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Abstract

Listeners are sensitive to speech sounds’ probability distributions. Distributional training
(DT) studies with adults typically involve conscious activation of phoneme labels. We
show that distributional exposure can shift existing phoneme boundaries (Spanish /e/–/i/)
pre-attentively. Using a DT paradigm involving two bimodal distributions we assessed lis-
tener’s neural discrimination across three sounds, showing pre-to-post-test improvement for
the two adjacent sounds that fell into different clusters of the trained distribution than for
those that fell into one cluster. Upon unattended exposure to an intricate stimulus set, lis-
teners thus relocate native phoneme boundaries. We assessed whether the paradigm also
works for category creation (Spanish establishing a duration contrast), where it has meth-
odological advantages over the usual unimodal-versus-bimodal paradigm. DT yielded a
greater effect for the /e/–/i/ boundary shift than for duration contrast creation. It seems
that second-language phoneme contrasts similar to native ones might be easier to acquire
than new contrasts.

1. Introduction

Why distributional learning?

Very early in life humans master the sound system of their language. A growing number of
studies suggest that one of the processes by which infants and adults acquire speech sound
contrasts is distributional learning (Escudero, Benders & Wanrooij, 2011; Hayes-Harb,
2007; Kleinschmidt & Jaeger, 2015; Maye & Gerken, 2001; Ong, Burnham & Escudero,
2015; Wanrooij, Boersma & van Zuijen, 2014a). Distributional learning is an unsupervised
statistical learning mechanism that works through exposure to the probability distributions
of speech sounds in one’s environment. In the laboratory, distributional learning is instan-
tiated as a training phase that includes statistical distributions of sounds. A number of studies
have shown that learners exhibit the effects of distributional training after only a few minutes
of exposure (Maye & Gerken, 2001; Maye, Weiss & Aslin, 2008), while others failed to find the
expected effects in some conditions (Ong, Burnham, Escudero & Stevens, 2017; Wanrooij,
Boersma & van Zuijen, 2014b). Whether or not distributional training is effective could
depend on the type of participants tested (e.g., infant vs. adults, or learners vs. naïve listeners)
but also on the learning scenario at hand (e.g., learning of a new contrast vs. an adaptation of
an old one).

Traditional application: category creation
Previous experiments have usually tested whether distributional training leads to the creation
of new categories – that is, whether it affects learners’ discrimination of an unfamiliar speech
sound contrast. Researchers exposed one group of listeners to a bimodal distribution of sounds
and another group to a unimodal distribution (or to a flat distribution, or to music) and many
of them found that after several minutes of exposure, the group listening to the bimodal dis-
tribution discriminated the contrast more successfully than the other group(s) (e.g., Escudero
et al., 2011; Maye, Werker, & Gerken, 2002); see Figure 1a for an example of bimodal versus
unimodal stimulus design typically used in previous studies. For instance, Maye et al. (2002)
exposed American English infants to bimodal or unimodal distributions between a pre-voiced
[d] and a voiceless unaspirated [t], both of which fall within the same phonemic category /d/
in English. Maye et al. found that bimodally-trained infants could discriminate the non-native
contrast better than unimodally-trained infants.

Distributional learning has been originally described as the unsupervised learning mechan-
ism that infants employ early in life to acquire the categories for native-language speech
sounds (Maye et al., 2002). Later studies showed that distributional learning of new speech

https://doi.org/10.1017/S1366728922000086 Published online by Cambridge University Press

https://www.cambridge.org/bil
https://doi.org/10.1017/S1366728922000086
https://doi.org/10.1017/S1366728922000086
mailto:k.chladkova@uva.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2009-1897
https://orcid.org/0000-0002-8071-7663
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1366728922000086&domain=pdf
https://doi.org/10.1017/S1366728922000086


sound contrasts can occur also in adults, albeit with varying suc-
cess (Escudero et al., 2011; Escudero & Williams, 2014; Maye &
Gerken, 2001; Ong et al., 2015; Pajak & Levy, 2011; Terry, Ong
& Escudero, 2015; Wanrooij & Boersma, 2013; Wanrooij,
Escudero & Raijmakers, 2013; Wanrooij, De Vos & Boersma,
2015a). This seems reasonable: even adult listeners are engaged
in some form of perceptual learning on an every-day basis: to suc-
cessfully communicate with talkers with specific speech idiosyn-
crasies and accents, as well as in noisy environments, listeners
need to continuously adapt their perceptual categories to the
ambient talkers and situations, and they may employ distribu-
tional learning to achieve this (Kleinschmidt & Jaeger, 2015).

Another application: boundary adaptation with phoneme labels
Unlike unsupervised category creation in infants, perceptual
adaptation of existing categories in adults typically involves
some higher-level representations (i.e., top–down supervision):
listeners associate an atypical speech sound with the phoneme
category that is lexically plausible in a given context. For instance,
when hearing a sound midway between a typical [f] and [s], i.e.,
[f/s], listeners associate it with /s/ if it occurs in a word like glass
but with /f/ if it occurs in a word like cliff. As a result, listeners
retune, or shift, their perceptual boundary between /f/ and /s/:
the boundary is shifted towards [s] if they heard the [f/s] sound
in the context for /f/, and vice versa (Eisner & McQueen, 2005).

The adaptation of existing category boundaries has been
attested in distributional training experiments as well. Clayards,
Tanenhaus, Aslin and Jacobs (2008) exposed adult speakers of

American English to bimodal distributions of sounds that had
either narrow or wide peaks. The authors found that differences
in the exposed peak widths lead to differences in the CRISPNESS

of the listeners’ perceptual boundary between /p/ and /b/: listeners
exposed to a bimodal distribution with wide peaks had a shal-
lower phoneme boundary than listeners exposed to a bimodal dis-
tribution with narrow peaks. Theodore, Monto and Graham
(2020) found distributionally-learned boundary crispness adjust-
ments, too, for a /k/-/g/ contrast (furthermore demonstrating
that the success of the distributional learning depended on indi-
viduals’ receptive language abilities). Kleinschmidt, Raizada and
Jaeger (2015) exposed American English listeners to bimodal distri-
butions with a SHIFTED LOCATION of the /p/-/b/ boundary and had
them perform a word identification task with word-initial [p]s
and [b]s drawn from the shifted distributions. Irrespective of
whether they received explicit trial-by-trial information on the
intended phoneme identity, listeners shifted their /p/-/b/ boundary
accordingly. Colby, Clayards and Baum (2018) found that after lis-
tening to bimodal /ɪ/-/ε/ distributions with an altered boundary,
young and older American English-speaking adults can shift their
perceptual boundary with as well as without lexical feedback (see
also Schreiber, Onishi & Clayards, 2013 for an adaptation of the
/m/-/n/ boundary). These findings show that listeners can (re-)asso-
ciate an atypical bimodal sound distribution of sounds with their
existing two-way category contrast even if the to-be adapted cat-
egory is not a priori specified (similar adaptation occurs when train-
ing stimuli are non-existent words, Chládková, Podlipský &
Chionidou, 2017). Note that although Kleinschmidt et al.’s or

Figure 1. (a) Typical unimodal and bimodal training
distributions as used in the distributional training lit-
erature. The left and middle graphs show “continu-
ously sampled” bimodal and unimodal training
distributions such as those reported in Wanrooij and
Boersma (2013), where the actual stimuli are repre-
sented by the vertical lines. The right graph illustrates
the locations of the test stimuli traditionally used to
assess the effects of distributional training. (b)
Illustration of two bimodal training distributions (left
and middle), and three test stimuli (right). The right
graph illustrates that under the lowered-boundary dis-
tribution (solid curve), test stimuli Y and Z fall within
the same peak, whereas test stimulus X falls into the
other peak. In contrast, under the raised-boundary
distribution (dashed curve), test stimuli X and Y fall
within the same peak, whereas test stimulus Z falls
into the other peak. (c) The actual training distribu-
tions used in the present experiment for the low-
boundary (left graph, solid line) and high-boundary
(middle graph, dashed line) training groups; for the
meaning of D1, S, and D2, see text. The values of
peak locations are marked on the x-axis for each train-
ing dimension (F1 and duration): top row of marks =
F1 values in Hz; bottom row = duration values in ms.
The right graph shows the stimuli used in the oddball
paradigm in pre- and post-test, and their values in Hz
or ms. The x-axis is scaled in ERB for F1 and logarith-
mically for duration.
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Colby et al.’s participants were not necessarily given feedback as to
which category of the to-be-shifted contrast an atypical speech
sound belonged to, due to the nature of the identification task (dur-
ing training or during pre-test), the participants did activate and use
the two phoneme labels associated with the target two-way contrast.
In that sense, the previously documented boundary shift in distribu-
tional training was of an IMPLICITLY SUPERVISED nature.

Novel application: boundary adaptation without phoneme
labels
We propose that DT can be used to induce boundary shift with-
out an overt use of phoneme labels. In this study we examine
whether boundary shifts occur in an unattended paradigm in
which listeners are not required to label nor even attend to the
stimuli. Testing whether boundary shift can at all occur entirely
pre-attentively, we do not further elaborate on whether the
boundary shift reflects short-term perceptual adaptation (specific
e.g., to the talker at hand or testing session) or whether it reflects a
longer-term restructuring of linguistic categories.

The proposal that a fully unattended distributional training
can lead to a (temporary or lasting) boundary shift is put to the
test here. We expose participants to probability distributions of
stimuli that indicate a displacement of their native-language
boundary, and test whether they shift their perceptual boundaries
according to the exposed distributional statistics. Boundary shifts
can be tested by comparing distributional training across two
otherwise identical bimodal distributions that are shifted with
respect to each other in the location of their peaks.

How to implement an unattended DT for boundary shift:
discrimination with three points
The present experiment involves Spanish-native listeners who are
implicitly and pre-attentively trained to shift their native-language
perceptual boundary of the /i/–/e/ contrast. These two phonemes
differ primarily in their first formant (F1), and to some extent in
their second formant (F2), so the auditory continuum along
which our distribution varies is based on both F1 and F2.
During training, half of the listeners are exposed to a bimodal dis-
tribution with a lowered category boundary (i.e., a lowered F1 and
a raised F2) as compared to the average location of the /i/–/e/
boundary in their native language; this distribution is schematized
in Figure 1b (left). The other listeners are instead exposed to a
bimodal distribution with a raised category boundary, as in
Figure 1b (middle). It can be seen in the Figure that the peak
and valley locations differ between the two training distributions.
Traditionally, peaks are thought to represent category centers, and
valleys are thought to represent category boundaries.

Figure 1b (right) shows the test stimuli. The location of the test
stimuli with respect to the distributions allows for inferences about
the intended category membership: for listeners trained with the
lowered boundary (solid curve), test stimuli Y and Z should have
become instances of the same category, whereas test stimulus X
should have become an instance of the other category. In contrast,
for listeners trained with the raised boundary (dashed curve), test
stimuli X and Y should fall within the same category, whereas Z
should fall into the other category. In other words, stimulus Z (or,
stimulus D2 in Figure 1c, right) represents a within-category change
in the low-boundary training condition but a between-category
change in the high-boundary training condition, while stimulus X
(or, stimulus D1 in Figure 1c, right) represents a between-category
change in the low-boundary training condition but awithin-category
change in the high-boundary training condition.

Predicted results for boundary shift
If distributional training leads to boundary shifts in adults’ per-
ception, we predict that for the /i/-/e/ contrast the trained bound-
ary location (i.e., the low-boundary distribution or the
high-boundary distribution in Figure 1c) will interact with test
stimulus (i.e., stimulus D1 or D2 in the Figure). In line with per-
ceptual categorization, the difference between D1 and S should be
perceived as larger after low-boundary training (where it repre-
sents a between-category difference) than after high-boundary
training (where it represents a within-category change), while
the difference between D2 and S should be perceived as larger
after high-boundary training (where it represents a between-
category difference) than after low-boundary training (where it
represents a within-category change).

Crucially, whether or not listeners learned from the distribu-
tions is tested without requiring them to use their lexical knowl-
edge: we test the extent to which listeners pre-attentively
discriminate the three target points on the continuum without
having them overtly identify each sound as one or the other cat-
egory. To minimize any (implicit) interference of higher-level
knowledge or overt category labels, we employ an unattended test-
ing paradigm assessing listeners’ perceptual discrimination at the
neural level, measuring the brain’s mismatch response.

Why the three-point method should be good for category
creation as well
The scheme in Figure 1b should work not only for boundary shift,
but also for DT’s traditional goal of establishing category creation.
Spanish listeners, for instance, can be distributionally trained on a
non-native contrast between a short /ɪ/ and a long /ɪː/. This is why
we tested a second group of twenty native Spanish listeners, expos-
ing half of them to a bimodal distribution along the durational
dimension with a shorter duration boundary, as in Figure 1b
(left) and the other half to a bimodal distribution with a longer
duration boundary, as in Figure 1b (middle), after which they are
tested with three durations, as in Figure 1b (right). In fact, if DT
is found with our three-points method, this will provide better evi-
dence for the existence of DT than the unimodal-versus-bimodal
method of Figure 1a used to do, because the latter method has
been criticized for potentially confounding the NUMBER of peaks
with the WIDTHS of the peaks (Wanrooij, Boersma & Benders,
2015b), a criticism that cannot apply to the three-point method.

Predicted results for category creation
If DT works for the novel duration contrast, the perceived D2–S
difference should be greater for Spanish listeners trained on the
high-boundary distribution than for Spanish listeners trained on
the low-boundary distribution, and the perceived D1-S difference
should be greater for those trained on the low-boundary distribu-
tion than for those trained on the high-boundary distribution.

The current design could potentially answer a question about
the difference in learning on the spectral (F1/F2) continuum ver-
sus on the duration continuum, and/or between boundary shift
and category creation. If adults use distributional statistics more
effectively for boundary shift (which they have to do all the
time in real life) than for category creation (which they probably
did for the last time when they were children learning their native
language, or when they learned a second language), we predict
that the distributional training effect will be larger for a native
contrast than for a novel contrast. If we find such a difference
for the native /i/–/e/ contrast when compared with the novel
short–long contrast, it could be due either to a difference between
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category shift and category creation, or to a difference between
spectrum and duration, or to both, and further research would
have to disentangle these causes. The present work provides to
the research community at least a potential robust methodology
for disentangling these alternative explanations.

Implications for second-language learning theories and findings
The question to what extent second-language (L2) learners can
successfully create novel categories/learn to use new phonetic
cues, or adapt their first-language (L1) categories/reuse old phon-
etic cues, has occupied researchers for a long time. While creating
a new category along a new dimension has been shown to be eas-
ier than splitting a category (Flege, 1995), shifting the boundaries
of existing categories appears to be the easiest learning mechan-
ism (Escudero, 2009; Escudero & Boersma, 2004; McAllister,
Flege & Piske, 2002). To what extent learners are able to reuse
familiar phonetic cues in an L2 seems to depend on whether
they already have similar, two-way contrasts signaled by this
cue in their L1 (Llompart & Reinisch, 2019). Here we test whether
the relative ease of reusing familiar categories and cues over novel
ones during L2 speech acquisition is measurable in an unattended
unsupervised learning experiment.

Leaving aside the variously intricate many-to-one and
one-to-many L1-L2 category mappings, our experiment directly
speaks to the debate of new versus old cues and categories.
Comparing category shift on an old dimension to category cre-
ation on a new dimension, we predict that the former will yield
larger learning effects than the latter. This prediction is inspired
by the findings of several recent studies on phonetic cue-specific
or domain-specific learning and adaptation (Schertz, Cho, Lotto
& Warner, 2016; Siegelman, Bogaerts, Elazar, Arciuli & Frost,
2018). For instance, Schertz et al. (2016) show that when listeners
are exposed to conflicting distributions of cues to plosive voicing
(namely, F0 and VOT), they downweigh the cue which in their
native language is secondary and attend to the distributional
information carried by the native-language primary cue. That is,
cues that are weighted heavier in the native language could be
learnt from better than cues that are less important in the native
language. Our prediction is also inspired by L2 phonetic studies
showing that L2 learners naturally and easily shift their L1 cat-
egory boundaries or the weighting of existing L1 acoustic dimen-
sions to match the boundaries and cue-weighting of the same
contrast or dimensions in their L2 (e.g., Escudero, 2009;
Yazawa, Whang, Kondo & Escudero, 2020). For instance,
Yazawa et al. (2020) recently showed that Japanese learners of
English who use both duration and spectral information for L1
vowel contrasts can modify their cue-weighting for both dimen-
sions from a high reliance on duration for Japanese to a higher
reliance on spectral information in their L2 English, matching
native American English listeners’ cue weighting for vowel con-
trasts. In line with this recent research in L1 and L2 listeners,
we can thus predict that the cue that is present in our listeners’
phonology (i.e., F1 in Spanish) will be learnt from more readily,
and can lead to better L2 acquisition results than a cue that is
absent from their phonology (i.e., duration in Spanish).

2 Method

2.1 Participants

Forty native speakers of Spanish took part in the experiment (20
women and 20 men). They were university students, from Spain

as well as Latin America, between 19 and 36 years old, with no
history of hearing, speech, or neurological disorders. Three add-
itional people were tested, but their data were not further analyzed
because of a technical error during recording (2 participants) or
noisy EEG data (1 participant with more than 65% of artifact-
contaminated epochs). The participants were all functional
Spanish monolinguals: they had been raised in a monolingual
Spanish-speaking family, and although they had learned English
as a second language they rated their proficiency in English as
below average (i.e., as 3 or less on scale from 0 to 7). At the
time of testing they were either tourists or new international stu-
dents who arrived in the Netherlands less than 2 weeks prior to
the experiment. Their exposure to foreign languages (English
and Dutch) was minimal. Before testing, the participants were
not familiar with the training purpose of the study. The experi-
ment conformed to the standards of the ethical committee of
the Faculty of Humanities, University of Amsterdam, and was
conducted after a participant gave a written informed consent.

The participants were randomly assigned to one of two dimen-
sion groups, within which they were assigned to one of two
BOUNDARY groups, as shown in Table 1. That is, 20 participants
were trained to shift their native category boundary along an
old dimension – namely, vowels’ first formant (F1) – while the
other 20 were trained to create categories on a novel dimension
– namely, vowel duration. Within each dimension group, 10 par-
ticipants were trained with a low boundary location and 10 were
trained with a high boundary location. The details of training are
given in Section 2.2.

2.2 Training

During a 9-minute training phase, participants were exposed to a
total of 600 acoustically different sounds that were sampled from a
bimodal distribution (mixture of two Gaussians with equal var-
iances) along either the F1 or duration dimension, with the equal-
area method described by Wanrooij and Boersma (2013), and
randomly permuted for each participant. The location of the
two peaks (the Gaussian means), and the valley separating
them, differed between participants: for half of the participants
on either dimension, the valley in the bimodal distribution was
located in the lower half of the F1 or duration range
(LOW-BOUNDARY TRAINING GROUP, Fig. 1c left), while for the other
half of the participants, the valley was located in the upper half
of the F1 or duration range (HIGH-BOUNDARY TRAINING GROUP,
Fig. 1c middle). Section 2.4 provides details about the synthesis
and the acoustic values of the stimuli.

The training distributions for the F1 dimension were designed
with respect to the average native Spanish perceptual boundary
between the vowels /i/ and /e/, which is roughly 370 Hz (see
Benders, Escudero & Sjerps, 2012; Chládková & Escudero, 2012;
a token from our stimulus set that had an F1 of 370 Hz was
judged as most ambiguous between /i/ and /e/ by three native
speakers of Spanish). The low-boundary group was trained with
a boundary at a lower F1 value (i.e., 341 Hz) than the average
native Spanish /i/-/e/ boundary. The high-boundary group was
trained with a boundary at a higher F1 value (i.e., 400 Hz) than
the average Spanish /i/-/e/ boundary.

For the duration dimension, the training distributions were
designed with respect to an average perceptual boundary between
short and long vowels in languages that use vowel duration con-
trastively, which is roughly 150 ms (see Chládková, Escudero &
Lipski, 2013; Meister, Werner & Meister, 2011). Crucially, 150
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ms represents the most ambiguous duration value also in Spanish
adult learners of second-language length contrasts (Escudero,
Benders & Lipski, 2009; Lipski, Escudero & Benders, 2012). The
training-distribution boundaries in the present study were set at
136 ms for the low-boundary training group, and at 164 ms for
the high-boundary training group. Figure 1c plots the training
distributions with values of their peak locations for F1 and for
duration. The boundary locations of the training distributions
were shifted by a comparable number of just-noticeable differ-
ences for both the F1 and the duration dimension; see section 2.4.

2.3 Pre- and post-test

Discrimination before and after training was measured using
event-related potentials – namely, as the unattended mismatch
response, recorded using electroencephalography (EEG). The mis-
match response is elicited with an oddball paradigm, i.e., with infre-
quent “deviant” stimuli in a sea of “standard” stimuli. For each
dimension, we created an oddball presentation with two deviant
types (Deviant 1 and Deviant 2: D1 and D2, amongst standards:
S, in Fig. 1c) such that each deviant type occurred 75 times, with
a probability of 12.5%. The presentation started with 10 repetitions
of the standard, and there were always at least two standards sep-
arating one deviant from the following one. In total, there were
610 stimuli (150 deviants and 460 standards) per oddball presenta-
tion. The inter-stimulus interval jittered randomly in five steps
between 750 and 870ms. For F1, the Standard had F1 values rep-
resentative of the Spanish /i/-/e/ boundary, while the two deviants
had F1 values typical for Spanish /i/ (Deviant 1) or /e/ (Deviant 2).
For duration, the Standard had duration values representative of a
perceptual boundary between a short and a long [ɪ]-vowel (non-
native), while the two deviants were a short (Deviant 1) and a
long (Deviant 2) version of this vowel. The right graph in
Figure 1c plots the F1 or duration values of stimuli from pre-
and post-test. The acoustic properties of the stimuli are described
in detail in Section 2.4.

Per participant we generated one oddball sequence for pre-test
and a different oddball sequence for post-test. Each test took
about 10 minutes. After the pre-test, participants took a break
of 10 to 15 minutes, during which they filled in a questionnaire,
had some refreshment, and had a conversation with the experi-
menter, who was a native speaker of Spanish. The break was fol-
lowed by training, which was, after a short pause of a few minutes,
followed by the post-test.

To assess the genuine effects of the training distribution and
dimension at hand, we trained each participant with only one
type of training and only on one dimension, instead of having
them return e.g., for a second session in which they would be

trained with a different boundary or on a different dimension.
This between-subjects design ensured that each participant’s pre-
test corresponded to the initial native Spanish stage as closely as
possible.

If listeners learn from the distributions they were exposed to
during training (see Section 2.2.), the trained locations should
affect listeners’ pre-attentive discrimination of stimuli at post-test.
Specifically, for the low-boundary training group, Standard and
Deviant 2 should be perceived as one category and Deviant 1 as
the other category (the “oddball”), while for the high-boundary
training groups, Standard and Deviant 1 should be perceived as
one category and Deviant 2 as the oddball (see the right graph
in Figure 1c and Table 1).

2.4 Unattended paradigm

The experiment aimed at recreating an unattended learning scen-
ario and eliciting a pre-attentive neural response by implementing
the following. Throughout the entire experiment participants
watched a self-selected muted movie with subtitles in Spanish:
there was thus no overt task, i.e., not even in the pre- and post-test,
that would direct their attention to the auditory stimuli. Before the
experiment started, they were told to try to enjoy the movie and
ignore the sounds that would be played. Additionally, in the breaks
between the blocks, the experimenter chatted with the participant
about the movie and never about the sound stimuli.

2.5 Stimuli

The sounds from the training as well as the sounds from the pre-
and post-test were isolated synthetic vowels. They were made
using the Klatt synthesizer in Praat (Boersma & Weenink,
1992–2016). The vowels modeled a male voice. They had a falling
pitch slope starting at 135 Hz at the beginning of the vowel and
ending at 101 Hz. The amplitude was ramped at a 5-ms portion
at each vowel edge. The F3 of all vowels was 2750 Hz, F4 was
3400 Hz, F5 was 4050 Hz; to get a flatter spectrum, higher reson-
ating frequencies up to F20 were added with a 1000-Hz step
between every two neighboring formants. The F1, F2 and dur-
ation of the vowels depended on which training dimension they
were part of.

For stimuli from the F1 training, the duration of all vowels was
150 ms. The F1 range between 5.36 ERB and 11.52 ERB (corre-
sponding to 200 Hz and 600 Hz) was sampled into 600 different
values according to one of the two bimodal distributions (low-
boundary or high-boundary). The low-boundary distribution
had means at 7.05 ERB and 8.90 ERB (287 Hz and 400 Hz); the
high-boundary distribution had means at 7.98 ERB and 9.83
ERB (341 Hz and 465 Hz). The standard deviation for both
peaks (the RMS width) was 0.46 ERB. In order to render the stim-
uli naturally sounding, the F2 was correlated inversely with the
vowels’ F1, ranging between 22.78 ERB and 21.08 ERB (2500
Hz and 2038 Hz). The F1 and F2 of the three stimuli from the
F1 test were: 370 Hz and 2255 Hz for the Standard, 314 Hz and
2328 Hz for Deviant 1, and 423 Hz and 2195 Hz for Deviant 2;
all other acoustic properties were identical to those of the stimuli
from the training. The distance between each two adjacent test
stimuli was about 4 to 5 just-noticeable differences (JNDs; see
Kewley-Port & Watson, 1994, who report 13 Hz as the JND for
the F1 of /ɪ/-like vowels with American English listeners).

For stimuli from the duration training, the F1 of all vowels was
370 Hz, and the F2 was 2255 Hz. The range of durations between

Table 1. Predicted discrimination per boundary location, and the division of
the 40 participants into the 4 groups, i.e., 2 auditory dimensions times 2
boundary locations.

boundary
location

predicted
discrimination number of participants

D1 vs. S D2 vs. S

category
shift/
F1

category
creation/
duration

high poor good 10 10

low good poor 10 10
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80 ms and 280 ms (scaled logarithmically) was sampled into 600
different values according to one of the two bimodal distributions.
The low-boundary distribution had means at 113 ms and 164 ms;
the high-boundary distribution had means at 136 ms and 198 ms.
The standard deviation for both peaks was 0.09 along the loga-
rithmic scale (which is approximately 10 ms for the peak at 113
ms, and approximately 18 ms for the peak at 198 ms). The dura-
tions of the test stimuli were: 150 ms for the Standard, 124 ms for
Deviant 1, and 181 ms for Deviant 2. The distance between each
two adjacent test stimuli on the duration dimension was between
4 and 5 JNDs (assuming the JND for duration is approximately
3.75%: see Goudbeek, Swingley & Smits, 2009; Smits, Sereno &
Jongman, 2006, who respectively report the JND for duration of
5% and 2.5% with Dutch and American English listeners). The
perceptual distances between the test stimuli on the duration
dimension were thus comparable to the perceptual distances
between the test stimuli on the F1 dimension.

2.6 EEG recording and preprocessing

The EEG was recorded from 64 active electrodes placed according
to the 10/20 international placement system (BioSemi) and from 7
external channels at the following locations: nose, left and right
mastoid, left and right temple, and above and below the right
eye. The EEG was recorded at 8kHz and downsampled off-line
to 512 Hz. Further EEG processing and ERP analyses were done
in the software Praat (Boersma & Weenink, 1992-2016). The sig-
nal of each electrode was referenced off-line to the nose channel.
A drift in the signal was removed by subtracting from each of the
nine channels a straight line such that the amplitude at the first
and at the last sample of the channel became 0. The signal in
each channel was subsequently filtered in the frequency domain
with a high-pass filter at 1Hz (bandwidth 0.5 Hz), a low-pass filter
at 25 Hz (bandwidth 12.5 Hz), and a notch filter at 50 Hz.

In each channel, the data were segmented into 600-ms epochs
running from -100 ms to 500 ms relative to stimulus onset, and
baseline-corrected by subtracting the average of the 100-ms
pre-stimulus interval. Epochs in which the amplitude at any chan-
nel exceeded ±70 μV were removed. The artefact rejection proced-
ure led to the exclusion of 1 participant, as only data of those with
at least 65% of artefact-free epochs were included and further ana-
lyzed. For each of the remaining 40 participants, the artefact-free
epochs were averaged per stimulus type (Standard, Deviant 1,
Deviant 2) and test type (pre-test, post-test), yielding 6 curves
per channel per participant. The averaged signals of only nine
electrodes were selected for further analysis: at three degrees of
anteriority – namely, frontal (F), fronto-central (FC) and central
(C); and at three degrees of laterality – namely, left (giving elec-
trodes F3, FC3 and C3), right (F4, FC4 and C4) and midline
(“zero”: Fz, FCz and Cz). These channels were chosen because
they typically reflect strongest auditory mismatch responses.

2.7 MMN analysis

In order to compare physically identical stimuli, we computed
one difference wave per deviant type by subtracting the response
in pre-test from the response to the same stimulus in post-test,
yielding two curves per channel per participant. That is, the aver-
age ERP to D1 in pre-test was subtracted from the ERP to D1 in
post-test, and analogously, the average ERP to D2 in pre-test was
subtracted from the ERP to D2 in post-test. This approach ensures
that comparison is done between stimuli that have identical

physical properties and that any differential responses result
from the different function (here, its category status, supposedly
learned during training) that the stimulus had at pre- versus
post-test (see Jacobsen & Schröger, 2003 for detail on why one
should compare mismatch responses across physically identical
stimuli). In each of the 72 grand-mean difference waveforms
(one per combination of deviant type, boundary location, dimen-
sion, and channel, each averaged over 10 participants) we
searched for a negative peak (“grand peak”) in a 120–220-ms win-
dow after deviation onset. For the F1 dimension the analysis win-
dow was 120–220 ms after stimulus onset for both deviant types,
while for the duration dimension the window was 244–344 ms for
the short deviant (Deviant 1; because the earliest possible devi-
ation onset for the short deviant was 124 ms after stimulus
onset, i.e., the duration of the short deviant) and 270–370 ms
for the long deviant (Deviant 2; because the earliest possible devi-
ation onset for the long deviant was 150 ms after stimulus onset,
i.e., the duration of the standard). In the individual participants’
difference waveforms, we centered a shorter 40-ms window at
the latency of the grand peak and computed the mean amplitude
over the 40-ms window, which we further refer to as the MMN
AMPLITUDE. Figure 2 plots the grand averaged ERP responses to
each deviant in pre- and post-test as well as the post-test minus
pre-test difference waves; figures A1–A4 in the Appendix show
individual participants’ post-test minus pre-test difference waves
for each deviant.

2.8 Absolute MMR analysis

Besides the negative MMN that is usually used in adult ERP lit-
erature, we also computed the absolute mismatch response
(MMR) as a measure of our participants’ perceptual discrimin-
ation of the stimuli. While in adults, the mismatch response typ-
ically has a negative polarity, in infants and young children, it
often displays a positive polarity; and, as children mature, a nega-
tive MMN is observed (Cheng, Wu, Tzeng, Yang, Zhao & Lee,
2015; Maurer, Bucher, Brem & Brandeis, 2003). However, in sev-
eral studies with preschool and school-age children, positive mis-
match responses have been observed for some deviant types, and
it has been suggested that these reflect immature stages of change
detection (Lee, Yen, Yeh, Lin, Cheng, Tzeng & Wu, 2012;
Partanen, Torppa, Pykäläinen, Kujala & Huotilainen, 2013;
Shafer, Yu & Datta, 2010). The polarity of the mismatch response
thus not only indexes the maturation of the neural change-
detecting apparatus in general, shifting from positive to negative
values throughout lifetime, but it might reflect also the develop-
mental stage of individual phoneme contrasts, being negative
for more established categories or phonetic features and positive
for the less well established ones (Cheng et al., 2015; Lee et al.,
2012). The magnitude of the perceived difference between a
standard and a deviant can also be reflected as a greater positive
or negative (i.e., absolute) deflection for more salient deviants and
smaller absolute deflection for less salient ones (Maurer et al.,
2003). Despite the co-occurring negative and positive MMR
polarities found in childhood, one could speculate that MMR
polarity might also vary across the learning stages for novel speech
sound contrasts in adulthood. Here besides testing the NEGATIVE

MMN as is typical in ERP experiments with adults, we analyzed
the ABSOLUTE mismatch response, thus combining potential early-
stage acquisition effects demonstrated by a small or/and positive
deflection as well as more mature-stage effects demonstrated by
a larger or/and negative deflection. Note that before training,
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both the F1 and the duration deviants might represent a non-
salient or even non-categorical change: on the F1 dimension
both D1 and D2 are initially a within-category change from the
Standard boundary-stimulus, and on the durational dimensions
they are most probably undefinable with respect to category struc-
tures. We thus cannot predict what polarity each deviant’s mis-
match response could have, and consequently, we cannot
predict how it would change with training. What we CAN predict
is that if training enhances categorization and thus also the per-
ceived saliency, the mismatch response (with EITHER POSITIVE OR

NEGATIVE deflection) at hand will be of a GREATER MAGNITUDE

after than before training. This is why we analyze the absolute
mismatch response.

From the difference waveform obtained with the subtraction
described in Section 2.6, we created an absolute difference wave-
form by converting each sample’s measured amplitude to its

absolute value. The absolute difference waveforms are plotted in
Figure 3. From the absolute difference waves, we computed the
mean ABSOLUTE MMR AMPLITUDE over the entire 120–220-ms
post-deviation-onset window (one value for each combination
of speaker, channel and deviant type, yielding 720 values in
total), by averaging over the time samples within the window.
See the previous section, which defines the deviation onset for
each dimension and deviant type.

3. Results

The 720 data points (40 participants, 9 channels, 2 deviant types)
were analyzed with linear mixed-effects models in R version 3.3.2
(R Core Team, 2016) using the package lme4 version 1.1-12
(Bates, Maechler, Bolker & Walker, 2015). We ran one model
(with lmer, using restricted maximum likelihood) in which the

Figure 2: The grand average ERPs at FCz of Deviant 1
and Deviant 2 in pre- (black dashed line) and posttest
(black solid line), and the posttest-pretest difference
(red online, grey in print, solid line), plotted for each
training boundary location, and dimension. Shading
shows the 100-ms window in which we searched for
the grand-peak in the MMN analysis.
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dependent variable was the MMN amplitude (post-test minus
pre-test) and one in which the dependent variable was the absolute
MMR amplitude (post-test minus pre-test, then its absolute value).
Each of the two models contained five fixed effects, all of which had
orthogonal sum-to-zero contrasts. The two between-participant
predictors were Dimension (with duration coded as –0.5 and F1
as +0.5) and Boundary (with low coded as –0.5 and high as
+0.5). The three within-participant predictors were Deviant (with
D1 coded as –0.5 and D2 as +0.5), Laterality (with two contrasts
– namely, LateralityA with right coded as –0.5 and left as +0.5,
and LateralityB with left and right coded as –1/3 and the midline
as +2/3), and Anteriority (with two contrasts – namely,
AnteriorityA with central coded as –0.5 and frontal as +0.5, and
AnteriorityB with frontal and central coded as –1/3 and fronto-
central as +2/3). In the maximal model we therefore fitted 72
fixed parameters: the intercept, all seven main effects, all 19 two-
way interactions, all 25 three-way interactions, all 16 four-way
interactions, and all four five-way interactions. Participant was
entered as a random effect, with per participant potentially one
random intercept and 13 random slopes – namely, one for each
of the five within-participant contrasts and one for each of their
eight two-way interactions. However, such a maximal random-
effects structure would invariably lead to a singular model, so
that we ended up including only 1 random slope per participant,
namely for the single within-participant predictor that is involved
in our research questions, namely Deviant. The parameters that
may be able to answer our research questions (see Table 1 in the
Method section) are the two-way Boundary × Deviant interaction
and the three-way Dimension × Boundary × Deviant interaction;
the other 70 parameters could provide only exploratory results.

As all the predictors are uncorrelated by design (all contrasts
are orthogonal, each possible combination of levels of within-
participant predictors occurs equally often in each participant’s
data, and each possible combination of between-participants pre-
dictors had the same number of participants), it is natural to work
with a maximal model, so as to reduce the unexplained variance
(Barr, Levy, Scheepers & Tily, 2013). After deciding on a model,
we are no longer free to try out smaller models (Simmons, Nelson
& Simonsohn, 2011). Convergence problems forced us to go with
a model that is still maximal in its fixed-effects structure (i.e. it
includes all interactions) but is minimal in its random-effects
structure in that it includes only the research-question-answering
within-participant predictor(s): our research question is answered
by a three-way interaction that involves one within-participant
predictor (Deviant), so we need random slopes by participant in
our model for this predictor in order to be able to generalize
the p-value for this three-way interaction to a conclusion for the
population. Confidence intervals and p-values are computed with
lmerTest::contest (Kuznetsova, Brockhoff & Christensen, 2017)
using Satterthwaite’s approximation for the number of degrees of
freedom. All models that we report on converged without
singularities.

Mismatch negativity
The full output of the MMN model is given in Table A1 in the
Appendix. For the MMN, the following parameters differed sig-
nificantly from zero. The intercept was –0.484 μV (t [36.002]
= –2.170, 95% CI =−0.936 .. –0.032 μV, p = 0.037), which is the
estimated MMN for the zero values of the predictors (as the con-
trasts sum to zero, this is the estimate of the grand mean MMN).

Figure 3: The absolute difference waves at FCz for each dimension, training boundary location, and stimulus type. The MMR analysis window is shaded. Note that
for the duration dimension, two windows are marked, because the analysis window differed between D1 (earlier window) and D2 (later window), see section 2.6.
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Thus, on average there was indeed a negativity, as expected. The
Boundary × Deviant interaction predicted by Table 1 was not sig-
nificant as a main effect (though it was in the direction expected
for a negativity: –0.263 μV, t [35.999] = –0.275, 95% CI =−2.207 ..
+1.680 μV, p = 0.79), nor was its interaction with Dimension
(+0.329 μV, 95% CI =−3.558 .. +4.216 μV, t [35.999] = +0.172,
p = 0.86). We thus turn to the MMR results to see if we can get
a clearer picture.

Absolute mismatch response
The full output of the MMR model is shown in Table A2 in the
Appendix. For the absolute MMR, the following parameters differed
significantly from zero. The intercept was +1.895 μV (t [36.000] =
+22.991, 95%CI = +1.728 .. +2.062 μV), which is the estimated abso-
lute MMR for the zero values of the predictors (as the contrasts sum
to zero, this is the estimate of the grand mean absolute MMR, as can
also be deduced fromTable 2 by averaging across themeans reported
for the individual conditions). The positive and significant intercept
shows that overall, the stimuli were processed differently at post-test
than at pre-test, most probably reflecting increasing familiarity or
perceptual attunement to the testing stimuli. The main effect of
Dimension was +0.332 μV (t [36.000] = +2.016, 95% CI =−0.002 ..
+0.667 μV, p = 0.051): as confirmed by Table 2, on average, F1 has
a 0.332 μV higher absolute MMR than duration, which on its own
could be interpreted as a more pronounced overall perceptual tuning
for F1 than for duration. The interaction between Boundary and
Deviant, which was expected according to Table 1, was not signifi-
cant, being only +0.458 μV (t [35.999] = +1.138, 95% CI =−0.358
.. +1.275 μV, p = 0.26), which estimates a 0.458/2 = 0.229 μV greater
absolute MMR (averaged over F1 and duration) for the average of
low-boundary Deviant1 and high-boundary Deviant2 than for the
average of high-boundary Deviant1 and low-boundary Deviant2,
as is again confirmed by Table 2. However, this null result is qualified
by the significant three-way interaction of Dimension × Boundary ×
Deviant being +2.519 μV (t [35.999] = +3.129, 95% CI = +0.886 ..
+4.153 μV, p = 0.0035), which means that the absolute MMR
for the average of low-boundary Deviant1 and high-boundary
Deviant2minus the absoluteMMR for the average of high-boundary
Deviant1 and low-boundary Deviant2 is 2.519/2 = 1.260 μV greater
for F1 than for duration, which is the last thing that can be seen from
Table 2. In other words, the triple interaction between Dimension,
Boundary and Deviant indicates that in the expected direction of the
effect displayed in Table 1, the effect is larger for F1 than for duration.

Exploring the remaining 4 estimated parameters that came
with an interpretable t-value (i.e., that did not involve Laterality
or Anteriority, the two within-participant predictors for which
the model did not include random slopes), we can say that
none showed a significant result.

The three-way interaction Dimension × Boundary × Deviant is
the only effect we can use to answer our research-question. To
locate the Boundary × Deviant effect predicted in Table 1, we

consider separate analyses for F1 and for duration (the complete
output of these two separate models is reported in the Appendix,
Tables A3 and A4). Referenced to F1 (i.e., with F1 recoded as
0 and duration as 1), the Boundary ×Deviant interaction
becomes +1.718 μV (t [35.999] = +3.017, 95% CI = 0.563 .. 2.873 μV,
p = 0.0047), i.e., it lies in the expected direction.Namely, for F1, low-
boundary training D1 yielded a larger MMR than D2, and high-
boundary training D2 yielded a larger MMR than D1, as predicted
by distributional learning and Table 1. Referenced to duration
(i.e., with F1 recoded as 1 and duration as 0), the Boundary ×
Deviant interaction becomes –0.801 μV (t [35.999] =−1.412, 95%
CI = −1.956 .. +0.354 μV, p = 0.17), which is nonsignificant (for a
direction opposite from the one expected from Table 1). It can be
concluded that the expected Boundary × Deviant interaction (i.e.,
fast distributional learning) is found in the Spanish-speaking popu-
lation for F1 ( p = 0.0047), and that it is greater for F1 than for dur-
ation ( p = 0.0035), if it exists for duration at all.

4. Discussion

Our findings show that adults can learn from short unattended
exposure to statistical distributions of sounds. Spanish adults do
so to a larger extent for their native F1 dimension than for the
nonnative duration dimension (if they do it at all for that dimen-
sion). After unattended exposure to speech sound distributions
with shifted peak/valley locations on the F1 dimension, which is
familiar from their native language, adult Spanish learners come
to shift their perceptual vowel boundaries. Having been played
various [i] and [e] sounds drawn from a distribution with a
boundary shifted towards [i], listeners assign [i] (but not [e]) to
a different category than [ɪ]. In contrast after being played sounds
from a distribution with a boundary shifted towards [e], listeners
assign [e] (but not [i]) to a different category than [ɪ]. The shift of
phoneme boundaries occurs without any feedback or supervision,
which confirms that perceptual recalibration might happen with-
out lexical context and without overtly inducing phoneme cat-
egory labels.

Plausible interpretation
This fast phonetic learning may occur because Spanish listeners
are already familiar with the critical dimension from their native
language and can thus learn to adjust the parameters of their
already-existing categories. Such a fast adjustment of native cat-
egory properties would align well with previous literature showing
that the distributional properties of stimuli presented in a categor-
ization task affect the participants’ perceptual categories. Clayards
et al. (2008) found that when the variance of the /p/ and /b/ cat-
egories was larger, the perceptual boundaries were shallower, and
vice versa. Kleinschmidt et al. (2015) showed that when the /p/
and /b/’s distributions were shifted, the perceptual boundary loca-
tions were adjusted accordingly.

Table 2: The absolute MMR (means and 95% confidence intervals in μV) elicited by D1 and D2 in low and high boundary training groups, for the F1 dimension and
for duration.

F1 Duration

boundary
MMR
D1

MMR
D2

95% c.i.
for D2–D1 boundary

MMR
D1

MMR
D2

95% c.i.
for D2–D1

low 2.609 1.720 –1.706..–0.073 low 1.531 2.260 −0.088.. + 1.546

high 1.544 2.373 +0.012.. + 1.645 high 1.599 1.526 –0.889.. + 0.744
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In considering the category shift along F1 in the present
experiment, possibly what mediated it was not only the mere
familiarity with F1 as an auditory cue (whose presence could sig-
nal a sonorant as opposed to an obstruent, for instance), but also
the existence of native perceptual categories contrasted by the
value of the F1 cue (as in contrasting multiple vowel heights).
While auditory information informed the listeners there are two
clusters of sounds in the environment, the information from
the native phonology informed them that those two clusters
most likely represent a contrast that already exists in their phon-
ology, i.e., the /i/-/e/ distinction. On each trial, an incoming audi-
tory value was unconsciously associated with the learner’s existing
mental representation of /i/ or /e/. For instance, when a very per-
ipheral (i.e., low-F1) token of /i/ was played, the mental /i/ cat-
egory was activated and at the same time updated that
category’s properties to contain slightly lower F1 values as well,
which in turn shifted the center of the /i/-category away from
its original location, and could in fact already also shift the
boundary between this and the neighboring category /e/ toward
a lower F1 value. Hearing an atypical token of /e/ in the initial
trials (shifted in the similar direction as the peripheral /i/, toward
lower F1 values) further pushed the /e/ category and thus rein-
forced the updating of the /e/–/i/ boundary location. Such an
on-line process that updated the category properties at every trial
eventually brought about a more or less stabilized readjustment
of the perceptual boundary that was reflected in the listeners’ neural
response at post-test. Crucially, this mechanism was made possible
by the existence of a native contrast along the dimension that the
listeners were trained on, albeit without the listeners’ awareness
of or overt attention to speech sound labels. Our training and
test paradigms were fully unattended, which is a methodological
innovation over previous distributional training studies on category
shift. Even at such a pre-conscious level, listeners may implicitly
activate their mental phoneme representations. If this is indeed
what enabled the category shift here, our neural results parallel
the results of previous behavioral studies that employed overt cat-
egorization tasks during, or before, distributional exposure.

The fact that no native contrast existed for the duration dimen-
sion could explain why the learning effects for duration were smal-
ler, if present at all (this might also explain a null result by Ong
et al., 2015, who in their unattended condition did not find a learn-
ing effect in Australian English listeners exposed to probability dis-
tributions of a Thai tone contrast; however, note that the usual
caveat against interpretations of nonsignificant p-values applies).
The literature on learning across modalities suggests that explicit
supervision, or feedback, facilitates distributional learning
(Ashby, Queller & Berretty, 1999; Goudbeek, Cutler & Smits,
2008). Probably, in order to form new categories via distributional
exposure, at least some implicit top-down information flow is
needed for fast distributional learning in adults to take place:
both lexicon and distributional information may be needed for
the emergence of abstract categories (Boersma et al., 2013;
Feldman, Griffiths, Goldwater & Morgan, 2013). Recent studies
indicate that the mechanism of unsupervised statistical (including
distributional) learning may not be readily available for category
creation on phonetic dimensions with which listeners have no
prior experience (Chládková & Šimáčková, 2021; Ong et al.,
2017). Our findings add to that recent literature by showing that
category creation on an uncolonized dimension (duration) was
smaller (if any) than category shift on a familiar dimension (F1).

Instead of being modulated directly by the lexicon, category
creation in distributional training might also be facilitated by

incorporating prediction or competition into the learning scen-
ario. Novel tone-accent categories in American English listeners
are learnt more accurately in a training design where tone predicts
object outcome than vice versa (Nixon, 2018). Relatedly,
Olejarczuk, Kapatsinski and Baayen (2018) propose an error-
driven model of distributional learning whereby more surprising
stimuli yield greater learning steps than unsurprising stimuli.
Introducing competition, too, leads to successful category forma-
tion (McMurray, Aslin & Toscano, 2009). Note that in ours as
well as across previous studies, the amount of distributional
exposure in category creation and in category adaptation scen-
arios was comparable (typically lasting several minutes).
Potentially, category creation in adults might simply require
more (bottom-up) exposure than category shift. The question
which of the above factors most robustly modulate the success
of category creation in distributional training is testable and
could be addressed in future studies.

A potential confound
Above, we attempted to explain our results by referring to the
NATIVENESS of the phonetic dimension. We cannot yet exclude
that the boundary shift we found here for F1 is instead
language-independent, applying universally to the frequency
dimension. On-line sensitivity to distributional information has,
after all, been reported even for discrimination of pure tones
(i.e., non-speech sounds) at the level of neural processing:
Garrido, Teng, Taylor, Rowe and Mattingley (2016) showed that
when the stimuli in an oddball paradigm were sampled from a
narrow distribution, deviant sounds elicited a larger MMN
response than when the stimuli were sampled from a broad distri-
bution; this finding for non-speech sounds parallels the
boundary-crispness changes reported for speech sound contrasts
by Clayards et al. (2008). To be absolutely sure, then, that the dif-
ference we found between the F1 and the duration dimension is
due to their different status of nativeness, one would have to
design an experiment with two continua A and B, with native lis-
teners of a language X that has native contrasts along A but not
along B, plus native listeners of a language Y that has native con-
trasts along B but not along A.

Relevance to L2 acquisition theories
The present study bears relevance to second-language acquisition
research. The ease with which L2 speech sounds are acquired is
modulated by both category correspondence (that is, to how
many L1 categories an L2 sound assimilates) and cue familiarity
(that is, whether a dimension distinguishing an L2 contrast also dis-
tinguishes L1 contrasts), as well as by their interaction. As for cue
familiarity, it has been debated whether speech sound learning in a
second language is easier for new dimensions that are unused by
the native language phonology or whether it is easier for old
dimensions which are used to differentiate a similar native speech
sound contrast (see e.g., Bohn, 1995; McAllister et al., 2002). Our
findings that distributional training had the expected effects for
the old, F1 dimension, speak in favor of the latter, as did the results
reported by Goudbeek et al. (2008). Furthermore, the finding that
listeners promptly adjusted their boundary for a contrast that
already exists in their native language supports the proposal formu-
lated by Escudero and Boersma (2004) and Escudero (2005; ch 4–7,
see also van Leussen & Escudero, 2015 and Yazawa et al., 2020)
stating that in L2 acquisition, non-native contrasts are easier to
learn when participants only have to shift an already existing native
contrast, than when they have to create an entirely new contrast. In
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the present study, the comparison was made between learners who
had to create a new contrast on a new dimension and learners who
had to shift an already existing contrast on an old dimension, while
in Goudbeek et al. (2008) it was the learning of new contrasts that
was compared on both the new and the old dimension. Combining
ours and previous findings, it appears that novel speech sound con-
trasts are easier to acquire when the learner can reuse a phonetic
cue which is familiar from their language (either to create a contrast
defined by that cue, or to shift an already existing contrast, see also
Schertz et al., 2016), than when they have to start using an entirely
new unfamiliar phonetic dimension.

The present finding that native speakers of Spanish were more
readily able to shift an /i/-/e/ boundary than to create an /ɪ/-/ɪː/
contrast might, at first, appear surprising if one considers previ-
ous studies showing that native Spanish learners of English and
Dutch (at least in initial stages of L2 learning) notoriously overrely
on duration to distinguish word pairs like the English feel vs. fill or
the Dutch maan “moon” vs. man “man” (Escudero & Boersma,
2004; Escudero et al., 2009; Kondaurova & Francis, 2008; Lipski
et al., 2012; Wanrooij et al., 2013). Crucially, the L2 English learn-
ing scenario is, however, different from the learning scenario in the
present study: in the L2 English case, learners are from the begin-
ning exposed to a combined spectral and durational contrast /iː/-/ɪ/,
whereas in the present experiment the target contrast is durational
only, i.e., /ɪː/-/ɪ/. Prior work has argued that it is precisely the com-
bination of spectral and durational information that native Spanish
speakers rely on in the initial stages of L2 English learning
(Morrison, 2008). The present finding that native Spanish speakers
showed evidence of learning on the existing spectral dimension but
not so much on the novel durational dimension further suggests
that a successful creation of a category or a contrast on a novel
dimension might require bootstrapping from a familiar dimension.

An interesting avenue for future distributional training research
would be to directly compare how category shifting and creation
take place along a FAMILIAR dimension (for instance, comparing
the high-boundary shift of the Spanish /i/-/e/ boundary to a creation
of a third [ε]-like category on the F1 dimension). In that respect, a
recent experiment suggests that category shifting is possible for both
an easy and a difficult second-language contrast, though with vary-
ing success: Llompart and Reinisch (2019) exposed German learners
of English to shifted bimodal distributions of English /i/-
/ɪ/ in sheep-ship and /ε/-/æ/ in bet-bat and found that the learners
could in principle adapt their perceptual categorization of both
vowel contrasts. Additionally, the adaptation of /ε/-/æ/ varied
between individuals and was more accurate for those learners
who performed better on a word-decision task with the same
vowels. These findings suggest that in intermediate-to-advanced
L2 learners distributional learning is possible for an L2 contrast
which does not exist in their L1 but is cued by a familiar dimension.
To what extent distributional learning of novel contrasts on familiar
dimensions could work in BEGINNING learners of the L2 who need to
CREATE the L2 category(ies) in the first place, and under which con-
ditions, remains to be shown.

A potential limitation to our interpretation in terms of L2
learning is that we do not know to which extent the Spanish lis-
teners treated the isolated vowel stimuli as linguistic and to which
extent our experiment mimicked a language learning scenario.
The distributions of /e/ and /i/ tokens were in any case atypical
for Spanish. The listeners may have treated them as a different
language, as an unfamiliar accent of Spanish they have not
heard before, or as an atypical speaker of their own accent. We
found that they shifted their perceptual boundaries after exposure,

which means their brains noticed the atypical situation and
adapted to it. Quite likely, it is thus an adaptation situation that
underlies a boundary shift, and the difference between adaptation
to new speakers, new accents, or new languages may as well be a
continuum and perhaps supported by the same learning mechan-
ism. Irrespective of whether the listeners knowingly recognized
the /e/-/i/ training distributions as atypical distributions of their
native vowel contrast, arguably it was the existence of this native
contrast in their phonological lexicon that facilitated perceptual
learning from exposure.

The absolute mismatch response (MMR) as a measure of
learning
The present study tested phoneme (boundary) learning in adult par-
ticipants. No effects of distributional training were detected when
the negative deflection of the ERP difference waveforms was consid-
ered. Learning effects WERE detected when the mismatch response
was measured as the absolute, i.e., polarity-unspecified, deflection
of the ERP difference waves. Previous research with infants and chil-
dren evidences polarity variations in the mismatch response (MMR)
conditioned by an individual’s neural maturation as well as by
a phoneme-specific developmental stage. Our detection of learn-
ing effects for the polarity-unspecified MMR suggests that mismatch
response reversals in polarity could index a stage of non-native
phoneme learning in adults as well. Future studies with adults could
test whether and at which learning stage MMR polarities for non-
native and native contrasts resemble one another. Data-driven post-
hoc observation of our data suggests another possible cause for the
positive MMR in some cases: in our presentation paradigm the two
deviant stimuli deviated from the standard in opposing directions,
which is what could – very speculatively – bring along opposing
polarities of the MMR. The effects of deviant directionality on
MMR polarity are worth pursuing in future experiments.

Methodological innovation: the three-point paradigm for
distributional training
Besides answering our main research question of whether distri-
butional training leads to the shift of phonetic dimensions, our
study contributes methodological refinement to the distributional
training literature. Many studies found that distributional training
has effects on speech sound discrimination in infants and adults.
However, some studies did not find the effect, or found it only for
some of their participant groups. For instance, the research of
Wanrooij and colleagues (2014a, 2014b, 2015a) shows that distri-
butional training of the English /æ/–/ε/ contrast works much bet-
ter for Dutch infants than for Dutch adults. Note, however, that
Wanrooij and colleagues, as well as many other studies that
claimed to have found the expected effects of distributional train-
ing, compared a group of subjects trained with a bimodal distri-
bution to a group of subjects trained with a unimodal
distribution. Whenever the bimodal group outperformed the uni-
modal group in their post-training discrimination of the target
sounds, the result was traditionally attributed to the difference
in the number of peaks in the two groups’ training distributions.

The traditional interpretation of distributional training results
was challenged by Wanrooij et al. (2015b) who argued that the
effects of distributional learning observed in the literature may
not be due to the differences in the number of peaks between a
bimodal and a unimodal distribution but may be due to differ-
ences in DISPERSION (width of the distributional peak), which had
always been larger for a bimodal than for unimodal distribution.
Wanrooij et al. (2015b) reported an experiment where the
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unimodal and bimodal training distributions had equal disper-
sions, and demonstrated, with a Bayesian analysis, that after
exposure there was no difference between unimodally and bimod-
ally trained participants in their discrimination of the target
sounds. The authors concluded that the number of peaks cannot
explain the effects observed in the distributional training
literature.

The present study avoids the dispersion problem (similarly to
some other previous studies testing boundary shift with more
coarsely sampled training stimuli, Llompart & Reinisch, 2019;
Munson, 2011). We do not compare groups with different num-
ber of peaks and different dispersions: in our design all training
distributions have two peaks and the same dispersion, and it is
only the peak (or, valley) locations that differ between our experi-
mental groups. Therefore, we provide a further test to the learning
mechanism underlying distributional learning because any effect
of training distributions found in the present study can only be
attributable to peak/valley locations, disregarding dispersion dif-
ferences as a possible cause for the results. Our study has thus
shown that listeners exploit at least some properties of the
peaks in the distributions to which they are exposed.

5. Conclusion

If we play an ingeniously crafted set of speech sounds to adult lis-
teners, we can make them alter the way they listen to sounds of
their native language. In our experiment, Spanish listeners came
to interpret a sound midway between their native vowels /i/ and
/e/ either as /i/ or as /e/, depending on the set of sounds we
had exposed them to. We assessed this “boundary shift” effect
at the level of pre-conscious speech processing, by measuring
the brain’s surprise response between 120 and 220 milliseconds
after each sound starts to play. While perceptual learning did
occur between the language’s already existing vowels /i/ and /e/,
the same procedure turned out to be less capable (if at all capable)
of creating a new boundary on the language’s virgin continuum
between short and long vowels; our preliminary interpretation
of this is that it may be easier to shift an existing contrast than
to create a new contrast.

We contributed a methodological innovation over the usual
two-point distributional training paradigm, which compares a
distribution with one broad peak with a distribution with two
narrow peaks. Our three-point distributional training paradigm
manages to avoid the confound between peak width and the num-
ber of peaks, and could therefore replace several kinds of distribu-
tional training paradigms.
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