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Abstract

A continuous-time model of a two-sector trading economy with a finitely-saturating
production function and constant population is constructed. To apply it to the farm-econ-
omy problem of optimal trading of cereal for chemical nitrogenous fertilizer and of
optimal allocation of land for green manure the special assumptions are made of similar
technologies in both sectors and of a nitrogen-capital loss proportional to the cereal
production. Optimal-control theory is applied to get the pair of controls that maximizes
an infinite-horizon integral of utility of consumption. The analysis of the model is shown
to reduce to that of the Ramsey-Koopmans one-sector neoclassical model of optimal
growth. Calculations of the feedback control and optimal time-paths for the standardized
dimensionless model are tabulated for a range of 7 utility functions of constant elasticity
of marginal utility of magnitude 1 to 4 and of production functions of degree 2 to 4. Two
particular analytic solutions are given. The application of the results both to the
farm-economy model and to the Ramsey-Koopmans model is illustrated.

1. Introduction

The problem of planning the best use of agricultural fertilizers over time is an
optimal-control problem ([2], [3], [8-13]). Response curves to the principal
nutrients have been measured for the most important crops and as they turn out
to be approximately quadratic ([1], [6]) the static optimization problem leads to
linear equations and is easily solved as, for example, by Abraham and Nair {1].
Using 1973-74 prices, they showed that by 1978-79 it would be optimal for India
to use 37% more fertilizer nitrogen than the 5.2 megatonnes the Government
planned to have available then ([4] p. 12) and of which 23% would need to be
imported ([4] p. 146).

Although the static optimization model is easy to apply to a farm economy, it
may be inappropriate where the soil is poor or where there is little capital
equipment and no credit. On such a farm some investment from its own resources
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into improving its condition is essential for the long-term best use of the recurrent
inputs, but the maximum output initially may be so near the farmer’s subsistence
level that he must judge carefully any sacrifice of present consumption.

At the 1973-74 price-ratios application of chemical nitrogenous fertilizers was
economic on most Indian crops but the 1974 oil price rise doubled the chemical
fertilizer price. The likelihood of continued scarcities of fuel, fertilizer and foreign
exchange makes it worth considering the long-term economics of both chemical
nitrogenous fertilizer use and of direct farm-supplementation of nitrogen by green
manuring,

In this study I develop a continuous-time model of cereal production and
optimal consumption that is one of the optimal growth of a two-sector economy
which can trade with an outside world. One sector produces a consumption good,
“cereal”, the other a capital good, “nitrogen”, which is used by both the capital
and consumption-good sectors. The state of the farm is described by an aggre-
gated capital stock variable (the soil-nitrogen stock) which can be increased or
decreased. It can be increased by trading some of the cereal for imported
nitrogenous fertilizer or by allocating some of the land for home-production of
nitrogen by growing on it leguminous green-manure crops which, on being
ploughed in, add nitrogen to the soil. The nitrogen is depleted by the production
of the cereal crop. The other nutrients are ignored.

Assuming similar technologies for the production of both the green-manure
nitrogen and the cereal I show that the analysis of this model can be transformed
to that of the Ramsey-Koopmans model of optimal growth of an economy with
an expanding population.

Although I describe the model in agricultural terms it is easy to see applications
to other two-sector economies having similar technologies in both sectors and in
which the capital is depleted by the production of the consumption good.

In §2 I describe and develop the model in control-theory form, and in §3 apply
Pontryagin’s theorem to get the optimal controls. In §4 I show how the model can
be transformed into the Ramsey-Koopmans model. In §5 I synthesize numeri-
cally, graph and tabulate the feedback control for the model with an infinite
planning horizon for a set of seven utility functions having constant elasticities of
marginal utility in the range -1 to —4. In §6 I calculate, graph and tabulate the
corresponding time-paths for a range of production functions. In §7 I illustrate
and discuss the application of the results.

2. Description of the model

L is the total available area of land, a constant, which is to be allocated by the
control variable v; into a section v,L for the production of green manure and
(1 — v,) L for the production of cereal.
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T is the time, the unit of which will be called a “year”.

N is the capital stock of nitrogen and K = N/L is the nitrogen concentration
(per unit area), assumed the same on both sections of land.

F(K) is the production of cereal in one year on one unit of cereal-producing
land so the cereal produced in one yearis (1 — v,) LF(K).

E is the amount of cereal produced that is allocated by the control variable v,
to be exported in one year to trade for fertilizer:

E =v,(1 — v;)LF(K). (2.1)
Y is the remaining amount of cereal, for consumption in one year:
Y=(»1-0,)1-0v,)LF(K). (2.2)

I is the amount of nitrogen imported as chemical fertilizer in one year. The
export price P for cereal and the import price P, for fertilizer nitrogen are
constant and trade is balanced each year:

P.E — P,I =0. (2.3)

G(K) is the net production of nitrogen in one year on one unit of the
green-manure land so the total home-production of nitrogen is v, LG(K).

Q(K) is the loss of nitrogen in one year on one unit of the cereal land (due to
the growing and removal of the crop) so the total loss due to the harvest is
A - v,)LO(K).

The increase each year in nitrogen is the sum of the imported chemical fertilizer
nitrogen and the home-produced green-manure nitrogen less the loss due to
harvest; that is

dN/dT =1 + v,LG(K) —(1 — v,) LQ(K); (2.4)
that is, using (2.1), (2.3) and the definition of K,

Pc
Py

dK

ar = ( F(K) - Q(K)| +v,G(K). (2.5)

1-0))|v,

I assume an instantaneous utility function of consumption U(Y) and that the
model will have some stationary maximum level of consumption, Y (the “bliss”
level, the existence and value of which is determined in §4), and that the planner’s
object is to choose an optimal admissible control v*,

v* = (v}f,0f) € V where V = [0,1] x[0,1], (2.6)
that will maximize the undiscounted total utility integral
fow (U(Y) - U(Y)) dT (2.7)
where Y is given by (2.2) and is subject to the constraint (2.5).
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I now assume the loss of nitrogen due to the removal of the crop is propor-
tional to the size of the crop, that is,

Q(K) = aF(K) (a>0); (2.8)

that there is a finite “saturation point” K and corresponding “saturation value”
F where

F'(K)=0 and F=F(K)
and that the green manure and cereal crops have similar production functions and
saturate at the same point, that is

G(K)=BF(K) (B>0). (29
Let dimensionless constants u, and p, (the prices of green-manure nitrogen
and of chemical fertilizer nitrogen relative to that of cereal) be defined by

p,=a/(a+ B) and p,=aP,/P, (2.10)

and dimensionless variables and functions by

=(1/K)K; y=(1/Y)Y; t=(aY/LK)T;

J(k) = (L/P)F(KE) and u(y) = U(,7). 210
For the utility function u( y) I assume
w'(y) > 0; u”’(y) <0;
u(l)=0; u'(1)=1; (2.12)
ylggﬂ(y) = —c0.

The first two are the usual assumptions of positive and diminishing marginal
utility; the third and fourth set a convenient arbitrary zero point and scale of
utility; the fifth assumption excludes a zero-level of consumption being allowed
for any time interval.

For the production function f(k), I assume:

f'(k)>0and f"(k) <0 for0<k<1;
f(0)=0; - (213)
f'(k)=0 fork>1
Through (2.8) to (2.11), the problem is transformed to a dimensionless one
containing only two parameters, g, and p,, having some choice of utility

function, u, and leaving open the precise specification of f(k). The problem now
is the optimal-control problem to

maximize j:o u(y)ar (2.14)

velV
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where
y=01-0)1-0)f(k), (2.15)

subject to the constraint

dk
a (01/#1 + 0y /1y — U0/ — 1)f(k) (2.16)
and the initial condition
k(0)=ky>0 (2.17)

where u and f have the properties (2.12) and (2.13) and V is the bounded set
defined in (2.6).

3. Application of Pontryagin’s theorem

Pontryagin’s theorem ([10] p. 19-21) applies precisely to problems like
(2.14)-(2.17).
One constructs the Hamiltonian

H(k,v,A) = u((1 = 0,)(1 = v,)f(k))

+A (v /1y + 03/ — 010/, — 1) f(K) (3.1)
and then determines the function M(k, A) where
M(k,A) = supH(k,v,A). (3.2)
vevy

Pontryagin’s theorem then says that if there is an optimal control v* satisfying
(2.14)~(2.17) then it satisfies

H(k,v*,A) = M(k,A) (3.3)
where k and A satisfy
dk d
E_ ﬁH(k,V,A) v=-v‘, (3 4)
dA d '
7; = —‘@H(k,v, A) -
Because in this case dH /3t = 0
H(k,v*, A) is constant along the optimal path. (3.5)

The function M(k, A). One finds through an elementary examination (not pre-
sented here) the description of M(k, A) and the corresponding optimal controls.
The case p; < p,. Let the function C = C(k, A) be defined by

w((1 - C)f(k)) = A/, (3.6)
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then for the region {(k, A)|A/p, > w’'(f(k))} the function M and the optimal
control v* are given by

M(k,A) = u((1 = C)f(K) + 5(C = w)f(K);

(3.7)
vf = C(k, A); 0§ = 0;
and for the remaining region {(k, A)|A/p, < u'(f(k))}
M(k, A) = u(f(K)) = Af(K); 69
v¥F=0; 05 =0. '

The case p; > pm,. M(k, A) and the corresponding optimal control are described
just as in (3.6)-(3.8) for the case p, < u, but with the subscripts “1” and “2”
interchanged.

The case p, = p, = p. M(k, A) is described exactly as for the case g, < p, but
the optimal control in the region

{(k, A)[A/p > u'(f(k)))
is no longer unique but can be arbitrarily chosen from the set (which includes the
control in (3.7))
{(01’02)|(1 —o)(l-v)=1- C(k’A)}- (3.9)
This is the only case in which there is a candidate optimal control in the interior

of V and even then it is no better than either of the two end-points of the arc of
the hyperbola (3.9) that lie on the boundary of V.

4. Analysis of the case p, < pu,

It is now apparent that the solutions to the problem will be symmetric under
the interchange of subscripts “1” and ““2” so it is sufficient to analyse just the
case u; < p,. I assume p; < p, from now on.

I define a new control w in place of v, and a corresponding control set W by

w=(1-0)/0-p)and W= [0’1/(1 - ﬂl)] (4.1)
and a re-scaled time variable 7 and a function ¢(k) by
7=1t/p and ¢(k) = (1 — p,) f(k). (4.2)

Using these and the fact (from (3.6) and (3.7)) that v¥ = 0 everywhere the
remaining problem reduces to the single control-variable problem:

maximize [ u(y)d
u
weW 0 Y T

subject to dk/dr = ¢(k) — y and k(0) = k,, (43)
where y = wo (k).
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This problem now is virtually identical with the optimal growth problem in the
well-known modified Ramsey model of Koopmans and others (see, for example:
Wan [13] pp. 294-324; Hadley and Kemp [5] pp. 50-71, 76-78; Chakravarty [3]
pp- 80-110) in which the population grows exponentially, y and k are the per
capita consumption and capital and ¢ (k) represents the balanced growth con-
sumption per capita. In the modified Ramsey model ¢(k) has a unique positive
maximum at some finite k and eventually becomes negative but here ¢(k) is
assumed merely to saturate at some finite k. This difference is irrelevant if
ko < k.

Presuming familiarity with the results for the Ramsey-Koopmans model I shall
omit most of the details of the argument.

Pontryagin’s method applied to (4.3) leads to a Hamiltonian A(k,w, A) and an
optimal control w* where (referring to (3.1) and (3.2))

h(k,w,A) = u(wo(k)) + A1 — w)o(k)

= H(k,1 =(1 = p;)w,0,p,7); (4.4)
h(k,w*,X) = sup h(k,w,A) = M(k,p,A).
weWw

The region of the (k, A)-plane where A > u’(f(k)) is the region where w*
varies and it is this region that emerges as the region of interest in the infinite-
horizon problem. For this region one finds by (3.6), (3.7) and (4.4)

h(k,w*,A) = u(w*p(k)) + A(1 — w*) (k)
where w* = y*/¢(k) (4.5)
where u’(y*) = A

and the corresponding Hamilton equations
dk/dr = ¢(k) — y* anddA/dr = -A¢'(k). (4.6)

Stationary solutions, where dk/dr =0 and d\A/dr = 0, occur only in the
region where A > u’(f(k)). From (4.5) and (4.6) dk/d+ = O only if A = u’(¢(k));
dA/dt = 0 only if ¢'(k) = 0, thatis, only if k > 1. For k > 1 ¢(k) = ¢(1) so at
a stationary point A = u’($(1)); but ¢(1) is just the consumption y under these
conditions and by (2.10) and (2.11) the maximum stationary dimensionless
consumption y has the value 1 so

¢(1) = (1 -p)f(1)=1. (4.7)
From (2.10) and (2.11) the actual maximum stationary consumption is ¥ where

v [ m)LF ifp < uz}

= _ (4.8)
(1 = p)LF ifp, <p
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By (2.12) u’(1) = 1 so the bliss point, (k, A),, the stationary point with the lowest
utility-maximizing k, is given by
(k,2), = (1,1). (4.9)

There is a line of further stationary points at A = 1 and k > 1, corresponding
to over-saturation of the production function. For the assumed, practical, case of
0 < ky < 1 the region k > 1 isirrevelant and, in any case, it is easy to show that
without a positive time-preference there is no optimal solution for k, > 1 (see, for
example, Koopmans [9]).

Azu'BLk))
T A=u(FLA)
=
g e
g
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Figure 1. Extremal paths containing the bliss-point, (1, 1), in (k, A) phase-space.
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At (1,1) h is zero and because in this problem # is constant along an optimal
path one looks for paths containing (1, 1) and along which # = 0. One finds from
(4.5) that A = 0 gives for A > u’(f(k))

u(y*) +uw'(y*)(o(k) —y*) = 0}

4.10
where u’(y*) = A. (4.10)

(The first of these is equivalent to the familiar Ramsey-Keynes rule of optimal
investment,

(dk/dr)* = ~u(y*)/u'(y*),

easily obtainable without the apparatus of Pontryagin’s theorem as the first
integral of the Euler equation appropriate to (4.3).)

The equations (4.10) define two path-segments in (k, A) phase-space: one with
A > 1, negatively sloped and convex, leading towards the bliss point; another
with A < 1, positively sloped and concave, leading away from the bliss point (see
Figure 1). From the assumptions here on the infinite planning horizon, the
concavity of u(y) and ¢(k), the saturation of ¢(k), the vanishing of u(y) at the
bliss point and that 0 < k, < 1 it can be shown that the path towards the bliss
point is the unique optimal path; that on it the bliss values are approached
asymptotically as 7 — oo and that on it the total utility integral converges (see,
for example, the immediately preceding references).

5. Synthesis of the optimal feedback control for
an infinite planning horizon

With an infinite planning horizon and with k, < 1 one solves equations (4.10)
for the branch of the path with A > 1 giving A and the optimal consumption y*
as functions of k and then the equation w* = y* /¢ (k) gives the optimal control
w* directly in terms of the state variable k. As k enters these two equations only
through ¢ (k) one can regard the current value of ¢(k) as a state variable instead
of k. If only the synthesis of the feedback control is needed, rather than a
description of k(7) or y(7), then there is no need to determine or specify in detail
the function ¢(k). Apart from the two prices p, and p, the synthesis of the
optimal control in terms of the current value of ¢(k) depends only on the utility
function.

A convenient family of utility functions u, having the properties so far
assumed is defined by

_[Br -1/ =) forn>1;
ua(y) = {logy for n = 1.} (5.1)
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These functions u, have certain theoretical virtues (Chakravarty [3] pp. 22-28)
including that of a constant elasticity of marginal utility equal to —.

The synthesis of the optimal control using u, must generally be done numeri-
cally, but for n = 2 an analytic solution is easily found. For 7 = 2

u(y) =uy(y)=1-y and uj(y)=y2 (5.2)

Using these in (4.5) and (4.10) one finds the equation for the optimal path
towards the bliss point

A=1/(1-T-s(®) (5.3)

and the optimal consumption y* and optimal feedback control w*

y*=1-y1-¢(k);
w* = (11— ¢(k))/6(k).
One sees from (5.4) that w* - 1/2 as ¢(k) — 0 so with this utility function,
u,, one always uses for cereal production at least half the land that is eventually

going to be used for cereal production, no matter how poor the land is to begin
with. [If g, < p, then one always keeps for consumption at least half of the

(5.4)

TaBLE 1
Opumal consumption ratio w* as a function of productivity (k) for different utility indices 7.

Productivity Optimal consumption ratio w*
o(k) 1=10 7=15 3=20 =25 =30 5n=35 n=40
0.00 0.000 0.333 0.500 0.600 0.667 0.714 0.750
0.05 0.174 0.366 0.506 0.601 0.667 0.714 0.750
0.10 0.205 0.383 0.513 0.604 0.668 0.715 0.750
0.15 0.229 0.398 0.520 0.607 0669 0.715 0.750
0.20 0.250 0.412 0.528 0.610 0.671 0.716 0.751
0.25 027 0.426 0.536 0.615 0.673 0.717 0.751
0.30 0.291 0.440 0.544 0.620 0.676 0.719 0.752
0.35 0311 0.454 0.554 0.626 0.679 0.721 0.753
0.40 0331 0.469 0.564 0.632 0.684 0.724 0.755
0.45 0.352 0.484 0.574 0.639 0.689 0.727 0.758
0.50 0373 0.500 0.586 0.648 0.695 0.731 0.760
0.55 0.396 0.517 0.599 0.657 0.701 0.736 0.764
0.60 0.421 0.536 0.613 0.668 0.710 0.742 0.769
0.65 0.447 0.556 0.628 0.680 0.719 0.750 0.775
0.70 0477 0.579 0.646 0.694 0.730 0.759 0.782
0.75 0.510 0.605 0.667 0.711 0.744 0.770 0.791
0.80 0.548 0.635 0.691 0.731 0.761 0.784 0.803
0.85 0.594 0.672 0.721 0.756 0.782 0.802 0.819
0.90 0.653 0.719 0.760 0.789 0.810 0.827 0.841
0.95 0.738 0.787 0.817 0.838 0.854 0.866 0.877
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 2. Optimal relative consumption ratio w* as a function of relative productivity ¢ (k) for
different utility function indices 7.

¢ (k) = productivity relative to the bliss-level of productivity. w* = optimal consumption ratio
relative to the bliss-level ratio. w*¢(k) = optimal level of consumption relative to the bliss level.

fraction of the crop that is eventually to be kept for consumption.] One can show
for the more general utility function, u,, that
lim w*=1-n"!
$(k)—0

which just reaches zero for n = 1, corresponding to the logarithmic utility
function.

The optimal feedback control w* is shown as a function of the current value of
¢(k) in Table 1 and in Figure 2 for utility functions u, with 5 = 1(0.5)4.
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6. Behaviour in time of the optimally controlled system

The path in the (k, A)-plane is prescribed by (4.10). From this one finds the
appropriate value of A for each value of k (numerically, if necessary) and then
uses these in the Hamilton equation for dk/dr. Quadrature then yields the
relation k£ = k(7), from which all the other time-behaviour of the system can be
deduced. For this result one has to specify the production function as well as the
utility function and usually one must do the calculation numerically however two
cases yield easy analytic solutions.

Suppose as in the example in §5 that the utility function u, is chosen from the
family {u,} of (5.1), leading to the optimal-path equation (5.3) and through (4.6)
and (5.4) to

dk/dr =1 = ¢(k) —(1 — ¢(k)) (6.1)

and so to
k dk

J, T=o(k) —(1—-6(k))

A family of functions {¢,} (» > 1) having all the properties assumed by (2.13)
and (4.2) for ¢ is

(6.2)

_[1-(Q-k)’ for0<k<1;}
k) = 6.3
(k) {1 fork > 1. (63)

Suppose » = 2 fits the data adequately (as in [1] and [6]). For this ¢ equation
(6.1) becomes

dk/dr = (1 — k)k (6.4)
and has the solution

1+

k(t)=1/ (6.5)

the well-known S-shaped logistic curve (Tinbergen and Bos [12] p. 27). Now using
(5.3) and (5.4) one gets:

A=1/k* w*=1/(2 — k) and y* = k; (6.6)

from which (using (6.5)) the explicit time-functions can be written down. In this
example the optimal consumption increases towards its stationary value exactly in
proportion to the increase in the capital stock of nitrogen.
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One also finds for n = 2 and v = 4:
A= (k@ =] y* = k(2 - k);
w* = [1+(1 = k)?] " and dk/dr = (1 - k)*k(2 — k)

from which one gets

1/(1 - k) + % log|k/(2 — k)| - 4

T

where

A

1
1/(1 - ko) + Elog|k0/(2 — ko).

It is convenient to define the dimensioned “optimal time-constant”, T, of the

problem by
T .
T = T = (years) where p = min {p, p,}; (6.7)
B aF
that is, using (2.9-11) and (4.8),
K/G(K) for py < py;
T={_|[P _ 6.8
K/(—Q—a)F forp, < p,. (6.8)
Py

The first, K/G(K), is an average capital-to-output ratio in the production of
nitrogen by green manure and similarly the second, K/(P./Py — a)F, is an
average net capital-to-output ratio in the production of cereal by fertilizer when
the nitrogen capital loss due to harvesting is taken into account and the ap-
propriate prices are used for valuation.

Recalling (4.2) and (2.9-11) one sees from (6.7) that

r=T/T. (6.9)

The dimensionless time-variable 7 is used to show the time-behaviour results
for the infinite-horizon problem for utility indices 7 = 1(0.5)4 and production
function indices v = 2(1)4 in Table 2* and Figure 3.

*The calculations were done using for each (n,») ko = 0.05, 144 steps of size 0.00625 in k, a
tolerance of 1077 in the equation-solver for y* and a Simpson’s rule quadrature for 7. For the cases
where we have the exact solution (3 = 2,» = 2,4) the final errors in the computation for 7, at
k = 0.95, were less than 0.02%.
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7. lllustration

I shall use nominal values of Py, P, a, B8, K, K and F, using some Indian
data for “local-variety” wheat, to illustrate the application and limitations of the
results of §§5-6.

The 1973-74 prices of wheat and chemical nitrogenous fertilizer were P = 0.76
rupees/kg and P, = 5.00 rupees/kg (of N) ([1], Table 1). Typical wheat yield
and nitrogen removal rates per crop period are 1570 kg/ha and 56 kg/ha ([7],
Table 19, p. 82) and the nitrogen response function is p(x) = 18.9x — 0.166x°
where p kg/ha is the additional yield due to a dose of x kg/ha of chemical
fertilizer nitrogen (quoted in [1]). Assuming this is additional to the “typical
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Figure 3. Time-paths of optimal consumption for different utility function indices n and production
function indices ».

(a) Production index v = 2.

(b)yv=3.

(c) v = 4.
(The path for each n-value has been advanced by n — 1 relative time-units from the tabulated values
of Table 2.)
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yield” of [7] and extrapolating one gets the production function F(K)=
(F/K*)K(2K —K)(for0 < K < K) where K = 110 kg/ha and F = 2100 kg/ha
yr. A crop of leguminous green manure adds 56-90 kg/ha of nitrogen when
ploughed under ([7] p. 94) and two to three crops of it can be grown during a
single cereal crop period. From this data one estimates that 0.035 < a < 0.040
and 0.070 < B8 < 0.172.

In Table 3 are values for three cases: (a) 1973-74 prices and the values of «
and B within the estimated ranges leading to an upper estimate of p,; (b)
1973-74 prices and the values of a and B leading to a lower estimate of p; (¢) as
in (a) but with the chemical fertilizer price 40% higher.

TABLE 3
Parameter values for three illustrative cases

Case Fe Py a B optimal T
(rr7kg) | (r/kg) H #2 1 fertilizer (yr)
(a) 0.76 5.00 ]0.040 | 0.070 | 0.364 [ 0.263 | chemucal 0.468

b) 0.76 5.00 ]0.035}0.172 1 0.169 | 0.230 | green manure | 0.305
(©) 0.76 7.00 0.040 { 0.070 | 0.364 | 0.368 | green manure | 0.748

In case (a) p, < p; so the optimal plan is to trade some of the crop for
chemical fertilizer; however suppose the farmer has a utility index 5 = 1 and an
initial farm yield 0.190 of its saturation value then one sees from Table 2 (n = 1,
v = 2) that the optimal control w* starting with 0.246 and increasing to 0.932 will
take him to 93% of his bliss-level consumption in a 7-time of 3.491, that is (using
T = 0.468) in 1.63 years or fewer than two harvests! This shows that for these
parameter values and a low utility index the continuous-time model is inap-
propriate if one is interested in that part of the trajectory covering the 20-90% of
the bliss-level consumption and one should use a discrete-time model.

In case (b) one sees for the same prices but with an optimistic estimate for the
production of green-manure nitrogen (3 crops yielding 90 kg /ha for each crop of
cereal) that the optimal plan would now allocate some land for green manure but
that again the continuous-time model is inappropriate for examining the lower-
level consumption paths for low utility indices.

In case (c), with only a 40% rise in fertilizer price and the same production of
green-manure nitrogen as in (a), the optimal plan now allocates land for green
manure. If the farmer has a utility index 9 = 4 (a much stronger aversion to low
consumption) then, referring to Table 2, with the same initial yield of 0.190 F as
in (a) the optimal control w* starting at 0.751 and increasing to 0.967 (corre-
sponding to v¥ going from 0.523 to 0.385) will take him to 96.4% of his bliss-level
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consumption in a 7-time of 8.227, that is (using T = 0.7483) in 6.16 years. For
these values of the parameters the continuous-time model is a reasonably good
guide to the optimal plan.

To illustrate the application of §§5-6 to the Ramsey-Koopmans model one
must convert it to the appropriate form. Suppose the rate of relative population
growth is constant at N per year, the per capita consumption at time T years is
Y(T) $/man year, the capital-to-labour ratio is K (T) $/man, the per capita
production is G(K) $/man year and is such that G’(K) = N for some finite K.
The capital growth equation is dK/dT = G(K) — NK — Y and there is a sta-
tionary maximum consumption Y = G(K) — NK. Define T = K/(G(K) — NK)
and dimensionless quantities y = Y/Y, k = K/K, t=T/ T, n = NT, glk)=
(T/I? YG(kK) and ¢(k) = g(k) — nk and the capital growth equation becomes
dk/dt = $(k) — y and one now seeks to maximize [§° u(y)dt where u satisfies
(2.12). The problem is now in the standardized form (4.3). The saving ratio s
corresponds to the control variable v, in §4 and has the golden-rule value
n/(1 + n) so in (4.2) one must set u; = n/(1 + n). The optimal saving ratio s*
at any time is given by s* = 1 — (1 — p,)w*; thatis, s* =1 — w*/(1 + n).

Suppose, for example, N = 4% per year and G(K) = 0.15K — 2.5 X 107°K 2,
One finds K =22 X 103, Y = 1210, T = 18.2 years, n = 0.727, p, = 0.421 and
the optimal time-constant T = u,T = 7.66 years. From Table 2 with » = 2 and
choosing 7 = 4 one sees that if current output corresponds to K/K = k = 0.50
(that is 1347.5 $/man year) then starting with w* = 0.791 (or s* = 0.542) and
y = 0.594 one can progress along the optimal path to y = 0.964 (where w* =
0.967 or s* = 0.440) after a r-interval of 4.366; that is, after 4.366 X T = 33.4
years the consumption will be 3.6% below the golden-rule value.

8. Conclusion

I have illustrated the application of my model and the calculations from it to a
farm economy using parameter values approximating those for Indian local-variety
wheat and 1973-74 prices and for this cereal one saw that the model could be
useful on poor farms only for a high utility index and a high chemical fertilizer
price. The model could be useful all the way down to the lowest indices of utility
and production functions only if the empirical parameters P, Py, a, 8, K and F
(defined in §2) make the “optimal time-constant” (defined in (6.7)) of the order of
10 years or more. Such a time-constant corresponds to a combination of low
average productivity of capital and high relative prices of both the home-pro-
duced and foreign capital goods.

In the application illustrated the estimated values of the relative prices p; and
1, had a wide spread and straddled the dividing line, g, = p,, between the two
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regimes of the optimal plan. This points to the need for good experimental
determination of the various functions involved.

The simplifying assumptions made here may be poor approximations; never-
theless for an initially poor and unproductive economy facing high prices for
foreign capital goods this study has pointed to the possibility of developing useful
practical guide-lines for the long-term planning at the local level of the optimal
and self-sufficient path towards the bliss-point of maximum stationary consump-
aon.
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