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Abstract
Objective: Child undernutrition is a global public health problem with serious
implications. In this study, we estimate predictive algorithms for the determinants
of childhood stunting by using various machine learning (ML) algorithms.
Design: This study draws on data from the Ethiopian Demographic and Health
Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest
neighbours (k-NN), random forest, neural network and the generalised linear
models were considered to predict the socio-demographic risk factors for
undernutrition in Ethiopia.
Setting: Households in Ethiopia.
Participants:A total of 9471 children below 5 years of age participated in this study.
Results: The descriptive results show substantial regional variations in child
stunting, wasting and underweight in Ethiopia. Also, among the fiveML algorithms,
xgbTree algorithm shows a better prediction ability than the generalised linear
mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important
predictors of undernutrition across the three outcomeswhich include time towater
source, anaemia history, child age greater than 30 months, small birth size and
maternal underweight, among others.
Conclusions: The xgbTree algorithm was a reasonably superior ML algorithm
for predicting childhood undernutrition in Ethiopia compared to other ML
algorithms considered in this study. The findings support improvement in access
to water supply, food security and fertility regulation, among others, in the quest to
considerably improve childhood nutrition in Ethiopia.
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Undernutrition is a serious global public health problem,
which results in high mortality and overall disease
burden(1) and is common among under-five children,
particularly in low and middle-income countries(1,2).
Even though global rates have declined, undernutrition
rates remain high among children in sub-Saharan
Africa(3,4), with Eastern Africa having one of the highest
stunting rates (exceeding 30 %)(5), including Ethiopia(6).
In Ethiopia, undernutrition in the form of under-five
stunting (low height for age) decreased from 58 % in
2000 to 38 % in 2016, a reduction of about one-third.
Besides, under-five underweight (low weight-for-age)
declined from 41 % to 24 % during the same period(6–9).
Despite these achievements which followed an improve-
ment in food security due to several government policy
interventions(10), undernutrition among children remains
very high making it difficult to achieve Ethiopia’s

commitment to the Seqota Declaration of ending child
undernutrition by 2030(11). This may be caused by a myriad
of factors including population pressure, drought, disease
outbreak, chronic poverty, pre- and post-harvest crop
losses(12) as well as increasing food prices(13) which
constrain food security and nutritional status in the country.

Meanwhile, several studies have examined the spatial
variations and determinants of undernutrition among
under-five children in Ethiopia based on the traditional
analytical approach(9,14–16). Most of these studies focussed
only on specific parts of the country such as rural parts of
Tigray and Somali regions, or are limited to specific local-
ities(17) which are not nationally representative. The few
studies(18,19) that show evidence on the spatial variations
in undernutrition among children in Ethiopia mainly
focussed on stunting and overlooked other indicators of
child undernutrition, such as wasting and underweight.
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Furthermore, machine learning (ML) is a powerful
approach that intersects artificial intelligence and statistical
learning in the process of discovering unknown relation-
ships or patterns(20). Modern ML algorithms have shown
superior predictive ability in addressing classification prob-
lems when compared with classical statistical models.
Various ML algorithms have been applied in medical
research(21–24). For instance, ML algorithms such as random
forest (RF), support vector machine and artificial neural
networks have been used to predict the status of diseases
such as acute appendicitis and diabetes(21,22). A related
study in Bangladesh has shown that the RF algorithm
was superior to other ML algorithms such as linear discrimi-
nant analysis, k-nearest neighbours (k-NN), support vector
machines and logistic regression(25). Moreover, a study in
Nigeria used Bayesian Additive Regression Trees to show
that maternal education decreases severe child undernutri-
tion when mothers acquire 10 years of education or
higher(26). Nevertheless, a scoping review conducted by
Kino et al.(27) has shown that among the huge volumes
of social determinants of health studies published annually,
only a few used ML techniques, which creates the oppor-
tunity to conduct this research further. As well, most of
these ML studies used United States data and, therefore,
provides a direction to explore public health concerns from
other parts of the world(27). As a corollary, in this study,
we used various ML algorithms that were not extensively
used in previous studies to predict child undernutrition
determinants in Ethiopia.

Ultimately, a comparison of five ML algorithms was illus-
trated for three indicators of child undernutrition (stunting,
wasting and underweight). The study initially presented a
spatial map for under-five nutritional status in Ethiopia to
provide an overview of child undernutrition disparities
across the regions of the country. The main goal of this
study is to provide evidence on the best predictive algo-
rithm for child undernutrition risk factors in Ethiopia.
This study will provide much understanding of how
the various indicators of child undernutrition varywith space
and the risk factors that underlie these variations, which
would be necessary for targeting programs and interven-
tions given the limitation of resources in the country.

Methods

Data source
This study uses data from the 2016 Ethiopian Demographic
and Health Survey. The 2016 Ethiopian Demographic
and Health Survey is currently the latest and part of the
world demographic and health survey series that is
conducted every 5 years. It is a nationally representative
household survey that collects data on a broad range of
population and health issues to enhancematernal and child
health in Ethiopia(6). The Ethiopian Demographic and
Health Survey survey used a multi-stage stratified sampling

procedure to select respondents from households in
a total of 624 clusters(6). The study sample is limited to
9471 children below age five. This was based on retrospec-
tive information obtained from mothers about the BMI
of their children within the 5 years preceding the survey
(2011–2016).

Study variables and measurements
The outcomes of interest in this study are under-five
stunting, wasting and underweight status. Z-scores of
anthropometric measurements – height-for-age (stunting),
weight-for-age (underweight) and weight-for-height
(wasting) – were used to evaluate the nutritional status.
According to WHO, undernutrition indicators are
determined by the following standard measures: stunting:
height-for-age < –2 SD; wasting: weight-for-height < –2 SD

and underweight: weight-for-age < –2 SD of the WHO
Child Growth Standards median(28,29). Severe stunting,
wasting and underweight were those children whose
height-for-age, weight-for-height and weight-for-age
Z-score below minus 3 (−3) SD. This study, thus, considered
all three undernutrition indicators to predict childhood
undernutrition determinants. In this regard, the outcomes
were binary coded as 1 for stunted, wasted and underweight
if the standardwasmet else 0 for not stunted, not wasted and
not underweight. A set of covariates were considered as the
possible risk factors for childhood undernutrition in Ethiopia
(See Appendix). In the ML algorithms, we incorporated as
many variables as possible from the DHS which have less
percentage of missing data. Essentially, the only variables
excluded from the study were those that have more than
50% missing data due to their impact on the performance
of the algorithms.

Analytic strategy
The R programming language (version 3.6.0)(30) and the
R packages caret(31) and caretEnsemble(32) were used to
perform the data processing and analysis. Five ML
algorithms (xgbTree, generalised linear model (GLM),
NNet, RF, k-NN) were applied to determine the predictive
power of ML algorithms and to identify the top-20 most
important determinants for each of childhood undernutri-
tion indicators (stunting, wasting and underweight).

Logistic regression
The binomial GLM is typically used to analyse binary data
and is commonly used as an inferential tool in population
health research, but it also can be used as a binary classi-
fication algorithm. No tuning is needed for GLM because
the algorithm has no hyperparameters and assumes a logit
relationship between response and predictors.

Random forest
RF is a supervised ensemble learning method that
acts based on decision trees(33). RF algorithm repeatedly
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samples the variables in the training data set many times,
each time using a random set of predictor variables to
produce a regression classification tree. After many of these
trees are formed, the predictive performance of each
variable is measured, and the best set of variables is
obtained. It is very flexible and fast that can be used for both
classification and regression.

Extreme gradient boosting
xgbTree is a scalable ensemble technique that has been
demonstrated to be a reliable and efficient ML challenge
solver(34). The xgbTree is chosen because it uses an effi-
cient and scalable implementation of the gradient boosting
framework and supports various objective functions,
including regression, classification and ranking(35). It has
better control against overfitting by using more regularised
algorithm formalisation, in comparison to prior algorithms.
It has a high rate of success in Kaggle competitions, particu-
larly for structured features(36).

Neural networks
Neural networks represent a method of statistical learning
based on the model of neurons in the brain. In some sense,
they can be thought of as nonlinear regression based on
how the observed data can affect the outcome. Visually,
however, they can be seen as layers of inputs and outputs.
Weighted combinations of the inputs are created and put
through a function (e.g. the sigmoid function) to produce
the next layer of inputs(37). The next layer goes through
the same process to produce either another layer or to
predict the output, which is the final layer. All the layers
between the input and output are usually referred to as
‘hidden’ layers. Some of the strengths include having good
prediction generally, incorporating the predictive power of
different combinations of inputs and having tolerance for
correlated inputs(37).

k-nearest neighbours
k-NN is a robust and adaptive classification algorithm that is
part of the supervised ML family. It is a non-parametric
algorithm that does not rely on any strict assumptions about
the underlying data. The decision boundary of the
algorithm depends on a few input points and their
particular positions. Thus, the classification of new cases
is based on a similarity or the use of observations in the
training set that are closest in metric space(38).

ML approach
Following the standard methods for ML techniques, the
data were split into two sets (training and testing) to learn
from the data, train the classification algorithms and identify
patterns within the data. Once the algorithms were trained,
they were applied to the test dataset, and algorithm
accuracy was assessed. The data were trained twice – with
(60 % train, 40 % test) and (70 % train and 30 % test) – but

a reasonable outcome was observed in the widely used
classification of 70 % train and 30 % test. Thus, the training
set consisted of 70 % of the observed data while the
remaining 30 % of the cases were held out as a test or
validation set. Five ML algorithms (xgbTree, GLM, NNet,
RF, k-NN) were applied by using a sample of 70 % of the
individuals in each group (training data set, n 5147) and
validated in the remaining 30 % (test data set, n 1716).
Missing cases were then disposed of while running the
ML algorithms. All algorithmswere trained based on 10-fold
cross-validation. We used 10-fold cross-validation on
the training set, and the performance was estimated
on the testing set.

Combining algorithms into ensemble predictions
To increase the accuracy of the algorithms, we used
‘Stacking’, the most popular method for combining the
predictions from different algorithms. Using ‘Stacking’,
multiple algorithms (typically of differing types) can be
built and a supervisor algorithm that learns how to best
combine the predictions of the primary algorithms be
generated(38). Thus, in this study, the predictions of
the selected caret algorithms (xgbTree, GLM, NNet, RF,
k-NN) were combined using stacking.

Algorithm evaluation
To verify the algorithm’s performance in terms of classifica-
tions, a confusion matrix (also known as an error matrix) is
used. A confusion matrix of a binary classification is a two-
by-two table showing values of True Negatives, False
Negatives, True Positives and False Positives resulting from
predicted classes of data. The confusion matrix allows the
measures of rates such as prediction accuracy, sensitivity
and specificity(39).

Accuracy
Accuracy is the basis of estimating the performance of any
predictive algorithm. It estimates the ratio of right predic-
tions to the total number of data points evaluated. This
study was comprised of the best accuracies that were
obtained by several ML algorithms after applying the
feature selection as well as k-fold techniques.

Accuracy ¼ True Positive þ True Negative

True Positiveþ False Negativeþ False Positiveþ True Negative

Sensitivity
Sensitivity is the proportion of real positive cases that
got predicted as positive (or true positive). It is also
termed recall. This implies that there will be another
proportion of real positive cases, which would get
predicted incorrectly as negative (termed as the false
negative). This can also be presented in the form of a
false-negative rate.
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Sensitivity ¼ True Positive

True Positiveþ False Negative

Specificity
Specificity is the proportion of real negative cases that got
predicted as the negative (or true negative). This implies
that there will be another proportion of real negative cases,
which would get predicted as positive and could be termed
as false positives. This can also be presented in the form of a
false-positive rate.

Specificity ¼ True Negative

True Positiveþ False Negativee

Cohen’s κ
The κ statistic (or value) is a metric that compares an
Observed Accuracy with an Expected Accuracy (random
chance). The κ statistic is used not only to evaluate a single
classifier but also several classifiers amongst themselves.
The calculation of the Observed Accuracy and Expected
Accuracy is important for the comprehension of the statistic
which is usually illustrated using a confusion matrix. Landis
and Koch(40) provide the following tomeasure the values of
this statistic: 0 indicates no agreement, 0–0·20 as slight,
0·21–0·40 as fair, 0·41–0·60 as moderate, 0·61–0·80 as
substantial and 0·81–1 as almost perfect.

κ ¼ total Accuracy� random Accuracy

1� random Accuracy

Total accuracy is simply the sum of true positive and true
negatives, divided by the total number of items, that is:

total Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

random Accuracy ¼ TNþ FPð Þ� TNþ FNð Þ þ FNþ TPð Þ� FPþ TPð Þ
Total � Total

Results

Descriptive results
Out of the 9471 children below 5 years in the study sample,
38·4 % of them were reported to be stunted, 10 % were
wasted and 23·3 % were underweight. Close to half of
the children (46·6 %) experienced some form of malnutri-
tion (were either stunted, wasted or underweight). About
half of the children (50·4 %) were aged less than 30months,
and the majority (64·6 %) belonged to mothers aged less
than 20. More than half of the children (51·9 %) weremales.
Two-third (67·2 %) of these children were born at home,
with the remaining children (32·8 %) being born in health
facilities. About 46 % of the childrenwere from poor house-
holds, while 89 % resided in rural settings. The majority
were at least third-order births (65·4 %) and 2–4 years

interval births (55·8 %). Also, about 44 % of the children
did not have access to an improved water source while
about 91 % of them had no access to improved toilet
facilities. Further, about 45 % of them were children of
mothers with two children (parity 2) while 17·4 % of them
were children of mothers with three or more children
(Table not shown).

Spatial distribution of childhood undernutrition
indicators
Figure 1 presents a visualisation of the spatial variations of
the three childhood undernutrition outcomes. The results
show considerable regional variations in stunting, wasting
and underweight as measures of undernutrition in the
country. It is visually clear that Amhara, Benishangul-
Gumuz, Affar and Dire Dawa regions were the most
affected by stunting with Gambela and Somali being the
least affected regions. Wasting was most prevalent in the
eastern part of the country, comprising of the Somali
and Affar regions and followed by Gambella and
Benishangul-Gumuz, among others in the west. Amhara
and Southern Nations, Nationalities and Peoples (SNNP)
regions were, however, least affected by wasting.
Underweight was most prevalent in the Affar region in
the northeast, and the Benishangul-Gumuz region in the
western part of the country. However, underweight was
the least prevalent in the Gambella region. Severe stunting,
wasting and underweight showed similar patterns of varia-
tions even though at comparatively lower levels (Fig. 2).

Predictive algorithms for child undernutrition
indicators

Stunting
The under-five stunting prediction accuracy was found to
be low for all algorithms, between 62·9 and 67·7 % accuracy
on the test set, although the xgbTree had the highest overall
accuracy (Table 1). The xgbTree had relatively higher
sensitivity, meaning that it was accurate at distinguishing
the stunting cases from the non-stunted cases, but had
low specificity, meaning that it was not good at discerning
the non-stunting cases. More metrics show that the
algorithm is relatively better at predicting both positive
(stunted) and negative (no-stunted) cases. The algorithm
was able to correctly identify 72 % of the stunted, which
suggests that it was relatively better at predicting the
stunted cases. The GLM algorithm showed slightly lower
accuracy (65·5 %), compared to xbgTree but higher than
other ML algorithms (Table 1, Fig. 3).

Wasting
The under-five wasting prediction accuracy was again
found to be highest for the xgbTree with a slightly higher
level of accuracy (88 %) (Table 1). Interestingly, all the
selected algorithms showed more or less similar accuracy.
The best predicting algorithms (xgbTree) were able to
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correctly identify 88·2 % of the wasted cases, which is an
indication of slightly lower prediction power compared
to the GLM algorithm in predicting the wasting cases.
The GLM algorithm, however, showed a slightly lower
overall accuracy (87·0 %) (Table 1, Fig. 4).

Underweight
As with stunting and wasting, the xgbTree algorithm was
found to have the highest predictive ability (75·7 %), with
a sensitivity of 77·5 % and specificity of 55·50 %.
However, the k-NN algorithm indicated the lowest perfor-
mance with accuracy, sensitivity and specificity of 73·0 %,
74·6 % and 57·1 %, respectively (Table 1, Fig. 5).

The important determinants of childhood
undernutrition indicators
As described in the above section, the accuracy results indi-
cated that the XgbTree algorithm was the best for all the
three predicting factors (stunting, wasting, and under-
weight), in terms of their accuracy, area under the curve –

receiver operating characteristics (AUC-ROC) curve. Based
on the most accurate algorithm (xgbTree), the top-20
important variables are presented out of a total number
of thirty-seven variables used according to their mean
decreasing Gini (Figs 6–8).

Interestingly, the top five most important among
these variables were varied across all the three indicators

Fig. 1 (colour online) Spatial variations in undernutrition indicators by administrative regions in Ethiopia, EDHS, 2016.
Source: Created by the authors based on 2016 EDHS
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of undernutrition. For stunting, time towater source (time_-
to_water), child age 30þ months (child_age_
Greater_than_30_months), number of under-five children
(no_u5_children), television ownership (has_tv.yes) and
small birth size (child_size. Small) were the top-five
important variables. For wasting, child age 30þ months
(child_age_Greater_than_30_months), poorest wealth
status (wealth_index.poorest), time to the water source
(time_to_water), Somali ethnicity (ethnicity. Somali) and
small birth size (child_size. Small) were found to be the
top-five important variables. Likewise, time to the water
source (time_to_water), no maternal education (mother
education0.Noeducation), small birth size (child_size.
Small), months (child_age_Greater_than_30_months) and
maternal underweight status (mother_bmi. Underweight)

were shown to be the top-five important variables
predicting childhood underweight status. Time to the water
source, child age 30þmonths and small birth size appeared
to be the common top-five important variables across the
three outcomes.

Discussion

Our descriptive findings show that there are substantial
variations in all three nutritional indicators (stunting,
wasting and underweight) among the regions in
Ethiopia. Stunting is most prevalent among the northern
regions such as Affar and Amhara, and in the western
region such as Benishangul-Gumuz but least prevalent in

Fig. 2 (colour online) Spatial variations in severe undernutrition indicators by administrative region in Ethiopia, EDHS, 2016.
Source: Created by the authors based on 2016 EDHS
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Gambella and Somali in the south-west and south-east
regions, respectively. For wasting, the prevalence is highest
in the Somali region but lowest in the Amhara region. Also,
underweight is most prevalent in the Affar region but least
prevalent in Gambela. Evidence of similar geographical
variabilities in stunting, wasting and underweight has been
shown in Ethiopia(14). It has been shown that food diversity
and the number of meals that children eat per day play a
significant role in stunting and underweight while food
insecurity also has an important role to play in wasting(41).
Regions such as Amhara, Affar and Tigray are prevalent in
food insecurity, and calorie intake per adult has been found
to decrease in Beneshangul Gumuz and Amhara in recent
years(42). Reductions in the number of meals per day have
also been shown to be common in these regions that are
more frequently affected by drought and are targets of
Productivity Safety Net programs(12,43) despite the observed
positive effects of various policy interventions on food
security in some regions(10). These considerable regional
disparities in the nutrition indicators have profound impli-
cations for the nutritional status of under-five children in
the country.

Regarding the predictive algorithms, the xgbTree algo-
rithm appeared to have the highest predictive accuracy
for all the undernutrition outcomes. It is, therefore, note-
worthy that even though the traditional logistic regression
algorithm (GLM) has shown the lowest predictive accuracy
compared to the xgbTree and the RF, the advantage it has
over the others is that its results are quite interpretable in
terms of the estimated predictors in the algorithm.
Similarly, a variety of ML approaches have been applied
to health issues including childhood anaemia(44) and nutri-
tional status(45) and have demonstrated high quality and
valid predictions.

Findings from the best predicting algorithm (xgbTree)
show that the key factors underlying undernutrition are
diverse across the three indicators of undernutrition.
Nevertheless, time to the water source, child age greater
than 30 months, and small birth size appears to be the
commonest important predictors across the three
indicators. Water sources that can be accessed in shorter
time – such as pipe-borne water – are typically located
within households and usually better and safer for drinking
and use. Hence, shorter or easy access to water sources
has been shown to be associated with reduced risk for
undernutrition particularly wasting and stunting among
children(46,47) while the source of drinking water is
an important predictor of child nutritional status(48).
Furthermore, it appears that children who are 30 months
old and beyond have an increased risk for all kinds of
undernutrition outcomes, particularly stunting andwasting.
The importance of a child’s age in predicting the undernu-
trition status of children is adequately documented in the
literature(47–50) and provides support for the findings of this
study. The child size at birth also appears to play an impor-
tant role in determining childhood nutritional status, withT
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children of a small birth size being greatly disadvantaged in
undernutrition risks. Similar evidence of this effect has been
adequately shown in the literature(49,51,52) and directly
supports the findings of this study.

Furthermore, the number of under-five children in the
household and television ownership has shown top-five
importance for stunting alone but have been rarely docu-
mented by previous studies. Also, we find evidence of

considerable disadvantage in wasting risks among children
from poor households in Ethiopia. Much research in
sub-Saharan Africa has shown that poor household wealth
is significantly associated with child undernutrition(49,50,53).
Quite expectedly, poorer households may have difficulty
providing sufficient nutritious food for their under-five
children, which may be necessary for child growth and
development. In this study, ethnic minorities such as the

Fig. 3 (colour online) Stunting: comparison of sub-algorithms for stacking ensemble in R

Fig. 4 (colour online) Wasting: comparison of sub-algorithms for stacking ensemble in R
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Fig. 5 (colour online) Underweight: comparison of sub-algorithms for stacking ensemble in R

0·00 0·01 0·02 0·03 0·04 0·05

time_to_water

ever_vaccinated.Yes

child_age.Greater_than_30_months

Child_sex.male

Child_size.Large

Child_size.small
has_tv.yes

no_u5_children

 partner_educ_level.secondary.higher

unmet_familyplanning.no

Healthcare.respondent.and.husband.partner
mother_education.2Secodary.Higher

age_first_birth.Greater_Than_20_years

ind_desire_children.husband.wants.more1

Antenatal_care.No
ever_vaccinated.missing

rson_decided_healthcare.respondent.alone

birth_interval.Greater_than_4.yrs

tion.3Agricultural.Manual.Skilled.unskilled

lesire_more_children.wants.after.2..years
Stunning

Fig. 6 Top 20 most important variables from the xgbTree algorithm based on mean decrease Gini for stunting

wealth_index.poorest
time_to_water

child_age.Greater_than_30_months

children_ever_born.Greater_or_equal_5

mother_bmi.Underweight
Child_sex.male

Child_size.Small Wasting

ethnicity.somalie

no_u5_children

rtner_occupation.agricultural…employee1

region.SNNPR

region.Somali

religion.catholic
age_first_birth.Greater_Than_20_years

0∙00 0∙01 0∙02 0∙03 0∙04

Antenatal_care.No

rural_urban.urban

birth_interval.Between_2_and_4.yrs
mother_bmi.Overweight

lesire_more_children.wants.after.2..years
mother_age.15.19

Fig. 7 Top 20 most important variables from the xgbTree algorithm based on mean decrease Gini for wasting

Predicting child undernutrition in Ethiopia 277

https://doi.org/10.1017/S1368980021004262 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980021004262


Somalis also emerge as one of the top five important factors
for wasting risks alone even though this has seldomly been
shown in the literature.

As well, the findings show that lack of maternal educa-
tional attainment proffers increased risks of childhood
underweight. As such, children of educated women have
considerably reduced underweight risks(54), possibly
because highly educated women may likely have higher
access to better employment opportunities with better sala-
ries and benefits that may help to afford good nutrition for
their children. This has crucial implications for child under-
nutrition and further underscores the need to increase
women’s education to enhance child health outcomes in
developing countries(55). Further, we find that children of
underweight mothers have a considerable disadvantage
in underweight risks. This supports the findings of myriads
of studies particularly in sub-Saharan Africa(49,54). This may
appear unsurprising, as under-five children may likely be
exposed to the same risk factors faced by their underweight
mothers. The importance of the sex of children has also
emerged in this study, with male children appearing to
be disadvantaged in undernutrition risks than females,
which directly supports the extant literature in sub-
Saharan Africa(56,57). However, this may seem to reflect
cultural-based preferential treatments between both sexes.

The findings of this study have implications for the
relevance of ML algorithms in population health research.
Similarly, several studies have confirmed the usefulness of
ML for population health research and policy decision
making in various areas including child undernutrition(26),
women’s height(58), CVD risks(59) andmortality(60) as well as
defining treatment effects in epidemiological studies(61)

which highlights how ML is increasingly being applied to
predict population health outcomes(62). These findings
may also be useful in bias reduction(60) as ML methods
can accurately quantify uncertainty when data are scarce,
as can be found in sub-Saharan Africa.

It is noteworthy that this study is not without a few
potential limitations. While algorithms with high

representation power may have the risk of overfitting the
noisy training data, algorithmswith lower powermay suffer
from underfitting and, thus, risking failing to capture the
regularity in the training data set. The underfitting problem
may be usually caused by insufficient data or a high-bias
algorithm (i.e. the algorithm being too simple to capture
a complicated hypothesis function)(63). In this study, the
overall lower predictive ability observed especially in the
case of stunting may reflect underfitting related to a lower
study sample size. In this situation, little can be done to
improve predictive power, except to gather more data
(more records, more features) and/or switch algorithms
by considering the previous survey years’ data (Ethiopian
Demographic and Health Survey 2000–2016). As well,
there is a limitation of results interpretability. Unlike the
traditional logistic regression algorithm (GLM) where the
population parameters generated are interpretable in terms
of odds ratios and the other parameters, results from ML
algorithms are mainly less interpretable as they have no
parameters. Notwithstanding, the ML algorithms have been
widely touted for their prediction power, and this study
provides an invaluable contribution to the undernutrition
literature in the context of ML.

Conclusions

This study shows considerable regional variations in
childhood undernutrition and how commonly used ML
algorithms could be applied to predicting child stunting,
wasting and underweight determinants in Ethiopia. The
findings show that the xgbTree algorithm offers better
predictive accuracy than the traditional algorithm GLM.
Furthermore, the best-predicting ML algorithm has shown
diverse combinations of important predictors for stunting,
wasting and underweight, even though there are a few
common top-five predictors among them. The algorithms
may, therefore, be useful to child nutrition and other
population health researchers, and aid workers among
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other stakeholders, particularly where large data are
available. The study, thus, provides evidence on how the
ML approach can be leveraged to better predict the under-
lying risk factors of childhood undernutrition among other
population health outcomes. This may create a better
understanding of a child’s nutritional status and help to
develop more effective policies to advance childhood
nutritional status in the country. The findings reinforce
the need for committed efforts to improve upon access
to potable water supply and food security, as well as the
socio-economic wellbeing of women in Ethiopia. There
is also the need for policies and interventions to put special
focus on children of small birth size, children who are over
30 months old and children of underweight mothers.
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