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SOME RESULTS ON DEFINING SETS OF i-DESIGNS

BRENTON D. GRAY AND COLIN RAMSAY

We investigate how varying the parameters of t-(v, k, A) designs affects the sizes of
smallest defining sets. In particular, we consider the effect of varying each of the
parameters t, v and A. We establish a number of new bounds for the sizes of smallest
defining sets and find the size of smallest defining sets for an infinite family of designs.
We also show how one of our results can be applied to the problem of finding critical
sets of Latin squares.

1. INTRODUCTION

Let V be a u-set, and suppose that B is a collection of fc-subsets of V with the
property that each i-subset of V is in exactly A of the elements of B. Then the ordered
pair (V, B) is called a t-(v,k, A) design. The elements of V are called points, and the
elements of B blocks. We often abbreviate t-(v, k, A) design to t-design, or simply design.
A design with A = 1 is called a Steiner design.

To avoid trivialities, we assume throughout that 0<t<k<v — t. Although a
block is formally defined as a set of elements, it is often simpler to avoid explicitly using
set notation. For instance, the block {1,3, a, b} may instead be written as {13a6} or
13a6. Further, although designs may be multisets, we use set notation and terminology
throughout.

The concept of a defining set of a i-design was introduced by K. Gray in the series
of papers [6, 7, 8]; see also the survey papers by Street [23, 24].

DEFINITION 1.1: A set of blocks S which is a subset of a unique t-(v, k, A) design
D is a defining set of D. The size of S equals | 5 | and S is said to be smallest if no
other defining set of D has smaller size. A defining set is minimal if it does not properly
contain a defining set.

EXAMPLE 1.2. Let S = {124,235,346}. Then it is easily verified that S is a smallest
defining set of the 2-(7,3,1) design D = (V,B) with V = {1,2,3,4,5,6,7} and B =
{124,235,346,457,561,672,713}. The design D is known as a Fano plane.
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204 B.D. Gray and C. Ramsay [2]

A number of authors have discussed the sizes of smallest defining sets of families
of designs. Let {Dd}d^\ denote a family of designs with some indexing set A. Let \i&
denote the fraction of blocks in a smallest defining set of Dd. B. Gray, Hamilton and
O'Keefe [5] have shown that if Dd = PG{2,d), then fxd ^ 1/2 + ed, where ed -*• 0 as
d —> oo. In contrast, B. Gray [4] has shown that if Dd is the symmetric design obtained
from the points and hyperplanes of PG(d, 2), then \id —> 1 as d —> oo. If d is an odd prime
power and Dd is the Hadamard design cyclically generated from the quadratic residues
of GF(d), then Sarvate and Seberry [22] conjecture that /id ^ 1/2.

In all of these families of designs the block size k varies. In this paper we investigate
how varying each of the parameters t, A and v, whilst k remains fixed, affects the sizes
of smallest defining sets.

The background material we require will be reviewed in the next section. In the
remainder of this section we summarise our results and the layout of the remaining
sections.

The number of blocks, \B\, in a design is denoted by 6, and each point appears in
exactly r blocks. Standard counting arguments yield the following result.

LEMMA 1 . 3 . For a t-(v, k, A) design D, the following relations hold:

fv\ (k
rv = bk and A I = 61

W \t
Further, D is an s-(v, k, As) design for 0 ^ s ^ t, and the values of \s are given by

Note that XQ = b, Ai = r and At = A.

We show in Section 3 that if st and ss are the sizes of a smallest defining set of a
design D considered as a i-design and as an s-design respectively, then ss ^ st + 2l~s — 1.

In Section 4, we present some new bounds for the size of a smallest defining set of
a t-(v, k, A) design, when k = t + loiv=k + t + l. Using these results, we completely
solve for the sizes of smallest defining sets of the infinite family of 2-(6,3, A) designs. We
also investigate the infinite families of 2-(7,3, A) and 3-(8,4, A) designs.

DEFINITION 1.4: Let D = {V, B) and suppose 5 C B. If S C C, where E = (V,C)

is a design with the same parameters as D, implies that:

1. E is isomorphic to D, then 5 is said to be a class defining set of D;

2. E = D or E is not isomorphic to D, then 5 is said to be a member defining

set of D.

Note that S is a defining set of D if and only if S is both a class and a member defining

set of D.

Let {Dv} be a family of Steiner t-(v, k, 1) designs, where A; and t are fixed. In Sec-
tion 5 we show that, as v —> oo, the fraction of blocks contained in a smallest member
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[3] Defining sets i-designs 205

defining set of Dv approaches zero. As a corollary to this, the sizes of smallest class defin-

ing sets and smallest defining sets are asymptotically equal. We discuss the implications

of an analogue of this result for critical sets in Latin squares.

2. BACKGROUND

Let Sv denote the symmetric group of permutations on a u-set. Two designs, D\ =

(V, B\) and D2 = (V, B2), are said to be isomorphic if there exists p £ Sv such that

pB\ =82- If no such p exists, then D\ and £>2 are non-isomorphic. If B\ ^ B2, then Di

and D2 are said to be distinct. If all distinct t-(v, k, A) designs are isomorphic, we say

that the design is unique.

Given a design D, Up € $v is such that pB — B, then p is called an automorphismot

D. The set of all automorphisms of D is a subgroup of Sv, and is denoted by aut (D). If D

is a t-(v, k, A) design, then the class of designs isomorphic to D has size |Sv|/|aut(Z))| =

v!/faut(£>)|.

DEFINITION 2.1: A t-(v, k, A) design whose blocks can be partitioned into sets in

such a way that each set is a t-(v, k, fa) design, where J2 Mt = A and 0 < fa < A, is called

decomposable. If no such partition exists, the design is indecomposable.

For given t, v and k the number of indecomposable designs is finite (Engel [3]). This

number is not known, in general. However, when all the indecomposable designs are

known, all t-(v,k,\) designs can be constructed (Griittmiiller [11]).

E X A M P L E 2.2. Let V = {1,2,3,4,5,6,7}, D = (V,B) and / = (V,I), where

B = {124,235,346,457,561,672,713} U {124,135,346,457,562,671,723}
U {125,134,356,457,462,671,723},

1 = {123,125,127,135,136,145,146,147,167,234,236,246,247,256,257,
345,347,357,367,456,567}.

Then D is a 2-(7,3,3) design whose blocks can be partitioned into Fano planes; thus D
is decomposable. However, the 2-(7,3,3) design / is indecomposable.

LEMMA 2 . 3 . (K. Gray [6]) Let D = Dx U D2 be a t-(v, k, nx + /x2) design, where

Di and D2 are t-(v,k,ni) and t-(v,k,n2) designs respectively. Let s, Si and s2 denote

the sizes of smallest defining sets of D, D\ and £>2 respectively. Then s ^ Si + S2-

NOTATION 2.4. If A is a collection of blocks, then

Ax = {B \ {x} : x e B and B e A} and IF = {B : x i B and B € 4}.

If A is a set of blocks and x is a new element not in any block of A, then we use the
notation xA to stand for the set of blocks {{x} U B : B e A}.

We say that x has multiplicity rx in A if x is contained in rx blocks of A; that is,
rx = \AX\. Suppose that D - (V, B) is a t-(v, k, A) design, and let x be any point in V.
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The restriction of D on x is the (t - l)-(v - l,k - 1, A) design (V \ {x},Bx). Suppose
that x is a new point not in V. Then it may be possible to extend D to a (t + 1)-
(v + l,k + l,X) design (V U {x}, xBliA), called an extension of D, for some set of blocks
A. If A is the complement of xB (with respect to Ku{ i} ) , then the process of extension
is called extension by complementation. The set of blocks of an extended design formed
by complementation is necessarily self-complementary.

Let V be a w-set and Ti, T2 be collections of m /c-subsets of V. We say that T\
and T2 are t-balanced if each t-subset of V is contained in the same number of blocks
of T\ and of T2. If Ti and T2 are disjoint and ^-balanced, then T = T\ - T2 is said to
be a (v, k, t) trade of volume m(T) — m. The set of elements of V contained in T\ is
called the foundation, denoted by F(Ti). Note that F(T\) = F(T2), and so we define
F{T) = F(TX). We write f(T) for \F(T)\.

In T = Ti - T2, ' - ' does not represent the set-difference binary operation, which is
always represented by ' \ ' . We think of the blocks of 7\ as being labelled '+ ' and those
of T2 as being labelled '—'. If T = Ti - T2 is a (v, k, t) trade, we often refer to the single
collection 7\ as a trade. If D — (V, B) is a t-(v, k, A) design with 7\ C B, then the design
is said to contain the trade. If the value of v is not of interest, we often speak of a (k, t)
trade instead of a (v,k,t) trade. If T\ =T2 = 0, then the trade is said to be void; we
ignore void trades in what follows.

E X A M P L E 2.5. T = TX-T2 = +135 + 146 + 236 + 245 - 136 - 145 - 235 - 246 is a

(6, 3, 2) trade, with F(T) = {1,2,3,4,5,6}, f(T) = 6 and m(T) = 4.

Trades, which are also known as null t-designs, have many uses in the theory of
designs. For example, they can be used to construct i-designs with different support
sizes (Hedayat [12]) and are related to the design intersection problem (Billington [1]).
Of relevance to us is the relationship between trades and defining sets of designs.

THEOREM 2 . 6 . ([6]) Suppose D = (V, B) and S C B. Then S is a defining set
of D if and only if S intersects each trade in D.

P R O O F : Suppose 5 is a defining set of D. If Tx is a trade in D, then 5 fl Tx ^ 0,
else 5 is also a subset of the design with blocks (B \ Tx) U T2, where T\ - T2 is a trade.

Conversely, suppose S C. B intersects each trade in D. If 5 is not a defining set of
D, then S C D2 for some design D2 with the same parameters as, but distinct from, D.
Let T\ comprise the blocks of D not in Di and T2 comprise the blocks of D2 not in D.
Then T\ — T2 is a trade, with 7\ in D. Furthermore, S is disjoint from Ti, which is a
contradiction. D

The final results we shall need give some simple properties of trades. Note that
Lemma 2.8 follows from Lemma 2.7(1).

LEMMA 2 . 7 . ([12], Hwang [13]) Let T = Tx - T2 be a non-void (k,t) trade.

Then:
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(1) T is a {k, s) trade for all 0 < s < t;

(2) m{T) ^ 2';

(3) f(T)^k + t+l.

LEMMA 2 . 8 . ([13]) Suppose that T = T1-T2 is a (k, t) trade. Then:

(1) Tx = Tf - T$ is a (Jfc - 1, t - 1) trade of volume rx;

(2) T* = Tf - Tf is a (k, t - 1) trade of volume m{T) - rx;

(3) xTx = xTf - xT$ is a(k,t- 1) trade of volume rx.

3. VARYING t

Empiricaiiy (see [25, 24]), wie higher ihe value uf I, Lhe smallei uhe nacuiuu ui ilie
blocks needed to define a design. A classical example of this fact is the result by Curtis [2]
that only eight out of the 759 blocks are needed to define the unique 5-(24,8,1) Matthieu
design.

Little is known in general about the effect on the sizes of defining sets in a t-design
of varying t. K. Gray [6] showed that the size of a smallest defining set of the unique
3-(8,4,1) design is three, whereas when considered as one of the four 2-(8,4,3) designs
the size of a smallest defining set is six. Greenhill and Street [9] showed that the size
of a smallest defining set of the unique 3-(10,4,1) design is four, whereas the size of a
smallest defining set is sixteen when this design is considered as a 2-(10,4,4) design (of
which there are more than 1.7 x 106, see Mathon and Rosa [19]).

LEMMA 3 . 1 . Let D be a t-(v, k, At) design. For 0 < s < t, D is also an s-(v, k, As)
design where As and Xt are related as in Lemma 1.3. IfS is a defining set of D considered
as an s-design, then S is also a defining set of D considered as a t-design.

PROOF: By Lemma 2.7(1) any (k,t) trade in D is also a (k, s) trade in D and the
result follows from Theorem 2.6. D

Thus, if s( and ss are the sizes of smallest defining sets of D considered as a i-design
and as an s-design respectively, then st ^ ss. By considering the structure of trades and
of defining sets, we now show that equality is not possible.

LEMMA 3 . 2 . IfT is a non-void (k, t) trade, and 0 < s < t, then the blocks ofT

can be partitioned into at least 2t~s non-void (k, s) trades.

PROOF: Clearly there exists x € F(T) such that rx / m(T). By Lemma 2.8, xTx

and Tx are two non-void (fc, t — 1) trades which partition the blocks of T. So T can be
partitioned into two (k,t - 1) trades. The result now follows by induction. D

LEMMA 3 . 3 . Let M be a minimal defining set of a t-design D. Then there exists

a trade TM in D such that \M n TM\ - 1.

https://doi.org/10.1017/S0004972700032822 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032822


208 B.D. Gray and C. Ramsay [6]

P R O O F : AS M is a defining set of D, certainly \M D T\ ^ 1 for every trade T in
D. Suppose that \M n T\ ^ 2 for every trade T in D. Then, if B is any block in M,
| (M \ {B}) D T| ^ 1 for every trade T in £> and M \ {B} is also a defining set of D.
This is a contradiction, since M is minimal. D

THEOREM 3 . 4 . Let D be as in Lemma 3.1. Let st and ss be the sizes of smallest
defining sets of D considered as a t-design and as an s-design respectively. Then

ss >st + 2t-s-l.

P R O O F : Let 5 be a smallest defining set of D considered as an s-design. Then, by
Lemma 3.1, S is also a defining set of D considered as a t-design. Hence there exists
M C S such that M is a minimal defining set of D considered as a t-design. We show
that

(*) \S\ > |M| + 2 ' - - l .

The result then follows immediately, as \S\ = s3 and \M\ ^ st.

To prove (*), we first note that if T is a (k,t) trade in £>, then \SnT\ ^ 2'"s by
Lemma 3.2. But by Lemma 3.3, if M C S is a minimal defining set of D considered as a
t-design, then \MnTM\ = 1 for some (k,t) trade TM in D. Thus M has at least 2*~s - 1
less blocks than S. D

As the results quoted earlier for the 3-(8,4,1) and 3-(10,4,1) designs illustrate, the
bound of Theorem 3.4 is certainly not tight. To conclude this section we show that,
considered as 1-designs, Steiner designs need all but one of their blocks to define them.
Thus the 3-(8,4,1) and 3-(10,4,1) designs, considered as 1-designs, have smallest defining
sets of 13 and 29 blocks respectively.

LEMMA 3 . 5 . Let D = (V,B) be a t-(v,k,l) design. Then, considered as a 1-
design, D has a smallest defining set size ofb — 1.

P R O O F : Since D is Steiner and A; ^ t + 1, then any two blocks in B intersect in
at most k — 2 points. It is easy to see that any two blocks of size k that share at
most k — 2 points must form one half of some (k, 1) trade. The result now follows from
Theorem 2.6. D

4. VARYING A

In this section we investigate the sizes of smallest defining sets of some families of
designs in which A varies. By combining some new upper bounds on the size of smallest
defining sets with information on the designs' decomposability, we solve for the sizes of
smallest defining sets of the 2-(6,3, A) designs and obtain good bounds on the sizes for
the 2-(7,3, A) and 3-(8,4, A) designs.

LEMMA 4 . 1 . The size s of a smallest defining set of a t-(v,t + 1, At) design,
D — (V, B), with b blocks satisfies s ^ b -r.
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P R O O F : Let e e V and let 5 be the collection of b - r blocks of D which do not
contain e. If W is a i-subset not containing e which does not occur At times in the blocks
of 5, then S forces the block(s) eW. In this way, all the r blocks of D containing e are
forced and S is a defining set of D. D

LEMMA 4 . 2 . Let D = (V, B) be a t-(k + t + 1, k, Xt) design. For x € V, let Dx

be the (t - l)-(Jfc + t, k - 1, \t) design (V \ {x}, Bx) (so Dx is the restriction of D on x).
Suppose that s and sx are the sizes of smallest defining sets of D and Dx respectively.
Then s ^ sx ^ r.

P R O O F : That sx ^ r is trivial. Let Sx be a smallest defining set of Dx, and set
S = xSx. We show that 5 is a defining set of D.

Certainly S forces the r blocks of D which contain Ihe eiemeiiL x. The remaining
b — r blocks of D cannot contain a (A;, t) trade as the foundation of such a trade would
be strictly less than k + t + 1, contradicting Lemma 2.7(3). 0

EXAMPLE 4.3. The size of a smallest defining set of a 4-( l l ,5 ,1) design is five. It
follows from the previous lemma that the size of a smallest defining set of a 5-(12,6,1)
design is at most five. It is, in fact, straightforward to see that this size must equal five;
see [9].

Suppose k = t + 1 and v = k + t + 1, so that r = 6/2. Lemmas 4.1 and 4.2 each
imply that s ^ r. However, we can improve this bound by combining the approaches of
the two lemmas.

LEMMA 4 . 4 . The size sofa smallest defining set of a t-(2t + 2, t + 1, A() design,
D = (V, B), satisfies s ^ r — A2.

P R O O F : Let a,b e V. Partition B into sets X, Y and Z where X consists of the
blocks of D that contain a but not 6, Y consists of the blocks that contain a and b, and
Z consists of the blocks that do not contain a.

Now given X, Y is forced since any i-subset that contains a but not b and which has
not occurred \ t times in X must form a block with b in Y. Thus X forces X U Y, which
is a defining set of D as in the proof of Lemma 4.2. D

THEOREM 4 . 5 . Let A ^ 2 be even, J be a 2-(6,3, A) design, sx be the size of a
smallest defining set of J, and (j.\ be the proportion of blocks in a smallest defining set
of J. Then sx = 3A/2 and /xA = 3/10.

P R O O F : Let D be the unique 2-(6,3,2) design. K. Gray [7] has shown that the size
of a smallest defining set of D equals three. The results quoted in Gronau [10] imply
that J is necessarily decomposable into copies of D. By noting that 6 = 10A/2, r = 5A/2
and A2 = A, the result now follows from Lemmas 2.3 and 4.4. Q

In general, the lower bound of Lemma 2.3 is not tight, even when all the decompos-
able designs must be decomposed into copies of a single design. For example, there is a
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single 2-(9,3,1) design, with smallest defining set size of 4 [7]. There are 36 2-(9,3,2)
designs. These designs, with their properties, are given by Morgan [21] and Mathon and
Rosa [18], and the sizes of smallest defining sets are given by Khodkar [15]. From these
we see that nine of the 2-(9,3,2) designs are decomposable, necessarily into copies of the
unique 2-(9,3,1) design. However, only six of these nine have smallest defining set sizes
of 8, the other three having sizes of 9.

We now consider the 2-(7,3, A) designs. Griittmiiller notes in [11] that Langdev [17]
has shown that there are exactly two indecomposable 2-(7,3, A) designs. One of these
designs is the 2-(7,3,1) design D introduced in Example 1.2 and the other is the 2-(7,3,3)
design / introduced in Example 2.2. The number of blocks contained in smallest defining
sets of D and / are 3 and 7 respectively; see [7].

Let [i be the fraction of blocks in a smallest defining set of a 2-(7,3, A) design, J
say. Now J can be decomposed into isomorphic copies of / and D. Lemma 2.3 yields
H ^ min(3/7,7/21) = 1/3. By Lemma 4.1, y, ^ 4/7. We now prove a better upper
bound, which shows that any 2-(7,3, A) design can be defined by less than half its blocks.

THEOREM 4 . 6 . If D is a 2-(7,3, A) design, then a smallest defining set has at

most 16A/5 blocks.

P R O O F : Let V = {0, . . . , 6 } , and suppose that D = {V,B) is a 2-(7,3, A) design,
with b = 7A and r = 3A. Let B = XuY, where X is the set of blocks that do not contain
the point 0. As in the proof of Lemma 4.1, X is a defining set of D, in b — r = 4A blocks.
We show that X contains a set of at least 4A/5 blocks which can be deleted without
destroying its unique completion property.

Consider the 3A blocks in Y. These contain a total of 3A pairs from V \ {0}. Since

there are I I = 15 possible pairs, there must be a pair, say ab, that occurs at most

3A/15 = A/5 times in Y. Since each pair occurs A times in D, there must be at least
4A/5 blocks in X that contain ab. Let the set of blocks in X that contain ab be Z.

Each element of V \ {0} has multiplicity A in Y, so X is a l-(6,3,2A) design. Since
the blocks of Z all contain the pair ab, Z cannot contain any (3,1) trades. So X \ Z
is a defining set for X. Hence X \ Z is a defining set of D, and contains at most
4A - 4A/5 = 16A/5 blocks. D

COROLLARY 4 . 7 . For any 2-(7,3, A) design J, 1/3 ^ fi ^ 16/35. If J can be
decomposed into Fano planes, then 3/7 ^ n ^ 16/35.

The 3-(8,4, A) designs are self-complementary, and can all be obtained by extending
(uniquely) the 2-(7,3, A) designs by complementation, as discussed by Khosrovshahi and
Vatan [16]. It is easy to see that the extension of an indecomposable 2-(7,3, A) design is
an indecomposable 3-(8,4, A) design, while any restriction of an indecomposable 3-(8,4, A)
design is an indecomposable 2-(7,3, A) design. So there are precisely two indecomposable
3-(8,4, A) designs, one for A = 1 and one for A = 3. Let n be the proportion of blocks
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[9] Defining sets i-designs 211

in a smallest defining set of a 3-(8,4, A) design. Since extension by complementation
doubles the number of blocks, the following corollary of Lemma 4.2 and Theorem 4.6 is
immediate.

COROLLARY 4 . 8 . For any 3-(8,4, A) design J, 1/6 ^ ^ ^ 8/35. If J can be

decomposed into 3-(8,4,1) designs, then 3/14 ^ \i ^ 8/35.

Note that if A ^ 4, then Corollaries 4.7 and 4.8 are sufficient to prove the sizes of
smallest defining sets for those designs which can be decomposed into Fano planes or into
3-(8,4,1) designs.

5. VARYING V

Let Sd be the 2 - (2 d + 1 - l ,3 ,1 ) design obtained from the points and lines of PG(d,2)
and let ^ be the fraction of blocks in a smallest defining set of Sj. B. Gray [4] observed
that {tJ-d\f=2 is a non-decreasing sequence, and so fid —> / as d —t oo, for some limiting
value /. Moran [20] has shown that /x3 = 16/35 and so / ^ 16/35, but the exact value of
I is unknown. This is an example of the problem of determining the limit (if it exists) of
the size of a smallest defining set as v increases.

Although we make no progress on this particular problem, we do solve for the limiting
value of the fraction of blocks in a smallest member defining set for Steiner designs. A
simple corollary of this result shows that, asymptotically, the problem of determining
the fraction of blocks in a smallest defining set of a Steiner design is equivalent to the
problem of finding the fraction of blocks in a smallest class defining set.

LEMMA 5 . 1 . Let r}v = (log2 v\ + 1) I ) / ( ) , where k and t are fixed integers
\tji \tj

with k > t > 1. Then r)v —> 0 as v —>• oo.

PROOF: Since k and t are fixed, it suffices to show that

log2t;!hm ° \ = 0.

Now log2f! ^ log2vt' = ulogjt;, and ( ) ~ «*/*!• As t ^ 2, the result follows. D

THEOREM 5 . 2 . Define mD to be the size of a smallest member deBning set of a

Steiner design D. Fix k > t > 1, let

mv = max{m o : D is a t-(v, k, 1) design},

and let bv be the number of blocks in a t-(v, k, 1) design. Then mv/bv ~> 0 as v —• oo.

P R O O F : Let D be any t-(v, k, 1) design, and let V be the set of all distinct designs
isomorphic to D. We present an algorithm to construct a member defining set M of
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size at most log2v! + l for some D* 6 V. Now, using Lemma 5.1 and the fact that

bv= ( V ) / ( . ) , we obtain
\tji \t/

mv \M\ log2v! + l
-r^ ^ L

r
L ^ -^i > 0 as v ->• o o .

&„ &„ Ot,

It remains to construct M. Consider the algorithm given in Figure 1. First note that the
particular D* for which a member defining set is constructed is irrelevant; in particular,
it need not be specified initially. As |aut(Z?)| ^ 1, then \V\ ^ v\, and so at most
log2 v\+l blocks are sufficient to select £>*, provided that each choice of block reduces the
search-space by at least a half. Now if \V\ ^ 1 at STEP 1, then V must contain at least
two distinct designs. Thus the algorithm reaches STEP 5 after a finite number of passes
through the loop represented by STEPS 2-4. Since the chosen ^-subset T is contained in
at least two distinct Bi, one B{ must occur in at most half of the designs in V. Finally,
since each t-subset is considered at most once the algorithm is guaranteed to terminate,
and, when it does, M is a member defining set for D*. D

REMARK 5.3. Unfortunately, the method of Theorem 5.2 appears unlikely to give
a bound on the size of a smallest defining set of a design D. For example, Wil-
son [25] showed that the number of distinct 2-(i;,3,1) designs is at least (e~5v)v*/6,
and \og2(e~5v)v /6 dominates b = v(v — l)/6.

Now, if S is a defining set of a design D then 5 is both a class and a member defining
set of D. So, for Steiner designs, the problem of finding the asymptotic value for the
fraction of blocks in a smallest defining set reduces to the problem of finding the fraction
of blocks in a smallest class defining set. Rather than give the general result, we state
how the result applies to the designs Sd derived from PG(d, 2).

COROLLARY 5 . 4 . Let cd and fxd be the fraction of blocks in smallest class defin-
ing sets and smallest defining sets respectively of Sd- Then

lim Cd = lim /id = I, for some I ^ —.
d—+oo d—•oo 35

The method of Theorem 5.2 can be applied to other combinatorial structures. As
an example, we consider the problem of finding critical sets of Latin squares.

DEFINITION 5.5: A uniquely completable set in a Latin square L is a partial Latin
square which has a unique completion to L. A uniquely completable set all of whose
proper subsets complete to at least two distinct Latin squares is called a critical set of L.

A uniquely completable (respectively, critical) set of a Latin square is conceptually
equivalent to a defining (respectively, minimal defining) set of a design. A number of
authors have studied the sizes of critical sets in Latin squares; see, for example, the
survey paper by Keedwell [14]. It is conjectured that the number of entries in a smallest
uniquely completable set of a Latin square of order n is at least n2/4 (respectively,
(n2 — l)/4) is n is even (respectively odd).
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FIGURE 1: Algorithm for member defining sets

INPUT: integers v, k and t, with v > k > t > 1;
a t-(v,k, 1) design D.

OUTPUT: a design D* isomorphic to D;

a member defining set M for D*, with \M\ ^ log2w! + 1.
SETUP: V <— set of designs isomorphic to D;

M < - 0 ;

Vt <— set of i-subsets of v-set.
STEP 1: if \V\ = 1 then

output the unique D* € V\
output M;
terminate.

STEP 2: pick a ^-subset T from Vt.
STEP 3: for each Di eV do

B{ <- block in D{ containing T.
STEP 4: if all the Bt are equal then

Vt 4— Vt \ set of t-subsets in any Bjj
goto step 2.

STEP 5: B i— a, Bi that occurs least frequently.
STEP 6: M < - M U { B } ;

V <- set of A € X> containing B;
Vj <- Vj \ set of i-subsets of B;
goto step 1.

An isotopism class of a Latin square L of order n consists of all the Latin squares
obtained from L by permuting rows, columns or entries of L. So an isotopism class con-
tains at most (n!)3 members. Define in the natural way a member uniquely completable
set and a class uniquely completable set of a Latin square.

THEOREM 5 . 6 . For a Latin square L of order n, let mL be the size of a smallest
member uniquely completable set. Let

mn = max{rat : L is a Latin square of order n}.

Then mn/n
2 -> 0 as n -4 oo.

PROOF: Using a similar technique to that of Theorem 5.2, one obtains the inequality
mn ^ Iog2((n!)3 + l ) . It is then simple to verify that the limit is as claimed. D

Thus, asymptotically, the problem of determining the size of a smallest uniquely com-
pletable set is equivalent to determining the size of a smallest class uniquely completable
set. It is hoped that this approach may shed some light on this unsolved problem.
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