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LOCALLY HOMOGENEOUS 5-STRUCTURES

A.J. LEDGER AND L. VANHECKE

We prove a characterisation of locally s-regular manifolds using the theory of homogeneous
structures.

1 INTRODUCTION

Pseudo-Riemannian locally s -regular manifolds are nice generalisations of locally
symmetric spaces. Their geometry has remarkable properties [1], [2], [3]. In particular,
they are all locally homogeneous spaces. So they all admit a locally homogeneous
structure [5] which is of a special type (called a locally homogeneous 5-structure).

Our purpose here is to show that, conversely, a pseudo-Riemamiian manifold which
admits such an S-structure and satisfies a further condition is then a locally s-regular
manifold. This extra condition is satisfied, in particular, when 5 has finite order or the
metric is positive definite. Also we prove that we can delete this extra condition when
there exists a so-called naturally reductive S-structure.

2 PRELIMINARIES

Let (M, g) be a smooth connected n -dimensional manifold M with pseudo-
Riemaniiian metric g, and denote by T^ the algebra of all smooth tensor fields on
M with contravariant and covariant orders p and q respectively. In particular, write
T® —Tp and T£ = Tp . Let V denote the Riemannian connection and R the curvature
tensor field on M where we define the curvature operator RXY by

RXY = V[X,Y] -[Vjf.Vy]

for all X, Y eT1 .

Any 5 6 Tf may be considered as a field of endomorphisms of tangent spaces
and a tensor field P 6 T? is then called S-invariant if for all W],...,u>p 6 7j and
-^ 1 1 • • • 1 Xq G T ,

, . . . , wpS, Xi,..., Xq) = P(a>i,..., wp, SXi , . . . , SXq)

where (wS)X = w{SX) for w £ T, and X £ T1 .
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Next, 5 is called a symmetry tensor field if I — S is non-singular and j is 5 -
invariant. In particular, if VS and V 2 5 are 5-invariant, then we say S is regular. A

local symmetry sm is defined on each sufficiently small neighbourhood of m by

sm = expm o 5 m o exp- 1 .

Clearly sm is a local diffeomorphism and

d>m
 o n M™ = Sm.

We denote by s the map m \—> sm so defined on M. Then (M, g) together
with s is called a (pseudo-Riemannian) locally s -regular manifold if each sm is a local
isometry which preserves S . For a characterisation of such manifolds in terms of S we
have

THEOREM 1. [1]. Let S be a regular symmetry tensor field on any (M,g). Then
(M,g) is a locally s-regular manifold with symmetry tensor field S if and only if R
and VR are S -invariant.

For a detailed study of s -manifolds and generalised symmetric spaces we refer also
to [3].

3 LOCALLY HOMOGENEOUS 5-STRUCTURES

We recall from [5] that a locally homogeneous structure on any (M,g) is a tensor
field T e 7 2 ' such that the connection V = V - T satisfies

Vg = VR = VT = 0.

If, in addition, a symmetry tensor field 5 is given on (M, g) satisfying
(i) V5 = 0,

(ii) T is S-invariant,

then we call the pair (S,T) a locally homogeneous S-structure on (M,g). Such a
stucture always exists on a locally s -regular manifold as shown by the following theorem
from [1]. (The proofs given in [1] for this and for Theorem 1 apply also to the case
when (M,g) is pseudo-Riemannian.)

THEOREM 2. Let (M,g) be a locally s-regular manifold with symmetry tensor
field S and define T € T2' by

Then (S,T) is a locally homogeneous S-structure on (M,g).

Our purpose here is to consider the converse problem. First we remark that if

(S,T) is given on {M,g) and if p G M, then Sp £ GL(MP). We write Gp for the

closure in GL(MP) of the subgroup generated by Sp . We now prove
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THEOREM 3. Let (S,T) be a locally homogeneous S-structure on a pseudo-

Riemannian manifold (M,g) and suppose for some point p £ M the subgroup Gp

is compact. Then (M,g) is a locally s -regular manifold with symmetry tensor field S.

PROOF: Since T is 5-invariant and since for all X,Y £ T 1 ,

(VXS)Y = (TXS)Y

we obtain at once that V5 is 5-invariant. Next, let X be the tangent vector field to
a smooth curve 7 on M and let Y and Z be vector fields along 7 which are parallel
with respect to V. Then

= VX((TYS)Z) - {TVxYS)Z - {TYS)VXZ

= TX((TYS)Z) - (TTxYS)Z - (TYS)TXZ

which shows that V2S is 5-invariant. Thus 5 is regular.
Next we note from the relation

VXR = TXR

and the 5-invariance of T that if R is 5-invariant, then so is Vi2. Thus, by Theorem
1, it remains only to prove the 5-invariance of R.

Since VT" = 0 we have
RXY = RXY + BXY

where R is the curvature tensor related to V and

BXY = [TX,TY] + TZ, Z = TYX - TXY.

Define A £ T4 by

(1) AXYzw = RSXSYSZSW — RXYZW

where

=g(RXYZ,W).

Clearly, B is 5-invariant, so

A-XYZW = RSXSYSZSW — RXYZW
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from which

(2) AXYZW = AZWXY-

Also, since VS = 0 and g is S -invariant, we have

(3) RXYSZSW = RXYZW-

Hence

A-XYSZSW = RSXSYS2ZS2W — RXYSZSW

(4) = RSXSYSZSW — RXYZW

Consequently, from (2) and (4),

ASXSYSZSW = ASXSYZW = AZWSXSY = AZWXY = AXYZW-

Thus A is 5-invariant. Now consider Mp and any vectors X, Y, Z,W £ Mp. It
follows using (1) and the S-invariance of A that , for each positive integer m ,

(5) TnAxYzw — Rs™+ixsrn+lYsrn+lzsrn+1 w — RXYZW-

However, since Gp is compact, the right hand side of (5) is a bounded sequence in ro.
Hence AXYZW — 0. Thus A — 0 at p. Finally, we note that if q £ M and 7 is any
smooth curve from p to q, then parallel transport with respect to V of Mp along 7
induces an isomorphism of GL(Mp) onto GL(Mq) and of Gp onto Gq since VS — 0.
Hence each Gp is compact and so A = 0 on M. Thus R is 5-invariant on M and
the proof is complete. |

Remark . The compactness condition on Gp in Theorem 3 clearly holds if S has finite

order or if g is positive definite since then S is orthogonal.

4 HERMITIAN-HOMOGENEOUS MANIFOLDS

Suppose (M,g) has a locally homogeneous structure T and an almost Hermitian

structure J such that

(a) W = 0,

(b) T(JX, Y) = T(X, JY) = -JT(X,Y)

for all X, Y 6 T1 . Then (M,g,J) is said to be locally Hermitian-homogeneous (see

[4]). In particular, it is well-known that any pseudo-Riemannian locally 3-symmetric

space is Hermitian-homogeneous with respect to its canonical almost complex structure
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J = "4-(2'S' + I)- Conversely, suppose (M,g,J) is almost Hermitian and locally

Hermitian-homogeneous. Define

Then / — 5 is non-singular and g is S-invariant. Also, (a) and (b) imply that VS = 0

and that T is S-invariant. Thus (S,T) is a locally homogeneous S-structure and since

S has order 3, Theorem 3 can be applied. Thus we have an alternative proof of the

following:

THEOREM 4. [4]. Any pseudo-Riemannian locally Hermitian-homogeneous almost

Hermitian manifold (M, g, J) is a locally 3-symmetric space with J as canonical almost

complex structure.

For the study of 3-symmetric spaces we refer also to [2].

5 NATURALLY REDUCTIVE STRUCTURES

An important class of locally 3-symmetric spaces is that of nearly Kahler 3-

syr.imetric spaces. These are characterised by the additional property

(VXJ)X = 0

for all I £ T 1 . It is proved in [5] that this is equivalent to the existence of a Hermitian-

homogeneous structure which is naturally reductive or, equivalently,

(6) TXX = 0

for all X € T1 (see also [4]).

We now prove that the conclusion of Theorem 3 remains true when this condition

replaces that on Gp .

THEOREM 5. Let (S,T) be a locally homogeneous naturally reductive

S-structure on a pseudo-Riemaniuan manifold {M,g). Then {M,g) is a locally s-

regular manifold with symmetry tensor Reid S.

PROOF: The first part of the proof of Theorem 3 still applies, so we need only to

prove that R is 5-invariant. Since T is naturally reductive we have explicitly, using

(6),

~RXYZW = RXYZW + g{TxZ,TYW) - g(TYZ,TxW) - 2g(TxY,TzW).

Further, this implies that R has the same symmetries as a Riemannian curvature tensor.

Now we consider again the tensor A defined by (1) and note that (3) is still valid.

So

RSXSYSZSW = RSXSYZW = Rzwsxsy — RZWXY = RXYZW-

From this we obtain again A = 0 and hence the required result. |
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