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Abstract

In this paper we develop a concept aware multi-preferential semantics for dealing with typicality
in description logics, where preferences are associated with concepts, starting from a collection
of ranked TBoxes containing defeasible concept inclusions. Preferences are combined to define
a preferential interpretation in which defeasible inclusions can be evaluated. The construction
of the concept-aware multipreference semantics is related to Brewka’s framework for qualitative
preferences. We exploit Answer Set Programming (in particular, asprin) to achieve defeasible
reasoning under the multipreference approach for the lightweight description logic EL+

⊥.
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1 Introduction

The need to reason about exceptions in ontologies has led to the development of many

non-monotonic extensions of Description Logics (DLs), incorporating features from NMR

formalisms in the literature (Straccia 1993; Baader and Hollunder 1995; Donini et al.

2002; Giordano et al. 2007; Britz et al. 2008; Bonatti et al. 2009; Casini and Straccia

2010; Motik and Rosati 2010), and notably including extensions of rule-based languages

(Eiter et al. 2008; Eiter et al. 2011; Knorr et al. 2012; Gottlob et al. 2014; Giordano and

Theseider Dupré 2016; Bozzato et al. 2018), as well as new constructions and semantics

(Casini and Straccia 2013; Bonatti et al. 2015; Bonatti 2019). Preferential approaches

(Kraus et al. 1990; Lehmann and Magidor 1992) have been extended to description logics,

to deal with inheritance with exceptions in ontologies, allowing for non-strict forms of

inclusions, called typicality or defeasible inclusions, with different preferential semantics

(Giordano et al. 2007; Britz et al. 2008) and closure constructions (Casini and Straccia

2010; Casini et al. 2013; Giordano et al. 2013; Pensel and Turhan 2018).

In this paper, we propose a “concept-aware multipreference semantics” for reasoning

about exceptions in ontologies taking into account preferences with respect to different

concepts and integrating them into a preferential semantics which allows a standard

interpretation of defeasible inclusions. The intuitive idea is that the relative typicality of

two domain individuals usually depends on the aspects we are considering for comparison:

Bob may be a more typical as sport lover than Jim, but Jim may be a more typical

swimmer than Bob. This leads to consider a multipreference semantics in which there is
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a preference relation ≤C among individuals for each aspect (concept) C. In the previous

case, we would have bob ≤SportLover jim and jim ≤Swimmer bob. Considering different

preference relations associated with concepts, and then combining them into a global

preference, provides a simple solution to the blocking inheritance problem, which affects

rational closure, while still allowing to deal with specificity and irrelevance.

Our approach is strongly related with Gerard Brewka’s proposal of preferred subtheo-

ries (Brewka 1989), later generalized within the framework of Basic Preference Descrip-

tions for ranked knowledge bases (Brewka 2004). We extend to DLs the idea of having

ranked or stratified knowledge bases (ranked TBoxes here) and to define preorders (pref-

erences) on worlds (here, preferences among domain elements in a DL interpretation).

Furthermore, we associate ranked TBoxes with concepts. The ranked TBox for concept

C describes the prototypical properties of C-elements. For instance, the ranked TBox for

concept Horse describes the typical properties of horses, of running fast, having a long

mane, being tall, having a tail and a saddle. These properties are defeasible and horses

should not necessarily satisfy all of them.

The ranked TBox for Ch determines a preference relation ≤Ch
on the domain, defining

the relative typicality of domain elements with respect to aspect Ch. We then combine

such preferences into a global preference relation < to define a concept-wise multiprefer-

ence semantics, in which all conditional queries can be evaluated as usual in preferential

semantics. For instance, we may want to check whether typical Italian employees have

a boss, given the preference relation ≤Employee , but no preference relation for concept

Italian; or to check whether employed students are normally young or have a boss, given

the preference relations ≤Employee and ≤Student , resp., for employees and for students.

We introduce a notion of multipreference entailment and prove that it satisfies the

KLM properties of preferential consequence relations. This notion of entailment deals

properly with irrelevance and specificity, is not subject to the “blockage of property

inheritance” problem, which affects rational closure (Pearl 1990), i.e., if a subclass is

exceptional with respect to a superclass for a given property, it does not inherit from

that superclass any other property.

To prove the feasibility of our approach, we develop a proof method for reasoning under

the proposed multipreference semantics for the description logic EL+
⊥ (Kazakov et al.

2014), the fragment of OWL2 EL supported by ELK. We reformulate multipreference

entailment as a problem of computing preferred answer sets and, as a natural choice, we

develop an encoding of the multipreferential extension of EL+
⊥ in asprin (Brewka et al.

2015), exploiting a fragment of Krötzsch’s Datalog materialization calculus (2010).

As a consequence of the soundness and completeness of this reformulation of multipref-

erence entailment, we prove that concept-wise multipreference entailment is Πp
2-complete

for EL+
⊥ ranked knowledge bases.

2 Preliminaries: The description logics EL+
⊥

We consider the description logic EL+
⊥ (Kazakov et al. 2014) of the EL family (Baader

et al. 2005). Let NC be a set of concept names, NR a set of role names and NI a set of

individual names. The set of EL+
⊥ concepts can be defined as follows: C := A | > | ⊥ |

C u C | ∃r.C, where a ∈ NI , A ∈ NC and r ∈ NR. Observe that union, complement and

universal restriction are not EL+
⊥ constructs. A knowledge base (KB) K is a pair (T ,A),
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where T is a TBox and A is an ABox. The TBox T is a set of concept inclusions (or

subsumptions) of the form C v D, where C,D are concepts, and of role inclusions of the

form r1 ◦ . . . ◦ rn v r, where r1, . . . , rn, r ∈ NR. The ABox A is a set of assertions of the

form C(a) and r(a, b) where C is a concept, r ∈ NR, and a, b ∈ NI .

An interpretation for EL+
⊥ is a pair I = 〈∆, ·I〉 where: ∆ is a non-empty domain—a

set whose elements are denoted by x, y, z, . . .—and ·I is an extension function that maps

each concept name C ∈ NC to a set CI ⊆ ∆, each role name r ∈ NR to a binary

relation rI ⊆ ∆ × ∆, and each individual name a ∈ NI to an element aI ∈ ∆. It is

extended to complex concepts as follows: >I = ∆, ⊥I = ∅, (C u D)I = CI ∩ DI and

(∃r.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ rI and y ∈ CI}. The notions of satisfiability of a KB in

an interpretation and of entailment are defined as usual:

Definition 1 (Satisfiability and entailment)

Given an EL+
⊥ interpretation I = 〈∆, ·I〉:

- I satisfies an inclusion C v D if CI ⊆ DI ;

- I satisfies a role inclusions r1 ◦ . . . ◦ rn v r if rI1 ◦ . . . ◦ rIn ⊆ rI ;

- I satisfies an assertion C(a) if aI ∈ CI and an assertion r(a, b) if (aI , bI) ∈ rI .

Given a KB K = (T ,A), an interpretation I satisfies T (resp.A) if I satisfies all inclusions

in T (resp. all assertions in A); I is a model of K if I satisfies T and A.

A subsumption F = C v D (resp., an assertion C(a), R(a, b)), is entailed by K,

written K |= F , if for all models I =〈∆, ·I〉 of K, I satisfies F .

3 Multiple preferences from ranked TBoxes

To define a multipreferential semantics for EL+
⊥ we extend the language with a typicality

operator T, as done for EL⊥ (Giordano et al. 2011). In the language extended with

the typicality operator, an additional concept T(C) is allowed (where C is an EL+
⊥

concept), whose instances are intended to be the prototypical instances of concept C.

Here, we assume that T(C) can only occur on the left hand side of concept inclusion,

to allow typicality inclusions of the form T(C) v D, meaning that “typical C’s are D’s”

or “normally C’s are D’s”. Such inclusions are defeasible, i.e., admit exceptions, while

standard inclusions are called strict, and must be satisfied by all domain elements.

Let C be a (finite) set of distinguished concepts {C1, . . . , Ck}, where C1, . . . , Ck are

possibly complex EL+
⊥ concepts. Inspired to Brewka’s framework of basic preference

descriptions (Brewka 2004), we introduce a ranked TBox TCi
for each concept Ci ∈

C, describing the typical properties T(Ci) v D of Ci-elements. Ranks (non-negative

integers) are assigned to such inclusions; the ones with higher rank are considered more

important than the ones with lower rank.

A ranked EL+
⊥ knowledge base K over C is a tuple 〈Tstrict, TC1

, . . . , TCk
,A〉, where

Tstrict is a set of standard concept and role inclusions, A is an ABox and, for each

Cj ∈ C, TCj is a ranked TBox of defeasible inclusions, {(dji , r
j
i )}, where each dji is a

typicality inclusion of the form T(Cj) v Dj
i , having rank rji , a non-negative integer.

Example 1

Consider the ranked KB K = 〈Tstrict , THorse ,A〉 (with empty A), where Tstrict contains

Horse v Mammal , Mammal v Animal , and THorse = {(d1, 0), (d2, 0), (d3, 1), (d4, 2)}
where the defeasible inclusions d1, . . . , d4 are as follows:
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(d1) T(Horse) v ∃has equipment .Saddle (d2) T(Horse) v ∃Has Mane.Long

(d3) T(Horse) v RunFast (d4) T(Horse) v ∃Has Tail .>

The ranked Tbox THorse can be used to define an ordering among domain elements

comparing their typicality as horses. For instance, given two horses Spirit and Buddy, if

Spirit has long mane, no saddle, has a tail and runs fast, it is intended to be more typical

than Buddy, a horse running fast, with saddle and long mane, but without tail, as having

a tail (rank 2) is a more important property for horses wrt having a saddle (rank 0).

In order to define an ordering for each Ci ∈ C, where x ≤Ci
y means that x is

at least as typical as y wrt Ci (in the example, Spirit ≤Horse Buddy and, actually,

Spirit <Horse Buddy), among the preference strategies considered by Brewka, we adopt

strategy #, which considers the number of formulas satisfied by a domain element for

each rank.

Given a ranked knowledge base K = 〈Tstrict, TC1
, . . . , TCk

,A〉, where TCj
= {(dji , r

j
i )}

for all j = 1, . . . , k, let us consider an EL+
⊥ interpretation I = 〈∆, ·I〉 satisfying all the

strict inclusions in Tstrict and assertions in A. For each j, to define a preference ordering

≤Cj on ∆, we first need to determine when a domain element x ∈ ∆ satisfies/violates

a typicality inclusion for Cj . We say that x ∈ ∆ satisfies T(Cj) v D in I, if x 6∈ CI
j

or x ∈ DI , while x violates T(Cj) v D in I, if x ∈ CI
j and x 6∈ DI . Note that any

element which is not an instance of Cj trivially satisfies all conditionals T(Cj) v Dj
i . For

a domain element x ∈ ∆, let T l
Cj

(x) be the set of typicality inclusions in TCj
with rank

l which are satisfied by x: T l
Cj

(x) = {d | (d, l) ∈ TCj
and x satisfies d in I}.

Definition 2 ( ≤Cj
)

Given a ranked knowledge base K as above and an EL+
⊥ interpretation I = 〈∆, ·I〉, the

preference relation ≤Cj
associated with TCj

= {(Dj
i , r

j
i )} in I is defined as follows:

x1 ≤Cj
x2 iff either |T l

Cj
(x1)| = |T l

Cj
(x2)| for all l,

or ∃l such that |T l
Cj

(x1)| > |T l
Cj

(x2)| and, ∀h > l, |T h
Cj

(x1)| = |T h
Cj

(x2)|

A strict preference relation <Cj
and an equivalence relation ∼Cj

can be defined as usual

letting: x1 <Cj x2 iff (x1 ≤Cj x2 and not x2 ≤Cj x1), and x ∼Cj y iff (x ≤Cj y and

y ≤Cj
x).

Informally, ≤Cj
gives higher preference to domain individuals violating less typicality

inclusions with higher rank. Definition 2 exploits Brewka’s # strategy in DL context. In

particular, all x, y 6∈ CI
j , x ∼Cj

y, i.e., all elements not belonging to CI
j are assigned the

same rank, the least one, as they trivially satisfy all the typical properties of Cj ’s. As, for

a ranked knowledge base, the # strategy defines a total preorder (Brewka 2004) and, for

each TCj
, we have applied this strategy to the materializations Cj v D of the typicality

inclusions T(Cj) v D in the ranked TBox TCj , the relation ≤Cj is a total preorder on

the domain ∆. Then, the strict preference relation <Cj
is a strict modular partial order,

i.e., an irreflexive, transitive and modular relation (where modularity means that: for all

x, y, z ∈ ∆, if x <Cj
y then x <Cj

z or z <Cj
y); ∼Cj

is an equivalence relation.

As EL+
⊥ has the finite model property (Baader et al. 2005), we can restrict our consid-

eration to interpretations I with a finite domain. In principle, we would like to consider,

for each concept Cj ∈ C, all possible domain elements compatible with the inclusions

in Tstrict, and compare them according to ≤Ci
relation. This leads us to restrict the
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consideration to models of Tstrict that we call canonical, in analogy with the canoni-

cal models of rational closure (Giordano et al. 2013). For each concept C occurring in

K, let us consider a new concept name C, (representing the negation of C) such that

C u C v ⊥. Let SK be the set of all such C and C, and let TConstr the set of all sub-

sumptions C u C v ⊥. A set {D1, . . . , Dm} of concepts in SK is consistent with K if

TStrict ∪ TConstr 6|=EL+
⊥
D1 u · · · uDm v ⊥.

Definition 3

Given a ranked knowledge base K = 〈Tstrict, TC1
, . . . , TCk

,A〉 an EL+
⊥ interpretation I =

〈∆, ·I〉 is canonical for K if I satisfies Tstrict and, for any set of concepts {D1, . . . , Dm} ⊆
SK consistent with K, there exists a domain element x ∈ ∆ such that, for all i = 1, . . . ,m,

x ∈ CI , if Di = C, and x 6∈ CI , if Di = C.

The idea is that, in a canonical model for K, any conjunction of concepts occurring in

K, or their complements, when consistent with K, must have an instance in the domain.

Existence of canonical interpretations is guaranteed for knowledge bases which are con-

sistent under the preferential (or ranked) semantics for typicality. EL+
⊥ with typicality is

indeed a fragment of the description logic SHIQ with typicality, for which existence of

canonical models of consistent knowledge bases was proved (Giordano et al. 2018).

In agreement with the preferential interpretations of typicality logics, we further require

that, if there is some Ch-element in a model, then there is at least one Ch-element

satisfying all typicality inclusions for Ch (i.e., a prototypical Ch-element).

Definition 4

An EL+
⊥ interpretation I = 〈∆, ·I〉 is T-compliant for K if, I satisfies TStrict and, for

all Ch ∈ C such that CI
h 6= ∅, there is some x ∈ CI

h such that x satisfies all defeasible

inclusions in TCh
.

In a canonical and T-compliant interpretation for K, for each Cj ∈ C, the relation ≤Cj

on the domain ∆ provides a preferential interpretation for the typicality concept T(Cj)

as min<Cj
(CI

j ), in which all typical Cj satisfy all typicality inclusions in TCh
.

Existence of a T-compliant canonical interpretation is not guaranteed for an arbitrary

knowledge base. For instance, a knowledge base whose typicality inclusions conflict with

strict ones (e.g, T(Cj) v D and CjuD v ⊥) has no T-compliant interpretation. However,

existence of T-compliant interpretations is guaranteed for knowledge bases which are

consistent under the preferential (or ranked) semantics for typicality (see Appendix A

(Giordano and Theseider Dupré 2020), Proposition 5), and consistency can be tested in

polynomial time in Datalog (Giordano and Theseider Dupré 2018).

For a ranked knowledge base K = 〈Tstrict, TC1
, . . . , TCk

,A〉, and a given EL+
⊥ inter-

pretation I = 〈∆, ·I〉, the strict modular partial order relations <C1
, . . . , <Ck

over ∆,

defined according to Definition 2 above, determine the relative typicality of domain ele-

ments w.r.t. each concept Cj . Clearly, the different preference relations <Cj
do not need

to agree, as seen in the introduction.

4 Combining multiple preferences into a global preference

We are interested in defining a notion of typical C-element, and defining an interpretation

of T(C), which works for all concepts C, not only for the distinguished concepts in C. This
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can be used to evaluate subsumptions of the form T(C) v D when C does not belong

to C. We address this problem by introducing a notion of multipreference concept-wise

interpretation, which generalizes the notion of preferential interpretation (Kraus et al.

1990) by allowing multiple preference relations and, then, combining them in a single

(global) preference. Let us consider the following example:

Example 2

Let K be the ranked KB 〈Tstrict, TEmployee, TStudent, TPhDStudent,A〉 (with empty A =

∅), containting the strict inclusions:

Employee v Adult Adult v ∃has SSN .> PhdStudent v Student

Young uNotYoung v ⊥ ∃hasScholarship.> uHas no Scholarship v ⊥
The ranked TBox TEmployee = {(d1, 0), (d2, 0)} contains the defeasible inclusions:

(d1) T(Employee) v NotYoung (d2) T(Employee) v ∃has boss.Employee

the ranked TBox TStudent = {(d3, 0), (d4, 1), (d5, 1)} contains the defeasible inclusions:

(d3) T(Student) v ∃has classes.> (d4) T(Student) v Young

(d5) T(Student) v Has no Scholarship

and the ranked TBox TPhDStudent = {(d6, 0), (d7, 1)} contains the inclusions:

(d6) T(PhDStudent) v ∃hasScholarship.Amount (d7) T(PhDStudent) v Bright

We might be interested to check whether typical Italian students are young or whether

typical employed students are young. This would require the typicality inclusions

T(Student u Italian) v Young and T(Employee u Student) v Young to be evaluated.

Nothing should prevent Italian students from being young (irrelevance). Also, we ex-

pect not to conclude that typical employed students are young nor that they are not, as

typical students and typical employees have conflicting properties concerning age. How-

ever, we would like to conclude that typical employed students have a boss, have classes

and have no scholarship, as they should inherit the properties of typical students and

of typical employees which are not overridden (i.e., there is no blocking of inheritance).

As PhD students are students, they should inherit all the typical properties of Students,

except having no scholarship, which is overridden by (d6).

To evaluate conditionals T(C) v D for any concept C we introduce a concept-wise

multipreference interpretation, that combines the preference relations <C1
, . . . , <Ck

into

a single (global) preference relation < and interpreting T(C ) as (T(C ))I = min<(CI).

The relation < should be defined starting from the preference relations <C1 , . . . , <Ck

also considering specificity.

Let us consider the simplest notion of specificity among concepts, based on the sub-

sumption hierarchy (one of the notions considered for DLN (Bonatti et al. 2015)).

Definition 5 (Specificity)

Given a ranked EL+
⊥ knowledge base K = 〈Tstrict, TC1 , . . . , TCk

,A〉 over the set of

concepts C, and given two concepts Ch, Cj ∈ C, Ch is more specific than Cj (written

Ch � Cj) if Tstrict |=EL+
⊥
Ch v Cj and Tstrict 6|=EL+

⊥
Cj v Ch.

Relation � is irreflexive and transitive (Bonatti et al. 2015). Alternative notions of speci-

ficity can be used, based, for instance, on the rational closure ranking.

We are ready to define a notion of multipreference interpretation. Let a relation <Ci

be well-founded when there is no infinitely-descending chain of domain elements x1 <Ci

x0, x2 <Ci x1, x3 <Ci x2, . . ..
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Definition 6 (concept-wise multipreference interpretation)

A (finite) concept-wise multipreference interpretation (or cwm-interpretation) is a tuple

M = 〈∆, <C1 , . . . , <Ck
, <, ·I〉 such that: (a) ∆ is a non-empty domain;

(b) for each i = 1, . . . , k, <Ci
is an irreflexive, transitive, well-founded and modular

relation over ∆;

(c) the (global) preference relation < is defined from <C1 , . . . , <Ck
as follows:

x < y iff (i) x <Ci
y, for some Ci ∈ C, and

(ii) for all Cj ∈ C, x ≤Cj
y or ∃Ch(Ch � Cj and x <Ch

y)

(d) ·I is an interpretation function, as defined in EL+
⊥ interpretations (see Section 2),

with the addition that, for typicality concepts, we let: (T(C))I = min<(CI), where

Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}.

Notice that the relation < is defined from <C1
, . . . , <Ck

based on a modified Pareto

condition: x < y holds if there is at least a Ci ∈ C such that x <Ci
y and, for all

Cj ∈ C, either x ≤Cj y holds or, in case it does not, there is some Ch more specific

than Cj such that x <Ch
y (preference <Ch

in this case overrides <Cj
). For instance,

in Example 2, for two domain elements x, y, both instances of PhDStudent ,Student ,

∃has Classes.>,Young , and such that x is instance of has no Scholarship, while y is

not, we have that x <Student y and y <PhDStudent x . As PhDStudent is more specific

than Student , globally we get y < x . We can prove the following result.

Proposition 1

Given a cwm-interpretation M = 〈∆, <C1
, . . . , <Ck

, <, ·I〉, relation < is an irreflexive,

transitive and well-founded relation.

Proof

Well-foundedness of < is immediate from the restriction to finite models.

To prove irreflexivity and transitivity of <, we exploit the fact that each <Ci
is assumed

to be an irreflexive, transitive, well-founded and modular relation on ∆ (see Definition

6). Irreflexivity of < follows easily from the irreflexivity of the <Ch
’s as, for x < x to

hold, x <Ch
x should hold for some Ch, which is not possible as <Ch

is irreflexive.

To prove transitivity of <, we prove transitivity of ≤ defined as follows:

x ≤ y iff for all Cj ∈ C (i) x ≤Cj y, or

(ii) exists Ch ∈ C, (Ch � Cj and x <Ch
y)

It is easy to see that the global preference relation < introduced in point (c) of Definition

6 can be equivalently defined as: x < y iff (x ≤ y and not y ≤ x). Transitivity of <

follows from transitivity of ≤.

To prove transitivity of ≤, let us assume that x ≤ y and y ≤ z hold. We prove that

x ≤ z holds by proving that: for all Cj ∈ C, x ≤Cj
z holds (call this case (i)x,zCj

) or there

is a Ch such that Ch � Cj and x <Ck
z (call this case (ii)x,zCj

)).

As x ≤ y holds, for all Cj ∈ C, x ≤Cj
y (case (i)1) or there is a Ch such that Ch � Cj

and x <Ck
y (case (ii)1). Similarly, as y ≤ z holds, for all Cj ∈ C, y ≤Cj

z (case (i)2) or

there is a Cr such that Cr � Cj and x <Cr
y (case (ii)2). Let us consider the different

possible combination of cases in which x ≤ y and y ≤ z hold, for each Cj :
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Case (i)1-(i)2: In this case, x ≤Cj
y and y ≤Cj

z hold. By transitivity of ≤Cj
, x ≤Cj

z

(i.e., condition (i)x,zCj
is satisfied).

Case (ii)1-(i)2: In this case, y ≤Cj z , and there is a Ch such that Ch � Cj and

x <Ch
y. Let Ch be maximally specific among all concepts C ∈ C such that C � Cj and

x <C y.

If y ≤Ch
z is the case, from x <Ch

y, we get x <Ch
z, so that: there is a Ch such that

Ch � Cj and x <Ch
z, i.e., condition (ii)x,zCj

is satisfied. Otherwise, if z <Ch
y, as y ≤ z,

there must be a Cr such that Cr � Ch and y <Cr
z. If x ≤Cr

y, we can conclude that

x <Cr z. From Cr � Ch � Cj , by transitivity, Cr � Cj , i.e. condition (ii)x,zCj
is satisfied.

If x ≤Cr
y does not hold, i.e. y <Cr

x, as x ≤ y, there must be a Cw ∈ C such that

Cw � Cr and x <Cw y. However, this is not possible, as it would be Cw � Cr � Ch � Cj

and we have chosen Ch to be maximally specific among the concepts C ∈ C such that

C � Cj and x <C y, a contradiction.

The cases (i)1-(ii)2 and (ii)1-(ii)2 can be proved in a similar way.

In a cwm-interpretation we have assumed each <Cj
to be any irreflexive, transitive,

modular and well-founded relation. In a cwm-model of K, the preference relations <Cj ’s

will be defined from the ranked TBoxes TCj
’s according to Definition 2.

Definition 7 (cwm-model of K)

Let K = 〈Tstrict, TC1 , . . . , TCk
,A〉 be a ranked EL+

⊥ knowledge base over C and I = 〈∆, ·I〉
an EL+

⊥ interpretation for K. A concept-wise multipreference model (or cwm-model) of

K is a cwm-interpretation M = 〈∆, <C1
, . . . , <Ck

, <, ·I〉 such that: for all j = 1, . . . , k,

<Cj is defined from TCj and ·I , according to Definition 2;M satisfies all strict inclusions

inclusions in Tstrict and all assertions in A.

As the preferences <Cj
’s, defined according to Definition 2, are irreflexive, transitive, well-

founded and modular relations over ∆, a cwm-model M is indeed a cwm-interpretation.

By definition M satisfies all strict inclusions and assertions in K, but is not required to

satisfy all typicality inclusions T(Cj) v D in K, unlike in preferential typicality logics

(Giordano et al. 2007).

Consider, in fact, a situation in which typical birds are fliers and typical fliers are birds

(T(B) v F and T(F ) v B). In a cwm-model two domain elements x and y, which are

both birds and fliers, might be incomparable wrt <, as x is more typical than y as a bird,

while y is more typical than x as a flier, even if one of them is minimal wrt <Bird and the

other is not. In this case, they will be both minimal wrt <. In preferential logics, we would

conclude that T(B) ≡ T(F ), which is not the case under the cwm-semantics. This im-

plies that the notion of cwm-entailment (defined below) is not stronger than preferential

entailment. It is also not weaker as, for instance, in Example 2, cwm-entailment allows

to conclude that typical employed students have a boss, have classes and no scholarship

(although defaults (d1) and (d4) are conflicting), while neither preferential entailment

nor the rational closure would allow such conclusions; cwm-entailment does not suffer

from inheritance blocking, and is then incomparable with preferential entailment and

with entailment under rational closure, being neither weaker nor stronger.

The notion of cwm-entailment exploits canonical and T-compliant cwm-models of K.

A cwm-modelM = 〈∆, <C1
, . . . , <Ck

, <, ·I〉 is canonical (T-compliant) for K if the EL+
⊥

interpretation 〈∆, ·I〉 is canonical (T-compliant) for K.
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Definition 8 (cwm-entailment)

An inclusion T(C) v Cj is cwm-entailed from K (written K |=cwm T(C) v Cj) if

T(C) v Cj is satisfied in all canonical and T-compliant cwm-models M of K.

It can be proved that cwm-entailment satisfies the KLM postulates of a preferential

consequence relation (Proposition 6, Appendix A (Giordano and Theseider Dupré 2020)).

5 Reasoning under the cw-multipreference semantics

In this section we consider the problem of checking cwm-entailment of a typicality sub-

sumption T(C) v D as a problem of determining preferred answer sets. Based on this

formulation, that we prove to be sound and complete, we show that the problem is in

Πp
2. We exploit asprin (Brewka et al. 2015) to compute preferred answer sets. The proofs

for this section can be found in Appendix C (Giordano and Theseider Dupré 2020).

In principle, for checking T(C) v D we would need to consider all possible typical C-

elements in all possible canonical and T-compliant cwm-model of K, and verify whether

they are all instances of D. However, we will prove that it is sufficient to consider, among

all the (finite) cwm-models of K, the polynomial EL+
⊥ models that we can construct using

the EL+
⊥ fragment of the materialization calculus for SROEL(u,×) (Krötzsch 2010), by

considering all alternative interpretations for a distinguished element auxC , representing

a prototypical C-element. In preferred models, which minimize the violation of typicality

inclusions by auxC , it indeed represents a typical C-element. An interesting result is

that neither we need to consider all the possible interpretations for constants in the

model nor to minimize violation of typicalities for them. Essentially, when evaluating

the properties of typical employed students we are not concerned with the typicality (or

atypicality) of other constants in the model (e.g., with typical cars, with typical birds, and

with typical named individuals). Unlike a previous semantics by Giordano and Theseider

Dupré (2016), which generalizes rational closure by allowing typicality concepts on the

rhs of inclusions, we are not required to consider all possible alternative interpretations

and ranks of individuals in the model. We will see, however, that we do not loose solutions

(models) in this way.

In the following we first describe how answer sets of a base program, corresponding to

cwm-models of K, are generated. Then we describe how preferred models can be selected,

where auxC represent a typical C-element.

We will assume that assertions (C(a) and r(a, b)) are represented using nominals as

inclusions (resp., {a} v A and {a} v ∃R.{b}), where a nominal {a} is a concept contain-

ing a single element and ({a})I = {aI}. We also assume that the knowledge base K is

in normal form (Baader et al. 2005), where a typicality inclusion T(B) v C is in normal

form when B,C ∈ NC (Giordano and Theseider Dupré 2016). Extending the results in

(Krötzsch 2010), it can be proved that, given a KB, a semantically equivalent KB in

normal form (over an extended signature) can be computed in linear time. We refer to a

previous paper (Giordano and Theseider Dupré 2018) for the details on normalization.

The base program Π(K,C,D) for the (normalized) knowledge base K and typicality

subsumption T(C) v D is composed of three parts, Π(K,C,D) = ΠK ∪ΠIR ∪ΠC,D.

ΠK is the representation of K in Datalog (Krötzsch 2010), where, to keep a DL-like

notation, we do not follow the convention where variable names start with uppercase; in
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particular, A, C, D and R, are intended as ASP constants corresponding to the same

class/role names in K. In this representation, nom(a), cls(A), rol(R) are used for a ∈ NI ,

A ∈ NC , R ∈ NR, and, for example, subClass(a,C ), subClass(A,C ) are used for C(a),

A v C. Additionally, subTyp(C ,D ,N ) is used for T (C ) v D having rank N , and the

following definitions for distinguished concepts, typical properties, and valid ranks, will

be used in defining preferences:

dcls(C )← subTyp(C ,D ,N )

tprop(C ,D)← subTyp(C ,D ,N )

validrank(C ,N )← subTyp(C ,D ,N )

For each distinguished concept Ci, auxtc(aux Ci ,Ci) is included, where aux Ci is an

auxiliary individual name. Other auxiliary constants (one for each inclusion A v ∃R.B)

are needed (Krötzsch 2010) to deal with existential rules.

ΠIR contains the subset of the inference rules (1-29) for instance checking (Krötzsch

2010) that is relevant for EL+
⊥ (reported in Appendix B (Giordano and Theseider Dupré

2020)), for example inst(x , z )← subClass(y , z ), inst(x , y); for ⊥, an additional rule is

used: ← bot(z ), inst(x , z ). Additionally, ΠIR contains the version of the same rules for

subclass checking (where inst sc(A,B ,A) represents A v B (Krötzsch 2010)), and then

the following rule encodes specificity Ch � Cj :

morespec(Ch,Cj )← dcls(Ch), dcls(Cj ), inst sc(Ch,Cj ,Ch),not inst sc(Cj ,Ch,Cj )

ΠIR also contains the following rules:

(a) {inst(auxC ,D)} ← dcls(Ci), inst(auxC ,Ci), tprop(Ci ,D)

(b) inst(Y ,Ci)← auxtc(Y ,Ci), inst(X ,Ci)

(c) typ(Y ,Ci)← auxtc(Y ,Ci), inst(Y ,Ci)

(d) inst(Y ,D)← subTyp(Ci ,D ,N ), typ(Y ,Ci)

Rule (a) generates alternative answer sets (corresponding to different interpretations)

where auxC may have the typical properties of the concepts it belongs. The constant

aux Ci, such that auxtc(aux Ci, Ci) holds, represents a typical Ci (a minimal element

wrt. ≤Ci
) only in case it is an instance of Ci (i.e., inst(aux Ci ,Ci) holds). Rule (b)

establishes that, if there is an instance x of concept Ci in the interpretation, then aux Ci

must be an instance of Ci (it models T-compliance) and, by rule (c), aux Ci is a typical

instance of Ci, i.e., it is minimal wrt. ≤Ci among Ci-elements in the interpretation at

hand. By rule (d), a typical instance of Ci has all typical properties of Ci. The rules

(b)-(d) only allow to derive conclusions involving aux Ci constants.

ΠC,D contains (if necessary) normalized axioms defining C,D in T(C) v D in terms of

other concepts (e.g., replacing T(Employee u Student) v Young with T(A) v Young and

A v Employee, A v Student and Employee u Student v A) plus the facts auxtc(auxC ,C ),

nom(auxC ), inst(auxC ,C ).

Proposition 2
Given a normalized ranked knowledge base K = 〈Tstrict, TC1

, . . . , TCk
,A〉 over the set of

concepts C, and a (normalized) subsumption C v D:

(1) if there is an answer set S of the ASP program Π(K,C,D), such that inst(auxC , D) 6∈
S, then there is a T-compliant cwm-modelM = 〈∆, <C1

, . . . , <Ck
, <, ·I〉 for K that

falsifies the subsumption C v D.
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(2) if there is a T-compliant cwm-model M = 〈∆, <C1
, . . . , <Ck

, <, ·I〉 of K that fal-

sifies the subsumption C v D, then there is an answer set S of Π(K,C,D), such

that inst(auxC ,D) 6∈ S .

We exploit the idea of identifying the minimal C-elements in a canonical cwm-model of

K, as the auxC elements of the preferred answer sets of Π(K,C,D).

Definition 9

Let S and S′ be answer sets of Π(K,C,D). S′ is preferred to S if auxC in S′ (denoted

as auxS′

C ) is globally preferred to auxC in S (denoted as auxS
C), that is, auxS′

C < auxS
C ,

defined according to Definition 6, point (c), provided that relations auxS′

C ≤Cj
auxS

C are

defined according to Definition 2, by letting:

T l
Ci

(auxS
C ) = {B | inst(auxC ,Ci) 6∈ S or inst(auxC ,B) ∈ S , for T(Ci) v B ∈ K},

i.e., T l
Ci

(auxS
C ) contains the B’s such that Ci v B is satisfied in S for some typicality

inclusion T(Ci) v B in K; and similarly for S′. The strict relation auxS′

C <Cj
auxS

C is

defined accordingly.

Essentially, we compare S and S′ identifying the concepts of which auxC is an instance

in S and in S′ and evaluating which defaults are satisfied for auxC in S and in S′, using

the same criteria used for comparing domain elements in Section 3.

The selection of preferred answer sets, the ones where auxC is in min<(CI), and then

in (T(C))I , can be done in asprin with the following preference specification:

#preference(p,multipref ){dcls(Ci) : dcls(Ci); morespec(Ci ,Cj ) : dcls(Ci), dcls(Cj );

inst(auxC ,E ) : tprop(Ci ,E ), dcls(Ci); subTyp(Ci ,E ,R) : subTyp(Ci ,E ,R);

validrank(Ci ,R) : validrank(Ci ,R)}
#optimize(p)

requiring optimization wrt p which is a preference of type multipref , a preference type

defined by the preference program below (exploiting the fact that asprin, among other

things, generates from the specification a fact preference(p,multipref )).

In asprin preference programs, defining whether an answer set S is preferred to S′

according to a preference P amounts to defining a predicate better(P ) for the case where

P is of the type being defined; the predicates holds and holds′ are used to check whether

the atoms in the preference specification hold in S and S′, respectively. In the follow-

ing, better(p), bettereqwrt(Ci), betterwrt(Ci), correspond to <, ≤Ci
, <Ci

, respectively, for

auxS
C and auxS′

C , comparing what holds for auxC to what holds′ for it; moreprop and

samenumprop verify whether more (or the same number of ) typicality inclusions of rank

R are satisfied by auxC in S wrt S′:

#program preference(multipref )

better(P)← preference(P ,multipref ), holds(dcls(Ci)),

betterwrt(Ci),noattack(Cj ) : holds(dcls(Cj ))

noattack(Cj )← holds(dcls(Cj )), bettereqwrt(Cj )

noattack(Cj )← holds(dcls(Cj )), holds(dcls(Ch)), holds(morespec(Ch,Cj )), betterwrt(Ch)

bettereqwrt(Ci)← betterwrt(Ci)

bettereqwrt(Ci)← holds(dcls(Ci)), samenumprop(Ci ,R) : holds(validrank(Ci ,R))

betterwrt(Ci)← holds(dcls(Ci)),moreprop(Ci ,R),
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samenumprop(Ci ,R1 ) : holds(validrank(Ci ,R1 )),R1 > R

moreprop(Ci ,R)← holds(validrank(Ci ,R)),

#sum{−1 ,E : sat(auxC ,Ci ,E ), holds(subTyp(Ci ,E ,R));

1 ,E : sat1 (auxC ,Ci ,E ), holds(subTyp(Ci ,E ,R))} − 1

sat(auxC ,Ci ,E )← holds(X ),X = inst(auxC ,E ), holds(subTyp(Ci ,E ,R))

sat(auxC ,Ci ,E )← not holds(X ),X = inst(auxC ,Ci), holds(subTyp(Ci ,E ,R))

sat1 (auxC ,Ci ,E )← holds ′(X ),X = inst(auxC ,E ), holds(subTyp(Ci ,E ,R))

sat1 (auxC ,Ci ,E )← not holds ′(X ),X = inst(auxC ,Ci), holds(subTyp(Ci ,E ,R))

samenumprop(Ci ,R)← holds(validrank(Ci ,R)),

0 #sum{−1 ,E : sat(auxC ,Ci ,E ), holds(subTyp(Ci ,E ,R));

1 ,E : sat1 (auxC ,Ci ,E ), holds(subTyp(Ci ,E ,R))}0

Let us call Pref the preference specification and the preference program defined above;

checking whether T(C) v D is cwm-entailed amounts to checking whether inst(auxC , D)

is in all preferred answer sets of Π(K,C,D) according to Pref .

Proposition 3

Given a normalized ranked knowledge base K = 〈Tstrict, TC1
, . . . , TCk

,A〉 over the set of

concepts C, and a subsumption T(C) v D, we can prove the following:

(1) if there is a canonical and T-compliant cwm-model M = (∆, <C1
, . . . , <Ck

, <, ·I)

of K that falsifies T(C) v D, then there is a preferred answer set S of Π(K,C,D)

according to Pref , such that inst(auxC , D) 6∈ S.

(2) if there is a preferred answer set S of Π(K,C,D) according to Pref , such that

inst(auxC , D) 6∈ S, then there is a canonical and T-compliant cwm-model M =

(∆, <C1
, . . . , <Ck

, <, ·I) of K that falsifies T(C) v D.

Propositions 2 and 3 tell us that, for computing cwm-entailment, it is sufficient to consider

the polynomial T-compliant cwm-models of K corresponding to answer sets S of Π(K,

C,D)1. A Πp
2 upper bound on the complexity of cwm-entailment can be proved based on

the the above formulation of cwm-entailment as a problem of computing preferred answer

sets. The Πp
2-hardness can be proved by providing a reduction of the minimal entailment

problem of positive disjunctive logic programs, which was proved to be a ΠP
2 -hard problem

by Eiter and Gottlob (1995).

Proposition 4

Deciding cwm-entailment is a Πp
2-complete problem.

5.1 Some experimental results

For Example 2, we actually get that typical employed students have a boss, but not that

they are young: there are, in fact, two preferred answer sets, with inst(auxC ,Young) and

inst(auxC ,NotYoung) respectively; they are generated in 0.40 seconds.

A first scalability test is based on a slightly larger version of the same example, with 5

distinguished classes and 50 typicality inclusions. Adding to it more typicality inclusions,

1 Note that, for verifying cwm-entailment of T(C) v D, all answer sets of Π(K, C,D) have to be
considered and checking whether Π(K,C,D) ∪ {−inst(auxC , D)} has no preferred answer sets would
not be correct.
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1x 2x 4x 8x

test 1a 0.35 0.45 0.63 0.99

test 1b 0.35 0.50 0.95 3.93

test 2 1.03 1.15 1.27 1.76

Table 1. Some scalability results

up to 8 times (400 inclusions), the runtime grows up to 0.99 s (see Table 1, test 1a, average

running times for asprin 1.1.1 under Linux on an Intel Xeon E5-2640 @ 2.00GHz). Adding

up to 8 copies of the KB (i.e., adding T(Employee ′) v NotYoung ′ and similar), with up

to 40 distinguished classes and 400 typicality inclusions, the runtime grows up to 3.93

(Table 1, test 1b).

In another experiment, we have distinguished classes C1 . . . C5 with C3 v C2 v C1,

C5 v C4 v C1. For all i, the Ci’s are typically Pi’s, Qi’s, Ri’s, where for i 6= j, PiuPj v ⊥.

A typical C3 u C5 then inherits all the Qi’s and Ri’s properties, while it can either be

a P3 or a P5. Also in this case adding up to 8 copies of the KB (with then up to 40

distinguished classes and 120 typicality inclusions) leads to a moderate increase of the

running time which ranges from 1.03 to 1.76 seconds (Table 1, test 2).

Dealing with longer chains of subclasses seems more challenging. For a modification

of the base case of the previous example with 10 distinguished classes C10 v C8 v C6 v
C4 v C2 v C1, C9 v C7 v C5 v C3 v C1, and 50 typicality axioms, checking the

properties of typical C9 u C10 already takes 5.4 seconds.

6 Conclusions and related work

In this paper we have developed an ASP approach for defeasible inference in a concept-

wise multipreference extension of EL⊥. Our semantics is related to the multipreference

semantics for ALC developed by Gliozzi (2016), which is based on the idea of refining

the rational closure construction considering the preference relations <Ai associated with

different aspects, but we follow a different route concerning both the definition of the

preference relations associated with concepts, and the way of combining them in a single

preference relation. In particular, Gliozzi’s multipreference semantics aims at defining

a refinement of rational closure semantics, which is not our aim here; compared with

rational closure, our semantics is neither weaker (as it does not suffer from the “the

blocking of property inheritance” problem) nor stronger (see Section 4).

The idea of having different preference relations, associated with different typicality

operators, has been studied by Gil (2014) to define a multipreference formulation of

the description logic ALC + Tmin, a typicality DL with a minimal model preferential

semantics. In this proposal we associate preferences with concepts, and we combine such

preferences into a single global one. For a preferential extension of EL⊥ based on the

same minimal model semantics as ALC + Tmin, it has been proved (Giordano et al.
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2011) that minimal entailment is already ExpTime-hard for EL⊥ KBs, while a Πp
2 upper

bound holds for minimal entailment in the Left Local fragment of EL⊥Tmin , as for

circumscriptive KBs (Bonatti et al. 2011). A related problem of commonsense concept

combination has been addressed in a probabilistic extension of ALC + TR (Lieto and

Pozzato 2018).

Among the formalisms combining DLs with logic programming rules (Eiter et al. 2008;

Eiter et al. 2011; Motik and Rosati 2010; Knorr et al. 2012; Gottlob et al. 2014) DL-

programs (Eiter et al. 2008; Eiter et al. 2011) support a loose coupling of DL ontologies

and rule-based reasoning under the answer set semantics and the well-founded semantics;

rules may contain DL-atoms in their bodies, corresponding to queries to a DL ontology,

which can be modified according to a list of updates. The non-monotonic description logic

DLN (Bonatti et al. 2015) supports normality concepts based on a notion of overriding,

enjoying good computational properties, and preserves the tractability for low complex-

ity DLs, including EL⊥++
and DL-lite (Bonatti et al. 2015). Bozzato et al. (2014; 2018)

present extensions of the CKR (Contextualized Knowledge Repositories) framework in

which defeasible axioms are allowed in the global context and exceptions can be handled

by overriding and have to be justified in terms of semantic consequence. A translation of

extended CKRs (with knowledge bases in SROIQ-RL) into Datalog programs under the

answer set semantics is developed. Related approaches are also the work by Beierle et al.

(2018), characterizing skeptical c-inference as a constraint satisfaction problem, and the

work by Deane et al. (2015) presenting an inconsistency tolerant semantics for ALC using

preference weights and exploiting ASP optimization for computing preferred interpreta-

tions. Reasoning under the rational closure for low complexity DLs has been investigated

for SROEL(u,×) (Giordano and Theseider Dupré 2018), using a Datalog plus strati-

fied negation polynomial construction and for ELO⊥ (Casini et al. 2019), developing a

polynomial time subsumption algorithm for the nominal safe fragment (Kazakov et al.

2014). A problem that we have not considered in this paper is the treatment of defeasible

information for existential concepts; it has been addressed by Pensel and Turhan (2018),

who developed a stronger version of rational and relevant entailment in EL⊥, exploiting

a materialisation-based algorithm for EL⊥ and a canonical model construction.

It is known that Brewka’s # strategy (2004) exploits the lexicographical order also used

by Lehmann to define the models of the lexicographic closure of a conditional knowledge

base (Lehmann 1995), starting from the rational closure ranking. This suggests that,

while we have used this strategy for ranked TBox TCj
containing only typicality inclusions

of the form T(Cj) v D, coarsely grained ranked TBoxes could be allowed, in which TCj

contains all typicality inclusions T(E) v D for any subclass E of Cj . We expect that this

might improve performances, by reducing the number of ≤Cj relations to be considered.

We leave for future work investigating whether our ASP approach with preferences can

be used for computing the lexicographic closure for EL+
⊥, and whether alternative notions

of specificity can be adopted.

The modular separation of the typicality inclusions in different TBoxes and their sep-

arate use for defining preferences ≤Ci suggests that some of the optimizations used by

ELK reasoning algorithms (Kazakov et al. 2014) might be extended to our setting.
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