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Abstract

High-power lasers are vital for particle acceleration, imaging, fusion, and materials processing, requiring precise 
control and high energy delivery. Laser Plasma Accelerators (LPAs) demand laser positional stability at focus to ensure 
consistent electron beams in applications like X-ray free-electron lasers and high-energy colliders. Achieving this 
stability is especially challenging for low-repetition-rate lasers in current LPAs. We present a machine learning method 
that predicts and corrects laser pointing instabilities in real-time using a high-frequency pilot beam. By preemptively 
adjusting a correction mirror, this approach overcomes traditional feedback limits. Demonstrated on the BELLA Petawatt 
laser operating at Terawatt (30 mJ amplification), our method achieved RMS pointing stabilization of 0.34 and 0.59 µrad 
in the x and y directions, reducing jitter by 65% and 47%. This is the first s uccessful a pplication o f p redictive control 
for shot-to-shot stabilization in low-repetition-rate laser systems, paving the way for full-energy Petawatt lasers and 
transformative advances across science, industry, and security.

Keywords: Petawatt/1Hz laser, Terawatt Operation, laser-plasma accelerator (LPA), stabilization, machine learning, 
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1. Introduction

High-power lasers have seen remarkable advancements,
enabling scientists to explore new and exciting frontiers in
research such as particle acceleration, advanced imaging,
nuclear fusion, medical therapies, materials processing,
astrophysics, and defense applications [1]. Among the
most promising applications are Laser Plasma Accelerators
(LPAs), which offer the potential to significantly reduce the
cost and size of accelerators while delivering comparable
energy levels [2]. LPAs have a variety of applications
including novel light sources, X-ray free-electron lasers,
and future high-energy colliders. In particular, the stability
of laser parameters is crucial for investigating laser-plasma
interactions, especially when working with tightly focused,
short-pulse laser beams. Beam positional stability is of
paramount importance for the drive laser, as any laser
pointing instability directly translates into instability in the
generated electron beam [3,4]. This challenge intensifies in
high-energy LPA configurations with pre-formed plasma
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waveguides [5], impacting the precision required across a
wide range of LPA applications.

Despite advances in LPA drive laser technology, cur-
rent systems do not meet the stringent requirements of
future applications, such as colliders and XFELs, which
demand electron beam transverse positional uncertainty to
be a fraction of the beam size [6]. Since the stability of LPA-
generated electron beams is dictated by the stability of the
drive laser [4], laser position instability must be controlled
to be a fraction of the laser beam size at the focal point.
Given that our laser focus is typically 50 ∼ 60 (full width
half maximum, FWHM) micrometers [7], the transverse laser
position error must be limited to a few micrometers. Position
error at focus translates to pointing error at the focusing
optic, so the error is typically reported as an angle referenced
to that optic [8,9]. This angle is corrected by tilting a mirror
upstream. In our case, the final optics are too large to
reposition quickly, so a mirror before magnification is used,
increasing the required angular range by the magnification
factor. In this paper, we will refer to the measured beam
position error data in terms of distance, then translate to
angle and also position normalized to beam size at the
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end. Note that we present the position error or jitter at
the target/focus plane in micrometers, then translate this to
pointing angle at the OAP by dividing the position error by
the OAP focal length, following a similar definition as in
Ref. [8,10], so numbers are comparable. While this work does
not yet achieve stabilization at the LPA target, this will be
the focus of future work with full-energy operation of the
BELLA PW system.

Perturbations within the system such as mechanical vibra-
tions of mounted optics, thermal variations within individual
optics, and thermal drifts of the overall laser setup, lead
to long-term drifts in the propagating laser field of the
drive laser and its instability. Improved performance has
been demonstrated in laser systems with passive controls,
achieving an outstanding performance value of 1.3 µrad
(RMS value) stability at our BELLA PW beamline and 1.5
µrad (RMS value) stability over 90 minutes at a 200TW/1Hz
Ti: sapphire laser system [11]. Active feedback control
systems have been applied to stabilize the beam, but their ef-
fectiveness is limited by the pulse repetition rate. According
to the Nyquist-Shannon Theorem, the maximum controllable
frequency without aliasing is half the sampling rate. Practi-
cally, control bandwidth is 10-20% of the sampling rate, and
the frequency content of fluctuations can exceed 100 Hz in
position and 10 Hz in the angular domain, posing significant
challenges for low repetition rate systems [12].

To date, limited results have been reported regarding
actively stabilized, 100-TW-class, ≤10 Hz laser systems,
using high-repetition rate low-power “pilot” laser beams as
proxies for the main amplified beam. A multi-TW/2 Hz
system achieved 2.6 µrad (RMS) pointing stability using 80
MHz unamplified / pilot beam for feedback sampling [8]. At
one of our other facility, the BELLA hundred terawatt un-
dulator experimental beamline [10], similar stability improve-
ments were achieved using a 1 kHz pilot beam, significantly
reducing the uncertainty in the generated electron beam,
particularly the low-frequency components associated with
long-term drift, with an estimated pointing stability of 3 µm
position error [3]. Additionally, an optimized Fourier filter
has been developed and tested on 1kHz beam corrections [13],
and machine learning is under development for longitudinal
focus stabilization [14]. However, challenges persist, espe-
cially with the large optical components required for high-
power lasers, which introduce significant lag because of their
inertia, limiting the control bandwidth. Traditional feedback
control corrects errors based on previous observations, but
the inherent lag prevents full compensation, causing rela-
tively large shot-to-shot error [15].

In this work, we present an integrated machine learn-
ing (ML)-based approach to predict and mitigate system
errors in laser stabilization. The initial proof-of-concept
for using ML in this context was introduced in Ref. [16],
where a neural network was employed as a time series
forecaster for non-amplified laser data from the BELLA

Hundred Terawatt Undulator (HTU) experimental setup.
This early work demonstrated the potential of ML to address
the bandwidth limitations of existing stabilization systems.
Building on this foundation, we demonstrate here that ML
enables preemptive movement of slow correction mirrors,
effectively compensating for system errors and achieving
beam stabilization on a shot-by-shot basis. Our tests at the
BELLA PW/1 Hz beamline operating at TW/1Hz achieved
sub-microradiant transverse stabilization, marking the first
successful implementation of this technique in high-power,
low-repetition-rate laser facilities. Our demonstration was
conducted at terawatt-level operation (30 mJ amplification),
the BELLA laser system is capable of Petawatt-level oper-
ation, and this work lays the groundwork for future imple-
mentations at full energy. To the best of our knowledge,
this work represents the first demonstration of shot-to-shot
stabilization in such a challenging environment, paving the
way for feedback control systems that overcome traditional
bandwidth constraints.

2. Beamline Setup and Freerun Analysis

The experimental setup at the Petawatt BELLA laser facility
is illustrated in Fig. 1 [10]. The BELLA laser can deliver
over 40 J of infrared energy per pulse at 800 nm in about
30 fs, achieving a peak optical power exceeding 1.3 PW at
a repetition rate of 1 Hz. The system starts with a front-
end low-power seed laser operating at 1 kHz. This beam is
then passed through a series of amplifiers powered by 1 Hz
pump lasers, producing an amplified 1 Hz beam along with
an unamplified 1 kHz pilot beam.

In the laser amplification chain, there is a telescope be-
tween each stage to expand the beam size as the energy
increases, maintaining fluence lower than the optics’ damage
threshold. The beam size is 70 mm in diameter after the
amplifiers and before the compressor.

After amplification, the beam reflects from a deformable
mirror, and the “correction mirror” which is used to make
fine adjustments to beam pointing. It is the last mirror
that can be used for correction, this mirror, actuated with
piezoelectric transducers, which we control to correct point-
ing at the target. Its dimension is 100 mm × 150 mm,
using commercially-produced mount (4 × 6 inches) with
closed-loop controls inside, driving an S-340 Piezo Tip/Tilt
Platform [17].

The beam is then expanded in a telescope before it enters
an adjustable pulse compressor, which allows fine-tuning
of the laser pulse duration. After the telescope, the beam
diameter is 210 mm (8.27 inch), transported with mirrors of
12 inch to 19 inch diameters, which are too heavy to control.

The laser beam is then directed to an off-axis parabolic
(OAP) mirror, with focal length of 13.5 meters, which
focuses it to a spot size of ∼ 50-60 µm FWHM. After the
OAP, there is a Ghost-generating mirror 14 inch in diameter
and 2 inches thick. The second surface of this Ghost-
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Figure 1. Schematic of the BELLA PW laser system, including the pilot beam diagnostics, correction mirror, and focus optics. The setup enables high-
resolution monitoring and control of the amplified laser beam.

generating mirror is coated to reflect, providing a “ghost”
beam with enough intensity for the position sensing cameras.
The ghost beam diagnostics setup, shown in the inset of
Fig. 1, includes a 50:50 beamsplitter that creates two copies
of the ghost beam for two measurements.

The reflected ghost beam is directed to two CCD cameras
triggered at 1 Hz and 1 kHz. The former is used to monitor
the position at focus of the main amplified pulse and the latter
to provide the data for machine learning-based stabilization.

We have found that the pilot beam is highly correlated
with the petawatt amplified beam, as both traverse the
same optical paths [3,12]. The 1 kHz pilot beam enables the
analysis and the precise monitoring of high-frequency errors,
ensuring that noise up to 500 Hz is effectively measured for
system diagnostics and performance optimization.

Analyzing system data is essential for control modeling,
especially for developing data-driven machine learning so-
lutions. Figure 2(a) shows the beam position data for both
the x and y axes over a 35-hour free (unstabilized) run
without any existing feedback that can move the long-term
slow drift. In this figure, each point represents the average
centroid position. The system stability is quantified by the
RMS deviation of the centroid positions, providing a clear
measure of position error over time. A slow drift can be
observed in the average centroid curves for both the x and
y axes, indicating gradual changes in laser alignment over
time. We include an inset in Fig. 2(a) showing a 10-minute
segment of the 1 Hz beam position data in both X and
Y. This inset highlights the rapid, short-term shot-to-shot
fluctuations that are superimposed on the slower drift. Here,

we focus on short-term laser position instability, or shot-to-
shot jitter, as illustrated in the inset plot, rather than long-
term drift, which is low-frequency and can be mitigated by
slow, existing active feedback systems. The average short-
term instability, calculated as the mean of the 34 data points
(one data point per hour), shows the average instability of
σx,free = 10.15µm and σy,free = 11.82µm. It is typical
for the x-axis to exhibit slightly better stability than the y-
axis in the BELLA system, as well as in other high-power
lasers [18,19]. This discrepancy can be attributed to greater
vertical (y-axis) vibration of optical mounts in response to
ground vibration.

Figure 2(b) displays a typical spectrum obtained through
Fourier analysis of a 10-minute subset of centroid data from
the 1 kHz pilot beam, providing a frequency-domain view of
noise characteristics. The results show that the predominant
frequency components for both the x and y axes are in the
tens of hertz range. The horizontal axis (x) exhibits a simpler
frequency profile compared to the vertical axis (y), which
shows a broader range of frequency components between
20 and 60 Hz, along with an additional peak at 120 Hz.
This greater complexity in the y-axis data explains why the
machine learning models with the training processes tend to
perform better in predicting the behavior of the x-axis.

Figure 2(c) further illustrates how the frequency spectrum
evolves over a 3-hour period, showing the temporal varia-
tions in noise frequency components derived in Fig. 2(b).
This short-time Fourier transform analysis highlights tran-
sient changes and periodic noise behavior, helping to un-
derstand fluctuations over time. The data presented here
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PW system noises
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Figure 2. Freerun noise analysis of PW beamline. (a) Centroid position of the pilot beam over 35 hours showing long-term drift. (b) Fourier analysis of noise
frequency components in X and Y directions based on a 10-minute subset of centroid data from the 1 kHz pilot beam. (c) Temporal evolution of frequency
components over 3 hours.

provides a comprehensive assessment of both the spatial and
temporal noise characteristics, which is crucial for develop-
ing control models, as a foundation for offline training and
testing of machine learning algorithms.

3. Machine Learning Control Diagram

The main limitation on feedback control loop bandwidth is
primarily due to the inertia of the correction mirror (100 mm
× 150 mm) shown in Fig. 1. The mirror assembly includes
its own PID (Proportional-Integral-Derivative) controller,
which is operated through an external setpoint.

Our previous work [3] on a similar setup, the Hundred-
Terawatt-Undulator (HTU), demonstrated stability improve-
ments using a commercial feedback controller (ALIGNA-4D
provided by TEM Messtechnik) operating at 1 kHz. Ref. [8]

also shows the effectiveness of active stabilization based on
the traditional feedback system.

While both Ref. [3] and Ref. [8] show long-term and shot-to-
shot oscillation suppression, they highlight the fundamental
bandwidth limitations of PID-based feedback due to hard-
ware constraints [20]. In particular, Ref. [3] reported that a
large 4-inch correction mirror resulted in a measured feed-
back bandwidth of only 20 Hz. As shown in Supplementary
Material Fig.S2-1, the spectrum comparison of experimental
data from the BELLA HTU facility includes both the Aligna
system on (traditional feedback stabilization) and the Aligna
system off. The resulting spectrum clearly demonstrates
that the Aligna system suppresses frequency components
primarily in the 10–20 Hz range. This behavior is consistent
with the known bandwidth limitations of traditional feedback
control systems. However, Fig.2(b) shows that our laser
system exhibits significantly higher frequency components
beyond 20 Hz, presenting a major challenge for implement-
ing traditional feedback control effectively. This challenge is
further exacerbated by our specific setup, which uses a large
4-inch by 6-inch correction mirror—making it even more
susceptible to bandwidth limitations—and serves as a key

motivation for the new approach presented in this work.
Machine learning (ML) is a widely considered a valuable

approach in time-series forecasting topic, which includes
prediction of laser pointing oscillation. The control system
diagram is shown in Fig. 3. In this feedback loop, ML
is employed to predict the behavior of the 1 Hz/PW laser
based on information from the 1 kHz pilot signal captured
by the ghost beam diagnostic camera. This allows the
controlled mirror to be repositioned in advance, effectively
compensating for any predicted errors and enabling shot-to-
shot stabilization of the 1 Hz/PW beam.

The standard feedback method using a 1 kHz pilot beam
relies on a simple PID controller, which treats the 1 kHz
beam data as the error signal for correction. However, due to
the slow response of the mirror ( 20 ms), the error signal used
for correction does not reflect the actual system error when
the mirror reaches the corrected position. This 20 ms delay
(illustrated in the zoomed-in plots in Fig. 3) limits the PID
controller to correcting slow drifts but makes it incapable
of addressing high-frequency components in the shot-to-shot
jitters. In the frequency domain, the mismatch between the
correction signal and the actual error 20 ms later is primarily
influenced by disturbance frequency sources shown in Fig. 2.
With a control bandwidth limitation [referenced in Ref. [13]),
the PID controller cannot address high-frequency system
errors, unlike our ML approach, which is not constrained by
such bandwidth limitations.

We evaluated several ML models with different neural
network architectures, including Long Short-Term Mem-
ory (LSTM) networks, simple Recurrent Neural Networks
(RNNs), and Multi-Layer Perceptrons (MLPs). LSTMs
are specialized for handling sequential data, such as time
series, by learning long-term dependencies and effectively
capturing patterns over extended periods. Simple RNNs,
while similar, have a more basic architecture and are typ-
ically used for shorter sequences due to their limitations
in retaining long-term memory. MLPs, in contrast, are
traditional feedforward networks consisting of multiple lay-
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Figure 3. Machine Learning Control Diagram: machine learning feedback loop for predictive control of the BELLA PW laser. The model uses pilot beam
data to adjust the correction mirror preemptively, compensating for system noise.

ers of nodes where each layer is fully connected to the
next. Although MLPs are generally used for non-sequential
data, our study found that they performed comparably to
RNNs and LSTMs on sequential data after appropriate
preprocessing and feature engineering. This indicates that
MLPs, with the right data preparation, can effectively capture
essential patterns in sequential datasets.

The simpler structure of MLPs can be advantageous in
terms of computational efficiency and ease of implementa-
tion, especially when real-time performance is crucial. The
choice of the MLP model is driven by its simplicity and ease
of integration into an FPGA-based control loop, which is
critical for achieving precise timing in future applications.
An important observation from our study is that proper
scaling of the training data is essential; the training data
must reflect the range of values expected during testing and
correction phases.

Hyperparameters refer to the configuration settings of a
machine learning model that are not learned from the data
during training but are set before the learning process begins.
Examples of hyperparameters include the number of neurons
in a neural network layer, the learning rate, and the number
of training epochs. Tuning these parameters is necessary for
optimizing the model’s performance.

The chosen layout of the MLP model has 1,200 neurons in
the input layer (accounting for 600×2 sample points for both
the X and Y axes) and two hidden layers with 600 neurons,
optimized through hyperparameter tuning using Optuna [21].
This configuration provides a robust and efficient solution for

the control loop, balancing performance and implementation
complexity.

The input to the ML model consists of sequential data
from the 1 kHz pilot beam in both the X and Y directions.
The “input window” refers to the duration of data used for
making predictions. In our setup, the input window is 600
milliseconds, but this duration can be adjusted as needed.
The “delay time” is the interval between the last sample point
in the input window and the prediction point, which is the
arrival time of the PW pulse. The delay time depends on
the response time of the controller mirror. For our system,
the delay time must be at least 20 milliseconds to ensure the
mirror has enough time to reach a stable position. In our
case, for the first corrected PW beam, with a delay time of
20 milliseconds and an input window of 600 milliseconds,
we collect data from 380 milliseconds to 980 milliseconds
(within a cycle length of 1000 ms). This data is then used
to make predictions and adjust the mirror position. After
20 milliseconds, the mirror reaches the desired position,
correcting the system noise just as the 1 Hz PW beam is
delivered to the target.

We have conducted a comprehensive study on the effects
of varying the input window and delay time in the simulation
section 4. This analysis helps to determine the optimal
values for these parameters, ensuring the precise timing and
accuracy needed for effective system noise compensation.
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4. Simulation Results

We present ML predictions versus the actual measured
values for the focused PW beam position over a 20-minute
period, as shown in Fig. 4. This 20-minute timeframe
includes a total of 1,200 pulses, which allows for direct
comparison between the experimental recordings and the
predicted values. The ML model was trained using data from
a 100-second pilot beam run, yielding 100,000 data points
in total. To optimize sample collection, we applied a sliding
window technique to generate a sufficient number of training
samples. Specifically, we labeled the centroid positions from
i milliseconds to i+599 milliseconds as the input, combined
the X and Y coordinates into a single array, and labeled the
centroid position at i + 619 milliseconds as the output to
predict. Using this labeled data, the ML model learned the
relationship between the input and output in a supervised
learning framework.

Then, for testing, we used data collected from 380 mil-
liseconds to 980 milliseconds in each pulse cycle as input
to predict the centroid position at the end of the pulse
cycle, which occurs every second. This approach allowed
us to evaluate the model’s ability to predict the centroid
position for each 1 Hz PW pulse. The results showed a
strong agreement between the ML predictions and the actual
measured values, demonstrating the accuracy of the ML
model in offline testing.

The remaining error after correction is calculated as the
difference between the predicted and actual values. To
evaluate the effectiveness of the ML model, we compared
the centroid positions before and after ML correction to
determine the error reduction percentage. This percentage
is calculated as the difference between the freerun (uncor-
rected) and corrected RMS values, divided by the freerun
RMS value. In our case, as shown in Fig. 4(b), we achieved
an error reduction of 77.4% in the X direction and 57.5% in
the Y direction.

Fig.5 shows the results of a parameter scan. Fig.5(a)
illustrates how the input window (the number of sample
points in the X and Y dimensions) affects control perfor-
mance, while Fig. 5(b) demonstrates the influence of delay
time caused by the lag in mirror response. The analysis is
based on PW beamline data shown in Figure 1 and utilizes
the control model depicted in Figure 3. From a learning
perspective, increasing the duration of the “input window”
provides the ML model with more time-series information,
improving prediction accuracy until the input data contains
sufficient information, at which point accuracy saturates.
Conversely, shorter “delay times” make it easier for the
ML model to predict trends, also enhancing accuracy. The
optimal values for these parameters depend on the specific
system characteristics, as illustrated by the information in
Fig. 2. We conducted training and testing across various
datasets collected over different time periods, calculating the
centroid positions before and after ML correction to assess

the percentage reduction in position error.
We evaluated 10 datasets, each representing one hour of

data (the same as in Fig. 2). For each of these 10 hours, we
calculated the mean and root mean square (RMS) values for
statistical analysis. The results align with our expectations
and reveal several key observations: 1. Both X and Y axes
exhibit improved performance with a longer input window
and a shorter delay time, highlighting the importance of us-
ing an adequate amount of time-sequential data for accurate
predictions; 2. The X-axis outperforms the Y-axis in terms of
control precision, likely due to its simpler dynamics, which
make it easier to model and predict; 3. Although the delay
time is generally fixed for a specific mirror configuration,
there is potential to fine-tune this parameter using advanced
timing and synchronization systems, which could enable cor-
rections even before the mirror reaches full stabilization. We
plan to investigate this approach further using FPGA (Field-
Programmable Gate Array) technology in future studies;
4. For our experiment, the optimal parameters considering
both accuracy and calculation latency were an input window
of 600 milliseconds and a delay time of 20 milliseconds,
which resulted in an error reduction of 74.6% for the X-
axis and approximately 61.8% to 62.0% for the Y-axis. The
consistent performance improvement in the X-axis and the
minor variations in the Y-axis indicate a reasonable level of
randomness in the ML training process and underscore the
robustness of our method.

To further compare our ML-based method with the tra-
ditional Aligna system implemented at the BELLA HTU
setup, we have included additional data shown in Fig. S2-
2. This figure presents the centroid distribution from the 1
Hz HTU data, comparing the experimental results with the
Aligna system off, the Aligna system on, and the simulated
ML-based correction. The simulated ML-based stabilization
demonstrates comparable performance to our observations,
reducing the standard deviation from from σ = 0.65 pixels
to σ = 0.23 pixels—a reduction of approximately 65%. The
improved performance of the simulated ML-based approach
compared to the Aligna system on (σ = 0.37 pixels) further
underscores the motivation for pursuing this method.

5. Experimental Results and Discussion

Experimental results, presented in Fig. 6(a), show the ef-
fectiveness of our approach over a recording period of
approximately one hour, consisting of 30 minutes of freerun
operation followed by 30 minutes of machine learning (ML)
correction. During the freerun period, the RMS jitter in the X
direction was approximately 13.1 µm, and in the Y direction,
it was around 14.8 µm. With ML correction enabled, we
observed a drop of the RMS values to 4.6 µm in X and 7.9
µm in Y. This corresponds to jitter reductions of 64.9% in
the X direction and 46.9% in the Y direction.

Fig. 6(b) shows the measured results in terms of shot-
to-shot error compared with the beam size, with the focal
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Prediction results in simulations

8

X-data

Y-data

a.

X-data

Y-data

b.

Table 1

Figure 4. Simulation results show one case of ML model predictions versus measured centroid values for the PW beam, given a data set of a 20-min (1200
data points) of 1 Hz beam) from Fig. 2(a). (b) Statistics of the 1200 data points before and after ML correction show jitter reduction of 77.4% in X and 57.5%
in Y, demonstrating the model’s effectiveness in simulated conditions.

Scan from simulations

7

(X: 74.6,Y: 61.8) (X: 74.6,Y: 62.0)

a. b.

Figure 5. Simulation on Parameter Scan with 10 hours data (datasets are same as in Fig. 2). (a): Examining (a) the impact of the input window and (b) delay
time on control performance. Results using experimental parameters (input window of 600 ms and delay time of 20 ms) indicate the average reduction in
jitter

is 75% in X and 62% in Y.
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a. b.
X-data

Y-data

Figure 6. Experimental Validation (a). Comparison of freerun and ML-corrected jitter over one hour in time domain, (b). centroid distribution in 2D X-Y
plane compared with the focused laser beam spot as background, each dots is the centroid of each pulse. The ellipses represented the σ of each distribution.

spot displayed as a red background. The raw image of the
focal spot is also shown in the supplemental material 3. The
centroid distribution is plotted on top of this image as blue
dots (freerun) and white dots (corrected). In addition, the
plot shows the 3σ ellipse representing the beam size (red
curve), the 3σ ellipse for the freerun centroid distribution
(blue curve), and the 3σ ellipse for the corrected centroid
distribution (white curve). The standard deviation values,
labeled as σ, are provided in the plot legend. For the
freerun case, the jitter-to-beam-size ratio in the x-direction
is 13.1µm/25.2µm (0.52), and in the y-direction, it is
14.8µm/24.4µm (0.61). After applying ML correction, the
ratio in the x-direction is reduced to 4.6µm/25.2µm (0.18),
and in the y-direction, it becomes 7.9µm/24.4µm (0.32).
Although the reduction percentage results are slightly lower
than those predicted by simulations, this discrepancy is likely
due to additional sources of error such as communication
delays between the CPU and hardware, which make precise
timing difficult to achieve.

This is the first instance of shot-to-shot pointing error
reduction beyond the bandwidth limitations typical of non-
predictive control. The final errors of 4.6 µm in X and
7.9 µm in Y correspond to angular deviations at the OAP
focusing mirror of 0.34 µrad in X and 0.59 µrad in Y, given
the OAP focal length of 13.5 meters.

The laser energy used in Fig. 6 is amplified but not
fully, reaching around 30 mJ. This serves as a proof-of-
principle for the entire system close-loop correction. We
plan to apply this correction method in future high-energy
(30 J) LPA experiments, with a timeline integrated into
the beamline schedule. This ML-based approach is also
scalable to setups with additional mirrors. Our future work
will involve implementing pointing stabilization at the LPA
target, utilizing two mirrors for angle corrections.

6. Conclusion

We have successfully demonstrated the first implementation
of machine learning-based predictive control for shot-to-shot
pointing stabilization in a high-power, low-repetition rate
laser system. By leveraging data from the 1 kHz pilot beam,
our approach anticipates system errors and preemptively
adjusts the correction mirror. This method significantly
reduces pointing error in the BELLA PW/1 Hz beamline,
achieving sub-microradian stabilization in both X and Y
directions. Compared to traditional feedback control meth-
ods, our predictive control not only overcomes bandwidth
limitations but also provides a robust, scalable solution for
future high-power laser applications requiring precise beam
stability. The achieved RMS value of instability reductions
of ∼65% in X and up to ∼47% in Y validate the efficacy
of our machine learning model in a real-time, operational
environment. This establishes a new approach for laser
stabilization in low-repetition rate systems, paving the way
for enhanced performance in applications such as laser
plasma accelerators, X-ray free-electron lasers, and high-
energy colliders.
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and Schroeder, CB and Tóth, Cs and Vay, J-L and
Zimmermann, S. The berkeley lab laser accelerator
(bella): A 10 Gev laser plasma accelerator. In AIP
Conference Proceedings, volume 1299, pages 3–11.

American Institute of Physics, 2010.
8. Guillaume Genoud, Franck Wojda, Matthias Burza,

Anders Persson,Genoud, Guillaume and Wojda, Franck
and Burza, Matthias and Persson, Anders and
Wahlström, C-G. Active control of the pointing of a
multi-terawatt laser. Review of Scientific Instruments,
82(3), 2011.

9. M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura,
A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li,
M. Kado,M. Mori and A. Pirozhkov and M. Nishiuchi
and K. Ogura and A. Sagisaka and Y. Hayashi and S.
Orimo and A. Fukumi and Z. Li and M. Kado and H.
Daido. Development of beam-pointing stabilizer on a
10-TW Ti:Al2O3 laser system JLITE-X for laser-excited
ion accelerator research. Laser physics, 16:1092–1096,
2006.

10. K. Nakamura, H.S. Mao, A. J. Gonsalves, H. Vincenti,
D. E. Mittelberger, J. Daniels, A. Magana, Cs. Toth,K.
Nakamura and H.S. Mao and A. J. Gonsalves and H.
Vincenti and D. E. Mittelberger and J. Daniels and A.
Magana and Cs. Toth and W. P. Leemans. Diagnostics,
control and performance parameters for the BELLA
high repetition rate Petawatt class laser. IEEE Journal
of Quantum Electronics, 53(4):1–21, 2017.

11. Fenxiang Wu, Zongxin Zhang, Xiaojun Yang, Jiabing
Hu, Penghua Ji, Jiayan Gui, Cheng Wang, Junchi Chen,
Yujie Peng, Xingyan Liu, Yanqi Liu, Xiaoming Lu,
Yi Xu, Yuxin Leng, Ruxin Li,Fenxiang Wu and Zongxin
Zhang and Xiaojun Yang and Jiabing Hu and Penghua
Ji and Jiayan Gui and Cheng Wang and Junchi Chen
and Yujie Peng and Xingyan Liu and Yanqi Liu and
Xiaoming Lu and Yi Xu and Yuxin Leng and Ruxin
Li and Zhizhan Xu. Performance improvement of
a 200TW/1Hz Ti: sapphire laser for laser wakefield
electron accelerator. Optics & Laser Technology,
131:106453, 2020.

12. Fumika Isono, Jeroen van Tilborg, Samuel K Barber,
Joseph Natal, Curtis Berger, Hai-En Tsai, Tobias Os-
termayr, Anthony Gonsalves, Cameron Geddes,Isono,
Fumika and van Tilborg, Jeroen and Barber, Samuel
K and Natal, Joseph and Berger, Curtis and Tsai, Hai-
En and Ostermayr, Tobias and Gonsalves, Anthony and
Geddes, Cameron and Esarey, Eric. High-power non-
perturbative laser delivery diagnostics at the final focus
of 100-TW-class laser pulses. High Power Laser Science
and Engineering, 9:e25, 2021.

13. Joseph Natal, Samuel Barber, Fumika Isono, Curtis
Berger, Anthony J Gonsalves, Matthias Fuchs,Natal,
Joseph and Barber, Samuel and Isono, Fumika and
Berger, Curtis and Gonsalves, Anthony J and Fuchs,
Matthias and van Tilborg, Jeroen. High-bandwidth
image-based predictive laser stabilization via optimized
fourier filters. Applied Optics, 62(2):440–446, 2023.

14. J Einstein-Curtis, SJ Coleman, NM Cook, JP Edelen,

Accepted Manuscript 

https://doi.org/10.1017/hpl.2025.41 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2025.41


10 A. Amodio, D. Wang, et al.

S Barber, C Berger,Einstein-Curtis, J and Coleman, SJ
and Cook, NM and Edelen, JP and Barber, S and Berger,
C and van Tilborg, J. Online correction of laser focal
position using FPGA-based ML models. In Journal of
Physics: Conference Series, volume 2420, page 012074.
IOP Publishing, 2023.

15. SJD Dann, CD Baird, N Bourgeois, O Chekhlov,
S Eardley, CD Gregory, J-N Gruse, J Hah, D Hazra,
SJ Hawkes,Dann, SJD and Baird, CD and Bourgeois,
N and Chekhlov, O and Eardley, S and Gregory, CD
and Gruse, J-N and Hah, J and Hazra, D and Hawkes,
SJ and others. Laser wakefield acceleration with active
feedback at 5 Hz. Physical review accelerators and
beams, 22(4):041303, 2019.

16. Curtis Berger, Anthony Gonsalves, Kyle Jensen, Jeroen
van Tilborg, Dan Wang, Alessio Amodio,Curtis Berger
and Anthony Gonsalves and Kyle Jensen and Jeroen van
Tilborg and Dan Wang and Alessio Amodio and Sam
Barber. Artificial intelligence time series forecasting
for feed-forward laser stabilization. Nuclear Instruments
and Methods in Physics Research A, 2024 (submitted).

17. Physik Instrumente (PI). S-340 piezo tip / tilt platform
– fast steering mirrors for active optics. https:
//www.pi-usa.us/en/products/fast-steering-mirrors/
s-340-piezo-tip-tilt-platform-300811, 2024.

18. Yi Xu, Jun Lu, Wenkai Li, Fenxiang Wu, Yanyan Li,
Cheng Wang, Zhaoyang Li, Xiaoming Lu, Yanqi Liu,
Yuxin Leng, Ruxin Li,Yi Xu and Jun Lu and Wenkai
Li and Fenxiang Wu and Yanyan Li and Cheng Wang
and Zhaoyang Li and Xiaoming Lu and Yanqi Liu and
Yuxin Leng and Ruxin Li and Zhizhan Xu. A stable
200TW/1Hz Ti: sapphire laser for driving full coherent
XFEL. Optics & Laser Technology, 79:141–145, 2016.

19. Zongxin Zhang, Fenxiang Wu, Jiabing Hu, Xiaojun
Yang, Jiayan Gui, Penghua Ji, Xingyan Liu, Cheng
Wang, Yanqi Liu, Xiaoming Lu, Yi Xu, Yuxin Leng,
Ruxin Li,Zongxin Zhang and Fenxiang Wu and Jiabing
Hu and Xiaojun Yang and Jiayan Gui and Penghua Ji
and Xingyan Liu and Cheng Wang and Yanqi Liu and
Xiaoming Lu and Yi Xu and Yuxin Leng and Ruxin
Li and Zhizhan Xu. The 1 PW/0.1Hz laser beamline
in SULF facility. High Power Laser Science and
Engineering, 8, 2020.

20. Gene F Franklin, J David Powell, Abbas Emami-
Naeini,Franklin, Gene F and Powell, J David and
Emami-Naeini, Abbas and Powell, J David. Feedback
control of dynamic systems, volume 4. Prentice hall
Upper Saddle River, 2002.

21. Takuya Akiba, Shotaro Sano, Toshihiko Yanase,
Takeru Ohta,Akiba, Takuya and Sano, Shotaro and
Yanase, Toshihiko and Ohta, Takeru and Koyama,
Masanori. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge

discovery & data mining, pages 2623–2631, 2019.

Accepted Manuscript 

https://doi.org/10.1017/hpl.2025.41 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2025.41



