gc) for all h ∈ L2(P), (5.5)

where δ(·|Gc) is the support function of the set Gc.
To deduce dual variables from characterisation (5.5), we observe from [18], [21], and [23]

that, for the general outline of the arguments for the dual approach to hold, the dual variables
should have the following properties. First, they should be defined in such a way that the dual
problem, which is an optimisation problem over the set of dual variables, attains its solution.
Since the primal problem is a maximisation for a concave function, the dual problem is a
minimisation for a convex function. Thus, it should be enough for the existence of a solution
that the set of dual variables is convex and closed. Second, one should be able to establish a
duality relation between the sets of primal and dual variables that allows one to show that a
natural candidate derived from the dual solution lies in the set of primal variables. This candidate
is given by the inverse I of the quadratic ‘marginal utility’applied to the dual solution, as follows
typically from the first-order condition for optimality in the dual problem. Third, to show that
the value functions of the primal and dual problems are conjugate, the product of the parameters
x and y of the primal and dual problem should appear in the upper bound for the expectation
of a primal and a dual variable for the corresponding parameters.

Let us start with the last point. For a primal variable f ∈ C(x) and an element h of L2(P),
the general structure of the primal variables gives

E[f h] = E[(x + g)h] ≤ x E[h] + δ(h|Gc).
This motivates us to define the static dual variables by

D(y) = {h ∈ L2(P) | E[h] = y, δ(h|Gc) < ∞} for y ∈ R,

because this gives the third of the above properties, i.e.

f ∈ C(x), h ∈ D(y) �⇒ E[f h] ≤ xy + δ(h|Gc). (5.6)

By continuity and linearity of the expectation and lower semicontinuity and convexity of the
support function, the set D(y) is closed and convex in L2(P) and, thus, also likely to satisfy
the first property listed above. Note that D(y) contains y dQ/dP for any Q ∈ P

2
s (G) so that it is

nonempty due to (5.4). The second property from above will follow via the dual characterisation
(5.5) of convex closed sets in L2(P); see the proof of Theorem 5.1 below.
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Remark 5.1. (a) For a linear subspace Gc = G, characterisation (5.5) simplifies to orthogonal-
ity, and the dual domain becomes D(y) = {h ∈ L2(P) | E[h] = y, h ∈ G⊥

c }. Moreover, we
have D(y) = yP

2
s (G) for any y �= 0. This is exploited in [12] for the dual formulation in the

unconstrained case.

(b) If Gc is a cone, the support function δ(·|Gc) only takes the values 0 and ∞ and (5.5) therefore
reduces to the bipolar relation

g ∈ Gc ⇐⇒ E[hg] ≤ 0 for all h ∈ G◦
c,

where G◦
c = {h ∈ L2(P) | E[hg] ≤ 0 for all g ∈ Gc} is the polar of Gc. Since G◦

c is again a
cone, we have D(y) = yD(1) for y > 0 and D(y) = |y|D(−1) for y < 0. The sets D(1)
and D(−1) can then be interpreted as the sets of all Radon–Nikodým derivatives of signed
Gc-supermartingale and Gc-submartingale measures, respectively. The above simplification
explains why the majority of papers concentrate on constraints given by closed convex cones.

Returning to the general case, we work as usual with the Legendre transform V in x of
−U(− ·, ω) to derive the formulation of the dual problem. The function V is given by

V (y, ω) = sup
x∈R

{U(x, ω)− xy} = U(I (y, ω))− I (y, ω)y = 1
2y

2 − yH(ω);

it depends on the state ω and is continuously differentiable and strictly convex in y. The
motivation for using the Legendre transform comes from looking for the sharpest inequality
such that

U(x, ω) ≤ V (y, ω)+ xy for all x, y ∈ R and all ω ∈ �.
Plugging in f ∈ C(x) and h ∈ D(y) for x and y in the above inequality, taking expectations,
and optimising on both sides gives, via (5.6),

u(x) = sup
f∈C(x)

E[U(f )]

≤ inf
y∈R

{
inf

h∈D(y)
E[V (h)+ gh]

}
≤ inf
y∈R

{
inf

h∈D(y)
{E[V (h)] + δ(h|Gc)} + xy

}
= inf
y∈R

{v(y)+ xy}, (5.7)

where the value function of the dual problem on the level of random variables is

v(y) = inf
h∈D(y)

{E[V (h)] + δ(h|Gc)}.

Note that the objective function of the dual problem explicitly involves the constraints via the
support function δ.

Dual Problem. (Random variables.)

�(h) := E[V (h)] + δ(h|Gc) = min
h∈D(y)

! (5.8)

From the inequalities in (5.7), we see that if we can find for a given x a pair (f̂ (x), ĥ(y)) of
primal and dual variables such that the equality holds in (5.7), we have also found a solution
to the primal problem (5.2), as f̂ (x) attains the supremum. Of course, y will then also depend
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on x. So an abstract recipe for solving the primal problem is as follows.

1. Find the solution ĥ(y) to the dual problem (5.8) for any y ∈ R.

2. Find the minimiser ŷ(x) for the indirect dual problem v(y) + xy = miny∈R! for any
x ∈ R.

3. Define ĥ := ĥ(ŷ(x)) and f̂ (x) := I (ĥ), and show that E[I (ĥ)ĥ] = xŷ(x)+ δ(ĥ|Gc).
4. If we can show that f̂ (x) ∈ C(x) then f̂ (x) solves (5.2), since we have, by combining

(5.7) with steps 1–3,

u(x) ≤ inf
y∈R

{v(y)+ xy}
= v(ŷ(x))+ xŷ(x)

= E[V (ĥ)] + δ(ĥ|Gc)+ xŷ(x)

= E[U(I (ĥ))− I (ĥ)ĥ] + δ(ĥ|Gc)+ xŷ(x)

= E[U(f̂ (x))]
≤ u(x).

To solve the primal problem (5.2), it now remains to implement the above recipe. We start
by solving the dual problem, making use of the following result from convex analysis; see
Proposition 1.2 of [10].

Proposition 5.1. Let B be a reflexive Banach space, letK be a nonempty closed convex subset
of B, and let F be a strictly convex, coercive, and lower-semicontinuous function from B into
R ∪ {+∞} that is proper on K . Then there exists a unique solution b̂ ∈ K to

F(b) = min
b∈K!

Taking B = L2(P) and K = D(y), we only need to check that the dual objective function
� satisfies the properties of F to apply the proposition.

Lemma 5.1. For every H ∈ L2(P), the mapping

h �→ �(h) = E[V (h)] + δ(h|Gc) = E
[ 1

2h
2 − hH

] + δ(h|Gc)
from L2(P) into R ∪ {+∞} is strictly convex, lower semicontinuous, coercive, and uniformly
bounded from below by − 1

2 (‖H‖L2(P) + ming∈Gc ‖g‖L2(P))
2.

Proof. We begin by proving that the mapping h �→ E[V (h)] from L2(P) into R is strictly
convex and continuous. The first property follows immediately from the strict convexity of the
function V (·, ω) for all ω ∈ �. If (hn) converges to h in L2(P) then (hn) is bounded in L2(P)
and the Cauchy–Schwarz inequality gives∣∣E[ 1

2h
2
n − hnH

] − E
[ 1

2h
2 − hH

]∣∣
= ∣∣E[

(hn − h)
( 1

2 (hn + h)−H
)]∣∣

≤ ‖hn − h‖L2(P)

(
1
2

(
sup
n∈N

‖hn‖L2(P) + ‖h‖L2(P)

)
+ ‖H‖L2(P)

)
→ 0 as n → ∞,
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which proves the claimed continuity. Since δ(·|Gc) is convex and lower semicontinuous, the
sum �(·) = E[V (·)] + δ(·|Gc) is strictly convex and lower semicontinuous. Moreover, the
Cauchy–Schwarz inequality implies that

�(h) = E
[ 1

2h
2 − hH

] + δ(h|Gc)
≥ 1

2‖h‖2
L2(P) − ‖h‖L2(P)

(
‖H‖L2(P) + min

g∈Gc
‖g‖L2(P)

)
, (5.9)

which gives coercivity, since the right-hand side tends to ∞ as ‖h‖L2(P) → ∞ because
ming∈Gc ‖g‖L2(P) is finite. Minimising the right-hand side over ‖h‖L2(P) also gives the asserted
lower bound, which completes the proof.

From the definition of D(y), we know that ydQ/dP is in D(y) for every y ∈ R and
Q ∈ P

2
s (G). Since δ(y dQ/dP|Gc) = 0, assumption (5.4) implies that � is proper on D(y)

for each y ∈ R. Therefore, all the conditions of Proposition 5.1 are satisfied in the setting of
the dual problem, and the existence of a solution to the dual problem follows by combining
Lemma 5.1 with Proposition 5.1. This gives the following result.

Proposition 5.2. Under assumption (5.3) and assumption (5.4), there exists a unique solution
ĥ(y) ∈ D(y) to the dual problem (5.8) for every H ∈ L2(P) and each y ∈ R, i.e.

�(ĥ(y)) = E[V (ĥ(y))] + δ(ĥ(y)|Gc) = inf
h∈D(y)

E[V (h)] + δ(h|Gc) = v(y).

By Proposition 5.2, the function v inherits all nice properties of�, which enables us to solve
the indirect dual problem by again using Proposition 5.1.

Lemma 5.2. Under assumptions (5.3) and (5.4), the function v is strictly convex, continuous,
and coercive.

Proof. If y1, y2 ∈ R and µ ∈ (0, 1), then µĥ(y1)+ (1 − µ)ĥ(y2) ∈ D(µy1 + (1 − µ)y2);
so

µv(y1)+ (1 − µ)v(y2) = µ�(ĥ(y1))+ (1 − µ)�(ĥ(y2))

> �(µĥ(y1)+ (1 − µ)ĥ(y2))

≥ v(µy1 + (1 − µ)y2)

by Proposition 5.2 and the strict convexity of �. Hence, v is strictly convex, and contin-
uous like any convex function on R with finite values; see Corollary II.10.1.1 of [25]. By
Jensen’s inequality, ‖ĥ(y)‖L2(P) ≥ E[ĥ(y)] = y tends to ∞ as y → ∞. Thus, coercivity of �
implies coercivity of v, again by Proposition 5.2. Note that in view of (5.9), v(y) even grows
quadratically as |y| → ∞.

Since a continuous function is obviously proper, applying Proposition 5.1 to the strictly
convex, continuous, and coercive mapping y �→ v(y) + xy on R immediately gives the
following result.

Corollary 5.1. Assume that (5.3) and (5.4) hold. For every x ∈ R, there exists a unique
ŷ(x) ∈ R that solves

v(y)+ xy = min
y∈R

!
Now we have everything in place to formulate and prove the abstract static version of the

main result of this section.
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Theorem 5.1. Suppose as in (5.3) that Gc is a nonempty, convex, and closed subset of L2(P),
and impose assumption (5.4) that P

2
s (G) �= ∅. Then the following statements hold.

(a) For every x ∈ R, there exists a unique solution f̂ (x) ∈ C(x) to

E
[− 1

2 |f −H |2] = max
f∈C(x)

!

It is given by
f̂ (x) = I (ĥ(ŷ(x))) = −ĥ(ŷ(x))+H,

where ĥ(ŷ(x)) ∈ D(ŷ(x)) and ŷ(x) ∈ R are respectively the unique solutions to

�(h) = E
[ 1

2h
2 − hH

] + δ(h|Gc) = min
h∈D(ŷ(x))

!

and
v(y)+ xy = min

y∈R

! (5.10)

(b) The value functions u and v are conjugate, i.e.

u(x) = inf
y∈R

{v(y)+ xy}, v(y) = sup
x∈R

{u(x)− xy},

and continuously differentiable. Furthermore, u is strictly concave and v is strictly
convex.

(c) We have the equivalent relations

E[f̂ (x)ĥ(ŷ(x))] = xŷ(x)+ δ(ĥ(ŷ(x))|Gc), (5.11a)

E[f̂ (x)U ′(f̂ (x))] = xu′(x)+ δ(U ′(f̂ (x))|Gc), (5.11b)

E[ĥ(ŷ(x))V ′(ĥ(ŷ(x)))] = ŷ(x)v′(ŷ(x))− δ(ĥ(ŷ(x))|Gc). (5.11c)

Proof. (a) Since ŷ(x) and ĥ := ĥ(ŷ(x)) solve problems (5.10) and (5.8), the definition of
D(y) implies that ĥ(ŷ(x)) is also the solution to

�(h)+ x E[h] = min
h∈L2(P)

! = min
h∈D(ŷ(x))

! (5.12)

For ε ∈ (0, 1) and h ∈ L2(P), set hε = ĥ+ εh. Then optimality of ĥ for (5.12) gives

0 ≤ lim inf
ε↘0

�(hε)+ x E[hε] − (�(ĥ)+ x E[ĥ])
ε

= lim inf
ε↘0

{
E[(ĥ−H + x)h] + 1

2
ε E[h2] + δ(ĥ+ εh|Gc)− δ(ĥ|Gc)

ε

}
, (5.13)

where the last expression is well defined as δ(ĥ|Gc) is finite. Hence, we obtain, by using
I (ĥ) = −ĥ+H and the sublinearity of δ(·|Gc),

E[(I (ĥ)− x)h] ≤ δ(h|Gc) for all h ∈ L2(P), (5.14)

and, thus, I (ĥ)− x ∈ Gc, i.e. I (ĥ) ∈ C(x), by the characterisation of closed convex sets in (5.5).
Substituting h = −ĥ into (5.13) and using the positive homogeneity of δ(·|Gc) gives

E[(I (ĥ)− x)(−ĥ)] ≤ −δ(ĥ|Gc).
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Combining this with (5.14) for h = ĥ gives

δ(ĥ|Gc) = E[(I (ĥ)− x)ĥ] = E[I (ĥ)ĥ] − xŷ(x). (5.15)

Hence, we obtain from (5.15), as in step 4 of the abstract recipe,

u(x) ≥ E[U(I (ĥ))]
= E[V (ĥ)+ I (ĥ)ĥ]
= E[V (ĥ)] + δ(ĥ|Gc)+ xŷ(x)

= v(ŷ(x))+ xŷ(x)

≥ u(x), (5.16)

which shows that f̂ (x) := I (ĥ(ŷ(x))) indeed maximises E[U(f )] over C(x).
(b) Since we have equality in (5.16) and ŷ(x) attains infy∈R{v(y) + xy}, we also have

u(x) = infy∈R{v(y)+xy} for all x ∈ R and then v(y) = supx∈R{u(x)−xy} by the biconjugate
property of the Legendre transform; see Theorem III.12.2 of [25]. To show the strict concavity
of u, we fix x1, x2 ∈ R and µ ∈ (0, 1). Then µf̂ (x1)+ (1−µ)f̂ (x2) is in C(µx1 + (1−µ)x2)

and so part (a) yields, by the strict concavity of U(·, ω),
µu(x1)+ (1 − µ)u(x2) = E[µU(f̂ (x1))+ (1 − µ)U(f̂ (x2))]

< E[U(µf̂ (x1)+ (1 − µ)f̂ (x2))]
≤ u(µx1 + (1 − µ)x2).

Continuous differentiability of u and v follows since the Legendre transform of a strictly convex
function is differentiable; see Theorems V.24.1 and V.26.3 of [25]. Since v is continuously
differentiable, we obtain for the minimiser ŷ(x) of v(y) + xy over y ∈ R the relation
v′(ŷ(x)) = −x. Again by general results on the Legendre transform, we have

V ′(·, ω) = −(U ′)−1(·, ω) = −I (·, ω)
and v′ = −(u′)−1; see Theorem V.23.5 of [25]. Combining this with v′(ŷ(x)) = −x,
f̂ (x) = I (ĥ), and (5.15) gives the relations in (5.11). This completes the proof.

5.2. Duality for dynamic variables

Under the assumptions of Theorem 3.1, Theorem 5.1 already implies the existence of a
unique solution to the primal problem (5.1) by choosing Gc = GT (�S(C)), i.e. there exists
an optimal trading strategy ϑ̂(x) ∈ �S(C) such that f̂ (x) = x +GT

(
ϑ̂(x)

)
. In particular, we

recover Theorem 4.1(b).
To establish an analogous duality result on the level of stochastic processes, we need a

dynamic version for the dual variables. If we assume for simplicity that

F = FT ,

we can identify every h ∈ L2(P) with a square-integrable RCLL martingale Z = Z(h) given
by Zt = E[h | Ft ] for t ∈ [0, T ]. The Kunita–Watanabe decomposition then yields

Zt = E[h | F0] +
∫ t

0
ηs dMs + Rt , t ∈ [0, T ],
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with η ∈ L2(M) and R ∈ M2
0(P) strongly P-orthogonal toM . We choose this parametrisation

because it makes it easy to calculate the dynamics of the product of a gains process and a dual
variable. Moreover, it is similar to [5], where dual variables are supermartingale measures
for the gains processes of constrained trading strategies. The parametrisation in [5] can be
obtained by applying the Kunita–Watanabe decomposition to the stochastic logarithm of the
density process, and in the Brownian filtration of [5], this decomposition can of course be
replaced by Itô’s representation theorem; see [5] and Example 3.2 of [21].

Lemma 5.3. Suppose that S is in H2
loc(P) and satisfies the structure condition. For every

ϑ ∈ �S and every Z ∈ M2(P), the process(
Gt(ϑ)Zt −

∫ t

0
(ηs + Zs−λs)�cMs ϑs dBs

)
0≤t≤T

(5.17)

is then a P-martingale with P-integrable supremum, i.e. a martingale in H1(P).

Proof. Applying the product rule and using the fact that S satisfies the structure condition
gives

d(G(ϑ)Z) = Z−ϑ dM + Z−ϑ� d〈M〉λ+G−(ϑ) dZ + d

[
Z,

∫
ϑ dA

]
+ d

[
Z,

∫
ϑ dM

]
.

Clearly,
∫
Z−ϑ dM and

∫
G−(ϑ) dZ are local P-martingales. Moreover, 〈Z, ∫ ϑ dM〉 exists

because Z ∈ M2(P) and ϑ ∈ L2(M), and [Z, ∫ ϑ dA] is a local martingale by Yoeurp’s

lemma. Writing ‘
mart= ’ for equality up to a local P-martingale and using the fact that R is

strongly P-orthogonal to M , we thus obtain

d(G(ϑ)Z)
mart= Z−ϑ� d〈M〉λ+ ϑ� d〈Z,M〉 mart= (η + Z−λ)� d〈M〉ϑ.

This shows that the process in (5.17) is a local P-martingale. To check integrability, we first
observe that, by Doob’s inequality and Proposition 2.1, (ZG(ϑ))∗T is inL1(P) sinceZ ∈ M2(P)
and G(ϑ) ∈ H2(P), and that the Kunita–Watanabe inequality gives

E

[(∫
η� d〈M〉ϑ

)∗

T

]
≤ E

[∫ T

0
|η�
s c

M
s ϑs | dBs

]
≤ ‖η‖L2(M)‖ϑ‖L2(M) < ∞.

Moreover, using
∫ |ϑ dA| = ∫ |ϑ�cMλ| dB and the Cauchy–Schwarz and Doob inequalities

allows us to estimate the remaining term by

E

[(∫
Z−ϑ� d〈M〉λ

)∗

T

]
≤ E

[
Z∗
T

∫ T

0
|ϑ�
s c

M
s λs | dBs

]
≤ 2‖ZT ‖L2(P)‖ϑ‖L2(A).

Replacing cMt dBt by d〈M〉t and using the estimate(
G(ϑ)Z −

∫
(η + Z−λ)�cMϑ dB

)∗

T

≤ (ZG(ϑ))∗T +
(∫

η� d〈M〉ϑ
)∗

T

+
(∫

Z−ϑ� d〈M〉λ
)∗

T

then shows that the local P-martingale in (5.17) has a P-integrable supremum.
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Using Lemma 5.3 and optimising over ϑ immediately gives, for every Z ∈ M2(P),

sup
ϑ∈�S(C)

E[GT (ϑ)ZT ] = sup
ϑ∈�S(C)

E

[∫ T

0
(ηs + Zs−λs)�cMs ϑs dBs

]

≤ E

[∫ T

0
δ(cMs (ηs + Zsλs)|C) dBs

]
(5.18)

by the definition of the support function δ(·|C), because each ϑs has values in C. The next
result shows that we even have equality in (5.18). Note that we use the same symbol δ for
support functions in two different Hilbert spaces—L2(P) on the left-hand side and R

d on the
right-hand side of (5.19).

Lemma 5.4. Suppose that S is in H2
loc(P) and satisfies the structure condition. For every

Z ∈ M2(P),

δ(ZT |GT (�S(C))) = sup
ϑ∈�S(C)

E[GT (ϑ)ZT ] = E

[∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
. (5.19)

Proof. Without loss of generality, we can assume that 0 ∈ C(ω, t). Indeed, let ϕ be in
�S(C) and set C′ = C − ϕ, which is, by Proposition 2.2, a predictable correspondence with
0 ∈ C′(ω, t). Then �S(C) = �S(C

′)+ ϕ and, therefore,

δ(ZT |GT (�S(C))) = δ(ZT |GT (�S(C′)))+ E[ZTGT (ϕ)]
and

E

[∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]

= E

[∫ T

0
δ(cMs (ηs + Zs−λs)|C′) dBs +

∫ T

0
ϕ�
s c

M
s (ηs + Zs−λs) dBs

]
.

Since E[ZTGT (ϕ)] = E[∫ T0 ϕ�
s c

M
s (ηs + Zs−λs) dBs] by Lemma 5.3, (5.19) holds forC if and

only if it holds for C′.
In view of (5.18), it remains to show that

sup
ϑ∈�S(C)

E[GT (ϑ)ZT ] ≥ E

[∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
.

To this end, we construct a sequence (ϑn) of C-constrained trading strategies such that

lim
n→∞ E[GT (ϑn)ZT ] = E

[∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
.

Define a function f : �× R
d → R by

f ((ω, t), z) := (η(ω, t)+ Z(ω, t−)λ(ω, t))�cM(ω, t)y
and, for each n ∈ N, a predictable correspondence Cn by

Cn(ω, t) := C(ω, t) ∩ Bn(0) ⊆ R
d

for (ω, t) ∈ �, where Bn(0) denotes the closure of the ball of radius n in R
d . Note that the

Cn have convex and compact values and that 0 ∈ Cn(ω, t) for (ω, t) ∈ � and each n ∈ N.

https://doi.org/10.1239/aap/1354716590 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716590


Convex duality in mean-variance hedging under convex trading constraints 1107

Moreover, f (·, z) is predictable for z ∈ R
d and f ((ω, t), ·) is continuous for (ω, t) ∈ �, i.e. f

is a Carathéodory function. Let {xn,m | m ∈ N} be a Castaing representation for Cn as in
Proposition 2.2, and define

gn(ω, t) := δ(cM(ω, t)(η(ω, t)+ Z(ω, t−)λ(ω, t))|Cn(ω, t)) = sup
x∈Cn(ω,t)

f ((ω, t), x).

As gn(ω, t) = supm∈N f ((ω, t), x
n,m(ω, t)) by Proposition 2.2, gn is predictable and finite-

valued by the compactness of Cn(ω, t). Combining Propositions 2.3 and 2.4 tells us that

Dn(ω, t) = {z ∈ Cn(ω, t) | f ((ω, t), z) = gn(ω, t)}
is a predictable correspondence with nonempty, convex, and compact values. Let yn be a
predictable selector of Dn. Then gn(ω, t) = f ((ω, t), yn(ω, t)) and

δ(cM(ω, t)(η(ω, t)+ Z(ω, t−)λ(ω, t))|C(ω, t)) = lim
n→∞ f ((ω, t), y

n(ω, t)),

where the limit is increasing since C(ω, t) = ⋃
n∈N

Cn(ω, t). Let (τm)m∈N be a localising
sequence such that Sτm is in H2(P). Since |yn(ω, t)| ≤ n and each C(ω, t) contains 0, the
process ϑn := ynI[[0,τn]] is in �S(C) for each n ∈ N. Hence, Lemma 5.3 and monotone
integration yield

lim
n→∞ E[GT (ϑn)ZT ] = lim

n→∞ E

[∫ τn

0
(yns )

�cMs (ηs + Zs−λs) dBs

]

= E

[∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
,

which completes the proof.

As Lemma 5.4 relates the support function δ(·|GT (�S(C))) to the expectation of the terminal
value of a stochastic process, we are led to reformulate the dual problem (5.8) on the level of
stochastic processes in the following way.

Dual Problem. (Stochastic processes.)

�(ZT ) = E

[
1

2
Z2
T − ZTH +

∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
= min
Z∈Y(y)

!, (5.20)

where

Y(y) =
{
Z ∈ M2(P)

∣∣∣∣ Z = Z0 +
∫
η dM + R with Z0 ∈ L2(P,F0), η ∈ L2(M),

R ∈ M2
0(P) strongly P-orthogonal to M , and E[ZT ] = E[Z0] = y

}
.

Remark 5.2. In the Itô process framework of Example 3.1 and if F is the P-augmentation of
the filtration generated byW , the above dual problem (5.20) for stochastic processes specialises
to the dual problem considered in [19, Equation 5.37]; this only requires some adjustments to
the notation, along the lines of Remark 4.1(b).
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Now set Gc := GT (�S(C)) so that Lemma 5.4 gives an explicit representation of the support
function δ(·|Gc). Then the functions � in (5.8) and (5.20) coincide, and by identifying each
h ∈ L2(P) with the corresponding square-integrable martingale, it also follows that (5.8) and
(5.20) have the same optimal value and, therefore, the same value function

v(y) = inf
Z∈Y(y)

E

[
1

2
Z2
T − ZTH +

∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
= inf
h∈D(y)

{E[V (h)] + δ(h|Gc)}. (5.21)

Moreover, we have the following relation between the primal and dual variables on the level of
stochastic processes.

Lemma 5.5. Suppose that S is in H2
loc(P) and satisfies the structure condition. For every

x ∈ R, ϑ ∈ �S(C), and Z ∈ M2(P) with δ(ZT |Gc) < ∞, the process(
(x +Gt(ϑ))Zt −

∫ t

0
δ(cMs (ηs + Zs−λs)|C) dBs

)
0≤t≤T

is a P-supermartingale.

Proof. The process (x+G(ϑ))Z−∫ t
0 (η+Z−λ)�cMϑ dB is a P-martingale by Lemma 5.3

and because Z is a P-martingale. Moreover,∫
δ(cM(η + Z−λ)|C) dB −

∫
(η + Z−λ)�cMϑ dB

is adapted and increasing by the definition of the support function δ(·|Gc), and integrable due
to Lemma 5.4 since δ(ZT |Gc) < ∞. Taking the difference gives the result.

Remark 5.3. In our formulation, the process (
∫
δ(cM(η + Z−λ)|C) dB) plays a similar role

as the upper variation process A(Q) in the optional decomposition of Föllmer and Kramkov of
[11]; see also Example 3.2 of [21].

Combining Lemma 5.4 with Lemma 5.5 gives a result for stochastic processes which is
analogous to Theorem 5.1.

Theorem 5.2. Assume that E = E(N) is regular and satisfies R2(P), and that S ∈ H2
loc(P) is

an E -local martingale. Let C : � → 2R
d

be a predictable correspondence with closed convex
values such that �S(C) is nonempty and the projection of C on the predictable range of S is
closed, i.e. �S(ω, t)C(ω, t) is closed PB -a.e. Then the following statements hold.

(a) For every x ∈ R and H ∈ L2(P), there exists a solution ϑ̂(x) ∈ �S(C) to

E
[− 1

2 |x +GT (ϑ)−H |2] = max
ϑ∈�S(C)

!
All solutions ϑ̂(x) have the same gains process G(ϑ̂(x)) and satisfy

x +GT (ϑ̂(x)) = I (ẐT ) = −ẐT +H,

where Ẑ ∈ Y(ŷ(x)) and ŷ(x) ∈ R are respectively the unique solutions to

�(ZT ) = E

[
1

2
Z2
T − ZTH +

∫ T

0
δ(cMs (ηs + Zs−λs)|C) dBs

]
= min
Z∈Y(ŷ(x))

!
and

v(y)+ xy = min
y∈R

!
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(b) The value functions u and v are conjugate, i.e.

u(x) = inf
y∈R

{v(y)+ xy}, v(y) = sup
x∈R

{u(x)− xy},

and continuously differentiable. Furthermore, u is strictly concave and v is strictly
convex.

(c) The process (x + G(ϑ̂(x)))Ẑ − ∫
δ(cM(η̂ + Ẑ−λ)|C) dB is a P-martingale for all

solutions ϑ̂(x), and (η̂s + Ẑs−λs)�cMs ϑ̂s(x) = δ(cMs (η̂s + Ẑs−λs)|C), PB -a.e.

Proof. (a) By of Theorem 3.1(c), Gc = GT (�S(C)) is a nonempty, closed, and convex
subset of L2(P). Hence, we can apply Theorem 5.1 to obtain unique solutions f̂ (x) ∈ C(x) to
(5.2) and ĥ(ŷ(x)) ∈ D(ŷ(x)) to (5.8). Since f̂ (x)−x is in Gc, there exists some ϑ̂(x) ∈ �S(C)
with x+GT (ϑ̂(x)) = f̂ (x)which is a solution to (5.1), and, since f̂ (x) is unique, this equality
must hold for all solutions. As G(ϑ̂(x)) is an E -martingale, it is uniquely determined by its
terminal value and so all solutions ϑ̂(x) have this as their gains process. Identifying ĥ(ŷ(x))
with Ẑ shows that Ẑ solves (5.20); this uses the observation before (5.21) that the functions �
in (5.8) and (5.20) coincide due to Lemma 5.4.

(b) Since the value functions of (5.1) and (5.2), and (5.20) and (5.8), respectively, coincide,
the assertion follows immediately from Theorem 5.1(b).

(c) By Lemma 5.5, the process (x + G(ϑ̂(x)))Ẑ − ∫
δ(cM(η̂ + Ẑ−λ)|C) dB is a P-super-

martingale with initial value xŷ(x) and final value

(x +GT (ϑ̂(x)))ẐT −
∫ T

0
δ(cMs (η̂s + Ẑs−λs)|C) dBs

= f̂ (x)ĥ(ŷ(x))−
∫ T

0
δ(cMs (η̂s + Ẑs−λs)|C) dBs.

Moreover, Lemma 5.4 shows that

E

[∫ T

0
δ(cMs (η̂s + Ẑs−λs)|C) dBs

]
= δ(ẐT |GT (�S(C))) = δ(ĥ(ŷ(x))|Gc).

Hence, relation (5.11a) implies that the above process has constant expectation and is
therefore a P-martingale. Combining this with Lemma 5.3 tells us that the increasing process∫
δ(cM(η̂ + Ẑ−λ)|C) dB − ∫

(η̂ + Ẑ−λ)�cMϑ̂(x) dB is a martingale null at 0 and, hence,
indistinguishable from the zero process. Since the definition of the support function yields
(η̂s + Ẑs−λs)�cMs ϑ̂s(x) ≤ δ(cMs (η̂s + Ẑs−λs)|C), we must have equality PB -a.e., and this
completes the proof.

5.3. Related work

Our approach combines duality techniques and constraints with quadratic optimisation
problems and so has connections to several areas, in particular utility maximisation under
constraints. Very informally, our results can be viewed as the special case of a state-dependent
quadratic utility U(x, ω) = − 1

2 |x −H(ω)|2. But, they cannot be deduced directly because
this ‘utility function’ is not increasing in x and since the duality must be taken in a different
setting (L2 instead of L0+). Let us explain the relations in more detail.

The oldest neoclassical work on utility maximisation under constraints is probably by
Cvitanić and Karatzas [5]. In an Itô process setting, they introduced the basic ideas of using
convex duality and working with the support function of the constraint set to describe the dual
variables and also the dual criterion. The seminal work of Kramkov and Schachermayer [18]
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extended the duality idea to general semimartingale models without trading constraints. One
key idea there was to separate the duality arguments into a static level of random variables and
a dynamic level of stochastic processes, as in Sections 5.1 and 5.2. For the static level, this also
needed a bipolar theorem inL0+. In Karatzas and Žitković [17], general semimartingale models
were combined with cone constraints on trading strategies, and the optional decomposition
theorem under constraints from [11] was used to obtain the basic duality characterisation of
superreplicable consumption-investment pairs. In contrast to [5], the support function δ of the
constraint set did not show up explicitly since the latter was a cone; see Remark 5.1. However,
Karatzas and Žitković [17] obtained a full duality result in the sense that, as in [18], they
could prove the existence of an optimiser for the dual problem and then use that to construct
an optimiser for the primal problem. The paper by Mnif and Pham [21] is more general in
that it allows American-type as well as convex (not necessarily conic) constraints and does not
impose nonnegativity for (intermediate values of) the wealth process. The last fact makes it
impossible to parametrise strategies by fractions of wealth, and this in turn forces one to use
the additive form of the optional decomposition under constraints. Together with the general
convex constraints, this leads to an additional term in the objective function for the dual problem.
Owing to these complications, Mnif and Pham [21] only obtained a partial (verification) duality
result; they showed how to construct a primal from a dual optimiser, but did not prove existence
of a dual optimiser.

The utility paper closest to our results is probably that of Pham [22], who worked in finite
discrete time with cone constraints (so that, as explained in Remark 5.1, the dual objective
function has no explicit extra term), with the key (superreplication) duality resting on the
monotonicity of the utility function. But, as in our approach, Pham did not impose nonnegativity
constraints on the wealth, and the underlying duality was formulated in an (Lp, Lq)-setting.

The second area of related work is mean-variance hedging and mean-variance portfolio
selection. Like utility maximisation, this is huge, and we focus only on a small sample of papers.
(An attempt at a broader overview can be found in [28].) Duality for mean-variance hedging
without constraints is discussed by Hou and Karatzas [12]. An abstract and static formulation
of Markowitz-type problems under cone constraints is given by Sun and Wang [29]; this
is similar to Section 5.1, but gives no duality and is considerably simpler since constraints
are conic and there is no contingent claim. Labbé and Heunis [19] studied quadratic utility
maximisation problems in an Itô process model whose completeness is destroyed by having
convex constraints on trading strategies. They introduced (in a fairly complicated way, to our
mind) a dual problem for certain processes, showed that this has a solution, and constructed
from that a solution to the original problem. Via Itô’s representation theorem, the last step
crucially exploits the completeness of the unconstrained market. The existence proof for the
dual optimiser is analogous to our Proposition 5.2, and, as in Lemma 5.1, the objective function
involves an extra term from the support function of the constraint set. It is a matter of taste
whether our results are simpler or more natural than those in [19], but they are definitely much
more general.

Markowitz problems in complete and incomplete Itô process models are also studied by Hu
and Zhou [13] and Jin and Zhou [14]. The former has cone constraints on strategies, the latter
imposes no short sale constraints (which are also described by cones), and both use (quadratic
or linear) BSDEs to obtain a solution. This setup has a lot of extra structure, and the continuity
of asset prices simplifies matters considerably. For an extension to general semimartingale
models with cone constraints and a more detailed discussion, we refer the reader to forthcoming
work in [7].
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