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Abstract

The literature on subjective probabilities contains a number of functions that have been proposed as
'scoring functions'. The principal requirement is that, with several events that may occur in the future
and to which subjective 'probabilities' are assigned, the expected score given by these 'probabilities' will
be extremised if the values assigned equal the 'true probabilities' of the various outcomes. This article
discusses the question of what other scoring functions might be used (beyond those so far proposed).

2000 Mathematics subject classification: primary 60A99.

1. The situation

The topic of 'scoring functions' has developed quite a large literature. See, for
example, discussions by Winkler [7-9], by Savage [5] and by Schervish [6]. For a
discussion of the underlying principles and of the proposed applications of the theory,
see also de Finetti [3, 185-198].

These analyses all consider a 'multi-event', that is to say a set of n mutually
incompatible events, one and only one of which will actually occur (at some time
in the future). The details that follow will be presented in terms of the particular
case n — 3. The reader will easily see however that this case is typical and that the
results readily generalise. The case n — 3 is adopted here both for definiteness and
for notational convenience.

In fact, it is the difference between the cases n — 2, n > 2 that is the most
interesting, as it raises points of principle that are resolved already when we progress
beyond the case n = 3. The case n = 2 formed the subject of an earlier paper by the
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author [2]. The discussion presented here proceeds in terms similar (modulo some
comments to be made below) to those used there in that special case, but the notation
is different.

Suppose that a tipster (possibly even an expert in whatever the relevant field might
be) assigns, in advance, positive numbers P, Q, R to each of the three possible
outcomes Eu E2, #3 of some happening ('multi-event'). Suppose also that the best
possible such estimates are the probabilities p, r,q of these events actually occurring.

The scoring function will be a real-valued function f (P, Q,R;P) whose value
is awarded to the tipster in the event that E\ occurs; similarly the score will be
/ (P, Q, R\ Q) if E2 occurs and/ (P, Q, R; R) if £3 occurs.

The expected score e(P, Q, R) will thus be

(1) e(P, Q, R) = pf (P, Q, R;P) + qf (P, Q, R; Q) + rf (P, Q, R; R)

and the scoring function is to be chosen in such a way that e(P, Q, R) is extremised
for the choice (P, Q, R) = (p, q, r).

The object of this paper is to categorise the possible scoring functions/ (P, Q, R; P)
under this criterion as a necessary condition. Solutions to this problem have been given
before using different methods and employing different criteria as to what constitutes
an acceptable scoring function. Here, instead of quoting general properties of such
functions, explicit formulae will be displayed, and it will be supposed throughout that
/ (P, Q, R; P) is symmetric in its first three variables.

Three scoring functions have wide currency; these are (see, for example, [7,8] for
these functions in the case n = 2):

(2) The logarithmic function / (P, Q, R; P) = In P.

(3) The quadratic function/ (P, Q, R; P) = (P - if + Q2 + R2.

(4) The so-called 'spherical function' / (P, Q, R\ P) = P/y/P2 + Q2 + R2.

The reader will note that it is not imposed at this stage that P + Q + R = 1. It
is however assumed already in the setting up of (1) that p + q + r = 1. However
at certain points in the argument that follows, it will be convenient not to use this
information immediately.

[In his analysis, de Finetti goes further and shows that in the case of the quadratic
function (3), a tipster adopting a strategy P + Q + R ^ 1 could always do better by
replacing P, Q, R by P*, Q*, R* respectively, where

pt_ 1+2P-Q-R

etc., and where clearly P* + Q* 4- R* — 1. This provides a strong incentive for the
tipster to use probabilities for P, Q, R. The case of the logarithmic function, however,
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[3] Characterisation of scoring functions 137

is different and here the requirement P + Q + R = 1 needs to be imposed. The same
is true of the 'spherical function'.]

It will be further noted that any combination a + bf (P, Q, R; P), where a and b are
constants (b ^ 0), may replace / (P, Q, R\ P) without any alteration to the thrust of
the argument. In the earlier study [2], a, b were chosen to meet certain normalisation
conditions. These will not be imposed in the present account.

Finally, f\(P, Q, R; P) and/2(P, Q, R; P) are both scoring functions then so is
af\{P, Q, R; P) + bf2(P, Q, R; P), where once again a and b are constants (not both
zero), certainly as long as / , , f2 are both maximised or both minimised at (p, q, r),
but in fact rather more generally.

2. Symmetric functions

It will be convenient to write the scoring functions in a somewhat different form
to take account of the imposed symmetries. The theory is standard, see for example
[1, 420-427]. In the case of three variables P, Q, R, it is usual to express such
symmetric functions in terms of three basis functions P + Q + R, PQ + QR + RP
and P QR and this is typical of all cases. That any integral symmetric function of
the P, Q and R may be expressed in terms of these functions is Newton's theorem
[1, 438^44] and indeed many other (non-integral) symmetric functions may also be
so expressed. This paper will use not Newton's theorem directly, but rather some
elementary consequences of it.

Write S, = P + Q + R, S2 = P2 + Q2 + R2, 53 = P3 + Q3 4- R3. Then as the usual
basic functions can be expressed in terms of these new ones any integral symmetric
function of the P, Q and P. may be expressed in terms of Si, S2 and S3; again the
result applies much more widely. These results readily generalise to any number of
independent variables. Although they are not given explicitly, they are implicit in the
discussion and the displayed equations in (for example) Chrystal's classic text [ 1,437]
and doubtless elsewhere.

Thus write

f(P,Q,R;P)=f(SuS2,S3;P), etc.

3. The basic condition

We may now write e(P, Q, R) in this notation and via the use of Lagrange multi-
pliers seek to extremise

e* = pf (Si, S2. 53; P) + qf (S,, S2, S3; Q) + rf (5,, S2, 53; R)

+ ki(Si- P - Q- R) + k2(S2- P2 - Q2 - R2) + Xi(S>- P' - Q' - R').
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The relevant equations then become (with Si, S2, S3, P, Q, R all now being treated as
independent variables)

> - 1 . - 2 W , - 3 1 * 1 , - 0 .
or

(5) dR

-^-[pf(Su S2, S3; P) + qf (5,, S2, S3; 0 + r f (S , , S2, S3; /?)] + X, = 0,

- ^ [ p / C S , , S2, S3; P) +qf{Su S2, S3; 0 + rf (Su S2, S3;R)]+k2 = 0,

-^-[pfiSu S2, S3; P) + qf(Su S2, S3; 0 + / / ( S , , S2, S3;/?)] + A3 = 0.

These equations are to be identities when P=p,Q = q,R = r and thus from the
first of them

= +2A2

dp P

while from the final three of the set, we may replace the Xt by functions of the S;.
The result is to give an / that (to revert to the P in place of p) is of the form

(6) f(Su Si, S3; P) - S(SU S2, S3) In P + A(Slt S2, S3)

where S = ku B = 2k2, C = 3A.3/2 and A is a constant of integration.
The result is a sum of a logarithmic function (to be briefly considered below) and a

function quadratic in P. Because the scoring function can be considered as a sum of
the independent contributions of its various components these two functions can be
analysed independently of one another. The logarithmic scoring function will now be
discussed. The other component will be considered later.

4. The logarithmic scoring function

The theory of the logarithmic scoring function may be summarised briefly. If
f(P, Q, R; P) is in fact independent of Q, R, then the condition P + Q + R - 1
must be imposed, in which case we find/ (P, Q, R\ P) = In P. For a discussion, see
for example Winkler [9].
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More generally however, from (6), consider the possibility of a more general
logarithmic scoring function

f(P, 0,/?;/>) = 5(5,, 52,53)lnP,

which gives

e(P, Q,R) =

to be minimised when P = p, Q = q, R — r.
On differentiating with respect to P and rearranging, we find

p 1 / 3 5 35 2 35

o do , d o
— + 2Q \-3Q2

r 1 / 3 5 35 , 35 \
— = - I - \-2R \-3R I (plnP + q\n Q + r\nR),

and these equations are to be identically satisfied by P = p, Q = q, R = r.
Simplifying these equations results in

S[(pQ-qP)R(Q-R)-(qR-rQ)P(P-Q)] = 3^(
003

But now this must be satisfied by P — p, Q — q, R = r, for all allowable p, q,
r and this implies that 35/353 = 0. Back substitution now yields the further result
35/352 = 0. Thus

f(P, Q,R\P) = 5(5,) In/5 = S(P + Q + R)\nP

and the minimisation criterion reduces to

which cannot in general be satisfied by (P, Q, R) — (p, q, r).
A similar analysis applies if we impose the condition P + Q + R = 1 and apply

Lagrange multiplier techniques. The details are here omitted. We are left with the
case/(P, Q,R;P) = \nP.

5. Non-logarithmic scoring functions

Now consider the other component of the scoring function:

(7) f(P,Q,R\P) =
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This gives

e(P, Q,R) = (p+q + r)A(Su S2, S3) + (pP + qQ + rR)B(Su 52, 53)
+ (pP2 + qQ2 + rR2)C(Su S2, S3).

For convenience, write si = p + q + r, s2 = p2 + q2 + r2, s3 = p 3 + q3 + r3. The
condition that e(P, Q, R) be extremised for the choice (P, Q, /?) = (/?, q, r) may
now be addressed.

The partial derivatives of e(P, Q, R) may be formed and set equal to zero. These
partial derivatives will be mutually independent, as we do not yet impose the condition

We have

de dA dB
tp-ip+i + r ^ + lpP+iQ + rR)-

rR2)—+p(B + 2PC)

2PC>

which must be identically equal to zero if we put (P, Q, R) — (p,q, r) and recall
that/? + q + r — 1.

If we make the substitution (P, Q, R) — (p, q, r), we find

3e

(P.Q.R)=(p.,.r)

3A dA\ ( dB dB dB
+ +2 [ + +

2 3*3/ V 3*1 3^2

where now A = A(si, s2, s3), and so on.
Because this expression is to be identically zero, the individual terms are to be zero,

but subject to the condition s\=p+q + r = l. We thus have

dA dB dC
s\- \-s2- I-S3T— = (5i ~ l)a(sus2,sy),

aSi dS\ dst

(8) 5 , — + s2— + s3— = (Sl- I)j8(i l t s2, s^ - B/2,
as2 as2 os2
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dA dB dC
S\~ \-s2- 1-S3— = C*t - I)y(si,s2,s3) - 2 C / 3 ,

Oi'3 0.S3 0^3

where a, fi, y are (at present) arbitrary functions of the stipulated arguments.
In order to proceed further, write

(9) <p = s{A + s2B+s3C.

The equations then become
dd) dd) B dd> C

(10) JL = A + (Sl - i)a, JL= +( , ,_!)£, JL= + ( 5 l _ i ) y ,
os\ os2 2 osi 3

Multiply the first of these equations by st, the second by 2s2, the third by 3*3 and add.
This yields

dd) dd) dd)
(11) 5, -f- + 2 i 2 - £ + 353-^- =d> + (Si - 1)9(SU S2, S3),

osi 0S2 0S1

where

(12) 6 = sta + 2s2fi + 3s3y.

6. Some simple cases

Before turning to more general cases, consider the special case in which d> is
independent of s\. In that case, we must have a = fi = y — 6 = 0 so that (10)
become:

(13)

and(l

(14)

1) becomes

dd>/ds2

2

= B/2,

, s _90
ds2

30/3 i 3 =

30
1S3 — 0 .

ds^

C/3

This has the general solution (see [4, 867-870])

d, =

In order to complete the analysis for these cases, all that is required is to revert to the
capital letters and to apply (13).

In a particularly simple case, choose rj/ = 1, and so reach the 'spherical' scoring
function [8], which is characterised by A — C = 0, B = \/y/~S~2 and is the simplest
of an infinite set of possibilities. Another special case y\i = (Sj/Sl)2p gives a slightly
more complicated scoring function characterised by A = B = 0, C = (53)~2/3.
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7. Solution of the general partial differential equation

Apart from the degenerate case just examined, (11) is a linear partial differential
equation whose general solution [4, pages 867-870] is

(15) <p = <j> ( s i , —, — ) = <p(s\,x, y) ( say) ,

with the further condition

(16)

where the partial derivative is now taken keeping x, y constant rather than as before
with S\, s2 constant. It will also be noted that the dependence of 6 on s\, s2 must be
mediated as a dependence on x, y for consistency in (16).

Equation (16) is a further linear partial differential equation and this may also be
solved. The integrating factor is s^2 and it yields

(17)

It will be convenient to write

(18)
dSf

(A similar device was adopted in the earlier study [2].)
The general solution of (17) is

_ dx

ds\

where K is arbitrary. However, the function K may be omitted as it may be absorbed
into the x, that is to say we may replace x — K by the simpler x and so reach

(19) 0 ^

as the solution of the equation, where for consistency we now require

(20) Sla + 2s2p + 3s3y = s 2 - 4

following the various changes of notation.
Thus the scoring function depends on a function x- in its turn depending on s\,

x, y and from which another function 0 is constructed by means of (19). Once <p is
determined, then A, B, C may be found by means of (10) under the condition (20).
[But note the differing conventions between (10) and (20). In the former case, it is the
individual s, that are held constant during the differentiation; in the latter it is x, v.]

https://doi.org/10.1017/S1446788700002767 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002767


[9] Characterisation of scoring functions 143

It may be remarked that the functions discussed in Section 6 may be recovered by
means of the choice x = —v^V(y2/*3)- Further discussion will be confined to a
restricted but important subset of the possible functions that could be employed. That
subset is the set of integral functions. Thus, although the analysis is on that account
somewhat incomplete, a richness of possible scoring functions nonetheless emerges.

8. Integral scoring functions

Integral functions are those which may be expressed as sums of products of integral
powers of the variables. In that case, where three variables are involved, and because
P, Q, R are the roots of a cubic equation whose coefficients are simple polynomials
in Si, S2, S3, then F 3 is quadratic in P with coefficients functions of Si, S2, S3, and
thus this is also true for higher powers of P. Thus (6) holds immediately. This result
is not given explicitly in Chrystal's text [1], but it readily follows from the discussion
and the equations presented there (loc. cit.) In what follows, we restrict consideration
to integral scoring functions.

Because scoring functions are additive, we may construct general cases from a
smaller subset of special cases. The simplest cases are those in which x is homoge-
neous in the variables su s2, s3 so that x = s™yj/(x, y). Any other case can clearly be
built up from a (finite or infinite) sum of such simpler cases. And the same may be
said of the various possibilities for \fr(x, y). Any such function may be written under
our assumptions as a sum of functions of the form r/r(x, y) = x>*yv.

Thus we may restrict consideration to the case

X = s?x»yv,

where for the function to be an integral one we require m > 2(i + 3v and of course
fj. > 0, v > 0. It will be convenient to write m — p + 2/x + 3v. We may now discover
from (18)

4> = (m - I)s1l+ix"yv - msl'x^y" = (m - l )< + ' i 2
M ^ - ms?s£s».

We now have

— = (2fi + 3v - l)sfs?s3
w + (1 l

95,
sp ~ampsp
x ~ s^s^(si — 1),

(21) — = -I
9

- c)vm(si -
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where we have taken the partial derivatives with respect to each of the three s> keeping
the other two constant.

In (21), the new symbols a, b, c represent real numbers and are (so far) otherwise
arbitrary. The apparently clumsy form is chosen for comparison with the earlier
equations (9). It gives, when that comparison is made,

?3 f's^Cs, - 1),
(22) B/2 = -/X5f+1^-'^ + (1 - Vnms'sZ-1^ - 1),

C/3 = -vsf+ 1^3~' + (1 - c)vmsf^- '(s, - 1),

a = amps^s^s^, ft = b^im{s\ — ljsfs^"1^, y =

It still remains to satisfy (20). To do this, equate the two values of 0 given by (12)
and (16). This produces the consistency requirement

(23) ( a - l ) p + 2 ( * - l ) / i + 3 ( c - l ) v + l = 0 .

The final step in the analysis is to revert to the capital letters relevant to the prescription
of the loss function / (P , Q, R; P). The final result thus has (7) with A, B,C chosen
as follows:

A = (2fi + 3v - l)Sf S£SJ + (1 - a)mpSr'5^S3
W(5, - 1),

(24) B = -2/zSf+1 s r ' S 3 + 2(1 - b)nmS^52
M"'S3

U(5, - 1),

C = -3vSf+1S£S3W-' + 3(1 - c)vmS^S^-l(Si - 1).

Under the constraint (23) this gives a fivefold infinity of candidate scoring functions,
all of which satisfy the necessary condition for e(P, Q, R) to be extremised by the
choice (P, Q,R) = (p,q, r).

Equations (22) may however be simplified by noting that now that all of the
differentiations have been effected, it is safe to use the further information that 5i = 1.
If we insert this into (22) and then revert to capital letters, we reach a particularly
simple set of solutions, in which (23) is irrelevant and p is no longer present. These are:

(25) A = (2fi + 3v-l)S^Sl B = -2nSr'Sl C = -

This is a doubly infinite family of possible scoring functions, which will be shown
to be precisely those that arise if we stipulate in advance that 5i = 1. But first, we
turn to some illustrative special cases.

9. Illustrative cases

First confine attention to the simple equations (25). Set n = 1, v = 0, which gives
A = S2, B = —2, C = 0, and this is precisely de Finetti's quadratic function (2) apart
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from the additive constant. We may also derive this case from (24) under the further
conditions p — 0, b = 1/2, when

<t> = sxs2 - 2s2, 0 — 2 s \ = \ ]

Another simple case to consider is n = 0, v = 1, which yields

/ (P, Q, R; P) = 2(P3 + Q3 + R3) - 3P2.

And this may also be reached from (24) with the further conditions p — 0, c = 2/3.
Similarly if /x = 2, v = 0, we recover

/ (P, Q, R\ P) = 3(P2 + Q2 + R2) - 4P(P2 + Q2 + R2),

which can also be reached from (24) with p = 0, b — 3/4.
Another simple case is given by fi — v — 1 and this yields

/ (P, Q, R\ P) = 4(P2 + Q2 + R2)(P3 + £>3 + R3)

- 2P(P3 + Q3 + R3) - 3P2(P2 + Q2 + R2)

which also may be reached from (24); the relevant parameter values are p = 0,
b = 3/5, c= 14/15.

All the above cases may be derived directly from the simplified equations (25)
rather than from the full equations (24). The very simplest of the other cases that can
be constructed from those more general solutions (apart from the trivial /J. = v = 0)
is p — (i — 1, v = 0. This yields

/ (P, G, /?; P) = (P + Q + R)(P2 + Q2 + R2)

+ 3(1 - a)(P2 + Q2 + R2)(P +Q + R-\)

+ P[2(P +Q + R)2 + 3a(P +Q + R)(P + Q + R - 1)]

and even in the simplest subcase (a = 0), detailed analysis is daunting. However it is
possible in this instance, as a check, to find that the derivatives of e{P, Q, R) indeed
vanish at (p, q, r), although I omit the details.

Now consider an apparently much more complicated case, whose motivation will
become apparent.

Set

A = [45,53 - 3S2S2 + 352
2/2 + Sf/3] - 4 [S3/6 - 5,52/2 + 53/3],

B = 2[S2-S2], C = -45 , ,

where setting 5, = 1 results in a linear combination of cases discussed above together
with some additive constants. The interest in this case resides in the identity

(27) / (P, Q, R\ P) = A + BP + CP2 = 3(P4 + Q4 + R4) - 4P3,
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where A, B, C are defined by (26). That the right-hand side of (27) furnishes a suitable
scoring function is readily checked. It lies as the third in a one-parameter family of
possible scoring functions

/ (P , Q, R; P) = (k- \)(Pk + Qk + Rk) - kPk~}

whose earlier members are given above.
This last example may be generated from the function

1 4 7
X(s\,x, y) — — 5, (1 — ox -\-ay + 3x).

6

The details are left to the reader.

10. Constrained extrema

If, at the outset, we impose the condition 5i = 1, that is to say we force the tipster
to nominate probabilities for the three outcomes, then equations (9) are replaced by
the simpler:

(28) £.A + X. £ » J * _ £
os\ ds2 2 OST, 3

where k is a Lagrange multiplier. Equation (11) is now replaced by

d<b d<b dd>
(29) , , ^ 1 + 2 ^ - ^ + 353-^=0 + ^ ,

dsi ds2 a S3

and the solution of this partial differentiation is

(30) <t) = \

As in Section 9 above, set \f/(x, y) = x'iyv to discover basic solutions. Equations (28)
now yield:

A = (1 -2fi-3v), B = 2/ZJC"-1^", C = 3wc"/-1

which, apart from sign, yields (25).
The requirement m > 2fi + 3v (valid in the earlier analysis, but here not satisfied,

as m = 1) is no longer applicable, as the s\ in the denominators is constrained to be 1.
It should also be remarked that this subset of solutions may also be reached without
imposing the condition Si = 1.
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