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The Helmholtz equation −∇ · (a∇u)−ω2u= f is considered in an unbounded wave guide � :=
R× S ⊂R

d , S ⊂R
d−1 a bounded domain. The coefficient a is strictly elliptic and either periodic in

the unbounded direction x1 ∈R or periodic outside a compact subset; in the latter case, two different
periodic media can be used in the two unbounded directions. For non-singular frequencies ω, we
show the existence of a solution u. While previous proofs of such results were based on analyticity
arguments within operator theory, here, only energy methods are used.
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1 Introduction

We investigate the existence and uniqueness of solutions to the Helmholtz equation

−∇ · (a∇u)−ω2u= f (1.1)

in an infinite wave guide � :=R× S. The cross-section S is given by a bounded Lipschitz
domain S ⊂R

d−1, the right hand side f ∈H−1(�) has compact support; below, the frequency
ω> 0 is assumed to be non-singular. The differential operator Au :=−∇ · (a∇u) is given by
coefficients a :�→R

d×d of class L∞(�) with a(x) symmetric and positive for every x, satis-
fying λ|ξ |2 ≤ ξ · a(x)ξ ≤�|ξ |2 for some 0<λ<�<∞ and all ξ ∈Rd , x ∈�. We treat two
settings: Periodic coefficients, that is, coefficients a that satisfy a(x+ e1)= a(x) for every x ∈�,
see Figure 1. The other setting is that of coefficients a that are periodic at the far left and at the
far right and arbitrary in a central region: There exists R0 > 0 such that a(x+ e1)= a(x) for every
x ∈� with |x1|> R0, see Figure 2. We impose a Neumann condition on ∂�; Dirichlet conditions
can be treated in the same way.

We say that a function u ∈H1
loc(�) solves the radiation problem if the following three

conditions are met:

(i) u solves (1.1) in � in the weak sense.
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212 B. Schweizer

FIGURE 1. The wave guide geometry in two dimensions. The coefficient a is indicated by different levels
of grey. It is 1-periodic in x1-direction.

(ii) supr∈Z ‖u‖L2((r,r+1)×S) <∞.

(iii) the radiation condition of Definition 2.4 is satisfied.

Regarding the radiation condition, we note that Definition 2.4 is equivalent to a more standard
condition, see Lemma 3.2. One of our main results is the following existence and uniqueness
statement.

Theorem 1.1 (Existence and uniqueness result for periodic media). Let the data �, f, ω, and a
be as above, the coefficients 1–periodic in x1, that is: a(x+ e1)= a(x) for every x ∈�. Let ω be
non-singular in the sense of Definition 2.3 below. Then, there exists one and only one solution u
to the radiation problem (i)–(iii).

The statement of Theorem 1.1 is not new, but contained, for example, in [9] (Theorem 1.2
below is the new result of this article). The decisive difference between existing literature and
the paper at hand regards the methods of proof. The proof in [9] uses operator theory (just as the
proofs of similar results in [10 13, 20]): One constructs families of operators in subsets of the
complex plane, sketches specific curves in the complex plane and evaluates corresponding line
integrals of operators. The constructions provide bounded families of operators and thus, as a
result, an inverse to the Helmholtz operator. The proofs rely on analyticity properties and exploit
Kato’s perturbation theory for operators.

By contrast, our proof uses only energy methods and is self-contained. Using only energy
methods means here that (a) we only use L2-based function spaces, (b) the existence result is
obtained from a priori estimates, (c) the a priori estimates are obtained with the help of appro-
priately chosen test functions for the equations. Energy conservation of the physical system
is reflected by the mathematical fact that the energy flux is independent of the position, see
Remark 2.2. The flux equality in the form of Lemmas 2.1 and A.1 is the central tool in the
proofs of the main results, Theorems 1.1 and 1.2. This article is self-contained in the sense that
the proofs of the two main theorems use only standard theory of partial differential equations.
The further analysis of the non-singularity assumption for the frequency ω is not the aim of this
contribution.

Our results have the character of a Fredholm alternative. The assumption that the frequency
ω is non-singular implies that the homogeneous problem has only the trivial solution. From this
uniqueness property, we obtain the existence result. In order to obtain the existence, we introduce
an approximate problem which is easy to solve. If the approximate solutions are bounded,
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FIGURE 2. A non-periodic coefficient a as in Theorem 1.2. The coefficient is periodic as x1→∞ and
as x1→−∞. The medium satisfies a(x+ e1)= a(x) for every x ∈� with |x1|> R0 for R0 = 5. The two
periodic media (far left and far right) can be different.

then any limit is the desired solution to the original problem. If the approximate solutions are
unbounded, we normalise them and obtain, in the limit, a nontrivial solution to the homogeneous
problem – in contradiction to the uniqueness property.

From the above description of the proof, it is clear that the approach is very direct. The two
difficulties are (1) the construction of a useful approximate problem and (2) the verification of
the radiation condition for limits. Our choice is inspired by constructions of [5] and [18]. We
work with truncated domains and radiation boxes to formulate boundary conditions. We demand
that approximate solutions look like outgoing waves in the radiation boxes. The proofs rely on
the flux equality for solutions: In every cross-section of the wave guide, the solution has the same
energy flux.

Our methods are very flexible and provide also new results. The next theorem treats a medium
that is arbitrary on a compact subdomain and periodic outside of that subdomain. Our assumption
on the medium can also be formulated as follows: There are two periodic fields aleft, aright :�→
R

d×d , aleft(x+ e1)= aleft(x) and aright(x+ e1)= aright(x) for every x ∈�. The coefficient a is of
class L∞(�), and it is pointwise symmetric and positive and has the ellipticity bounds�>λ> 0.
It satisfies, for some R0 > 0:

a(x)= aleft(x) if x1 <−R0 ,

a(x)= aright(x) if x1 > R0 .

For such a medium, even if ω is non-singular for aleft and aright, the number ω2 can be an
eigenvalue of the elliptic operator A. We therefore have to assume the uniqueness property for
the homogeneous problem.

Theorem 1.2 (Media that are periodic at infinity). Let the wave guide �=R× S be as above.
Let a :�→R

d×d be essentially bounded, symmetric and positive as above. We assume that, for
some R0 > 0,

a(x+ e1)= a(x) for every x ∈� with |x1|> R0 ,

which implies that a coincides with aleft and aright outside a compact region for some periodic
coefficients aleft and aright. Let ω> 0 be a non-singular frequency in the sense of Definition 2.3
below for the two periodic media given by aleft and aright. If the radiation problem (i)–(iii) with
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f = 0 possesses only the trivial solution, then the radiation problem (i)–(iii) has a unique solution
u for arbitrary f ∈H−1(�) with compact support.

We emphasise that the medium in the above theorem is not necessarily a compact perturbation
of a periodic medium. Our proof works also when a compact perturbation of the underlying
geometry �=R× S is considered, for example, when the channel is thicker in a central region.
Moreover, the unbounded half-channels could have also different cross-sections or they could
lead in different directions.

Regarding literature, we mention [15] for classical methods. We note that some of the ref-
erences below treat the problem on the whole space R

d; some results on that problem can be
interpreted as statements on the wave guide problem with periodicity boundary condition in the
bounded direction. In this sense, the line defect analysis of [11] provides a uniqueness result for a
local perturbation of a periodic medium. In general, uniqueness does not hold in the situation of
Theorem 1.2, see [1, 6, 7]. For another form of a radiation condition, we mention [13]. The work
[4] treats a similar problem and makes a connection to a Lippmann-Schwinger equation; unique-
ness is obtained there from a positive absorption parameter. An interface with a metamaterial is
considered in [2].

Regarding the spectral properties of the Helmholtz operator, we mention [19]; Theorem 3.2 in
Chapter 5 of that reference provides in certain settings that all frequencies ω> 0 are non-singular
in the sense of Definition 2.3. The existence of Floquet modes is shown in [12].

We mention that the Fredholm alternative for a limiting absorption principle was also exploited
in [22] in order to improve the existence statement of [5] with a vanishing absorption principle.
Similar methods are also used in [2]. The analysis of guided modes in a wave guide with purely
harmonic dependence in the unbounded direction was treated in [3]. In the work [8], the solution
to half-space problems is used for the computation of guided modes, which is further exploited
in [14].

It is worth noting at this point that our results have the drawback that they do not include a
limiting absorption principle for the unbounded domain. This fact is related to the method of
proof since we construct approximate solutions with truncated problems and not with a small
absorption parameter.

2 Preliminaries

In this section, we discuss various properties of the system and specify the setting for our results.
We start with the conservation of fluxes. This is a fundamental property of the Helmholtz equa-
tion, and our existence result is built on it. We recall the concept of propagating modes and
introduce the non-singularity assumption on ω, which allows also to introduce a useful radia-
tion condition in Definition 2.4. We furthermore show some results on orthogonality and the
equivalence of our radiation condition with a more standard formulation.

2.1 Conservation of fluxes and the form Q

During the entire approach, we will work with a number l ∈N that gives the width of a so
called ‘radiation box’. The number is arbitrary, but fixed throughout this article; accordingly,
we nowhere mark the dependence of l by a sub- or superscript. The reader might want to think
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FIGURE 3. The cut-off function ϑ .

of l= 1 in the whole text. Given l> 0, we consider the central box W0 := (0, l)× S and, for
arbitrary r ∈Z, the shifted boxes Wr := (r, r+ l)× S.

We describe the situation first for a periodic medium a. We can identify a function u : Wr→C

with the function ũ : W0→C, which is obtained with a shift: ũ(x) := u(x+ re1).
Of crucial importance in our approach will be the following sesquilinear form Q. For u ∈

H1(W0) and v ∈ L2(W0), we define

Q(u, v) := 1

l

∫
W0

a∇u · e1v̄ , and Q(u) :=Q(u, u) , (2.1)

where the overbar denotes complex conjugation. The sesquilinear form Q and the quadratic form
Q are used to measure the energy flux of solutions. We also consider an (anti-)symmetrised
variant of Q,

Qs(u, v) := 1

2

(
Q(u, v)−Q(v, u)

)
. (2.2)

The symmetrised variant satisfies Qs(u, v)=−Qs(v, u) and Qs(u, u)= i Im Q(u). We mention
already here that a more standard description of the flux Im Q(u) as a surface integral is given
with formula (2.5) of Remark 2.2 below.

We will repeatedly use piecewise affine cut-off functions ϑ that are 1 in an interior interval
and 0 outside a larger interval. More precisely, given four consecutive points (ρ, ρ + l, r, r+ l),
we set: ϑ(s)= 0 for s≤ ρ and for s≥ r+ l, ϑ(s)= 1 for ρ + l≤ s≤ r, and ϑ affine linear in the
two remaining intervals, compare Figure 3. By slight abuse of notation, we identify ϑ with a
cut-off function on � by setting ϑ(x) := ϑ(x1) for x ∈�.

The basis for our approach is the energy flux equality. In its simplest form, it states: For a
homogeneous solution φ, the energy flux quantity Im Q(φ|Wr ) is independent of the position r.
We use the notation �r1,r2 := (r1, r2)× S.

Lemma 2.1 (Simple flux equality) Let φ,ψ ∈H1
loc(�) be two solutions to Aφ =ω2φ on�. Then,

for arbitrary ρ, r ∈R with ρ + l≤ r, there holds the flux equality

Im Q(φ|Wρ )= Im Q(φ|Wr ) . (2.3)

The sesquilinear form Qs satisfies

Qs(φ|Wρ ,ψ |Wρ )=Qs(φ|Wr ,ψ |Wr ) . (2.4)

Proof. Equality (2.4) implies (2.3) by Qs(u, u)= i Im Q(u).

https://doi.org/10.1017/S0956792522000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000080


216 B. Schweizer

We use the piecewise affine cut-off function ϑ corresponding to the four points (ρ, ρ +
l, r, r+ l). Multiplication of the equation Aφ =ω2φ with ϑψ̄ and an integration over � yields

0=
∫
�ρ,r+l

a∇φ · ∇(ψ̄ϑ)−
∫
�ρ,r+l

ω2 φ ψ̄ ϑ

=
∫
�ρ,r+l

a∇φ · ∇ψ̄ ϑ −
∫
�ρ,r+l

ω2 φ ψ̄ ϑ −
∫

Wr

a∇φ ψ̄ · 1

l
e1 +

∫
Wρ

a∇φ ψ̄ · 1

l
e1

=
∫
�ρ,r+l

a∇φ · ∇ψ̄ ϑ −
∫
�ρ,r+l

ω2 φ ψ̄ ϑ −Q(φ|Wr ,ψ |Wr )+Q(φ|Wρ ,ψ |Wρ ) .

The same expression can be written with φ and ψ exchanged; performing additionally a complex
conjugation, we have

0=
∫
�ρ,r+l

a∇φ · ∇ψ̄ ϑ −
∫
�ρ,r+l

ω2 φ ψ̄ ϑ −Q(ψ |Wr , φ|Wr )+Q(ψ |Wρ , φ|Wρ ) .

Subtracting the two results, the first two integrals cancel and we obtain (2.4).

Remark 2.2 (The flux through an interface). Let φ ∈H1
loc(�) be a solution of Aφ =ω2φ on �.

Multiplication with φ̄, integration over (ρ, r)× S ⊂� and taking the imaginary part yields

Im
∫
{ρ}×S

a∇φ · e1 φ̄ = Im
∫
{r}×S

a∇φ · e1 φ̄ (2.5)

in the sense of traces. This shows that the expression on the right does not depend on the
position r.

The fact that the surface integral is independent of r implies that every volume integral
Im Q(φ|Wr ) of (2.3) actually coincides with the expression in (2.5).

2.2 Propagating modes and radiation condition

We next study solutions to the radiation problem. We are interested in solutions u that do not
decay at infinity. Regarding regularity, on the other hand, we cannot expect that solutions are
locally of class L∞. We therefore introduce a new norm to measure functions. For u :�→C

we set

‖u‖sL := sup
r∈Z
‖u‖L2((r,r+1)×S) . (2.6)

We have chosen the subscript sL for the norm to recall that a supremum over L2-norms is taken.
We study the following subspace of H1(W0):

X := {
u|W0

∣∣ u ∈H1
loc(�), ‖u‖sL <∞, Au=ω2u in �

}
. (2.7)

In many situations (see the text below), it is known that all functions u in (2.7) are quasiperiodic
functions. We say that a function u :�→C is quasiperiodic if there exists a real number ξ ∈
[0, 2π ) such that u(x+ e1)= eiξu(x) for every x ∈�. The number ξ is called the quasimoment and
we also say that u is ξ -quasiperiodic. Note that, when u is ξ -quasiperiodic, u can be reconstructed
from u|W0 .
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Let us recall some spectral analysis facts. In the next paragraph, we describe a generic situation
and typical methods. We do not cite the rigorous mathematical results. Our intention is rather to
clarify that the assumptions in our main theorems are reasonable. The proofs of our theorems do
not use any of the results sketched here. For more material on the spectral analysis, we refer to
[9, 16, 17, 21].

For a fixed number ξ ∈ [0, 2π ), one can consider the space of all ξ -quasiperiodic functions v.
The Floquet-Bloch transform allows to decompose the partial differential equation Au=ω2u into
a family of problems A(ξ )u=ω2u, where ξ ∈ [0, 2π ) is the quasimoment and A(ξ ) is the operator
A restricted to ξ -quasiperiodic functions. Every operator A(ξ ) has a compact resolvent and hence
a pure point spectrum. The eigenvalues of A(ξ ) depend continuously on ξ and have lower bounds
which imply that, for generic values of ω, the number ω2 coincides with eigenvalues of A(ξ ) only
for finitely many values of ξ . The corresponding finitely many eigenfunctions then form a basis
of the space X of (2.7). In particular, the space X is finite-dimensional.

We will assume this situation and one additional property: For the frequency ω, the imaginary
part of the form Q does not vanish in basis functions. If, for every ξ , ω2 is not a multiple eigen-
value of A(ξ ), then our definition of non-singular frequencies coincides with the one in [9], see
the set σ0 in (33) of [9]. We emphasise that our space X is, a priori, not identical with the space F
of propagating Floquet modes; instead, X could be larger and we essentially say that a frequency
is non-singular when no mode of X is propagating. It is an interesting task for future research to
check under what conditions X = F holds.

Definition 2.3 (Non-singular frequency). Let A=−∇ · (a∇) be an x1-periodic elliptic operator.
A number ω> 0 is called a non-singular frequency (for the periodic medium a) if the following
holds:

(a) Finite dimension: The space X of (2.7) has a finite dimension M ∈N. There exists a basis
(ϕj)1≤j≤M and quasimoments ξj ∈ [0, 2π ) such that each ϕj possesses a ξj-quasiperiodic
extension satisfying Aϕj =ω2ϕj in �.

(b) Non-vanishing flux: For every quasiperiodic function u ∈H1
loc(�) with Au=ω2u, the

restriction ϕ = u|W0 ∈ X has the property

Im Q(ϕ) �= 0 . (2.8)

Whenever ω> 0 is a non-singular frequency, we can actually achieve the following situ-
ation: There holds M = 2N for some N ∈N, there exists a basis (φ+1 , ..., φ+N , φ−1 , ..., φ−N ) of
X and corresponding quasimoments ξ±j ∈ [0, 2π ) such that the quasiperiodic extensions with

φ±j (.+ e1)= eiξ±j φ±j (.) solve Aφ =ω2φ in �. For two basis functions φ and φ̃ for the same

quasimoment ξ , there holds the orthogonality Qs(φ, φ̃)= 0. Furthermore, the fluxes have a sign
as indicated by the superscript: For every j holds

Im Q(φ+j )> 0 and Im Q(φ−j )< 0 . (2.9)

Let us indicate how to obtain the basis (φ+1 , ..., φ+N , φ−1 , ..., φ−N ). We fix a quasimoment
ξ and consider only the basis functions ϕj having that quasimoment, say ϕ1, ..., ϕm. We
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perform a standard diagonalisation procedure with respect to Qs: In the first step, we choose
φ1 = ϕ1. In the second step, we set α1 =Qs(φ1, ϕ2)/Qs(φ1, φ1) ∈C, which is possible by
condition (b) and Qs(u, u)= i Im Q(u), and define φ2 = ϕ2 − α1φ1. This guarantees Qs(φ1, φ2)=
Qs(φ1, ϕ2)− α1Qs(φ1, φ1)= 0. The (anti-)symmetry of Qs yields additionally Qs(φ2, φ1)= 0.
The process can be continued until ϕ1, ..., ϕm are Qs-orthogonalised. We exploit in the process
the symmetry of Qs and the fact that, for fixed ξ ∈R, ξ -quasiperiodic functions form a vector
space. Relabelling the functions φ1, ..., φM and exploiting once more (b), we obtain (2.9).

Below, we will obtain additionally the orthogonality of all basis functions φ±j with respect

to the form Qs. Given a function φ+j with Im Q(φ+j )> 0, the complex conjugate function φ+j is

also contained in the space X of (2.7), it satisfies Q(φ+j )=Q(φ+j ) and hence Im Q(φ+j )< 0. This
argument shows that the number of modes φ+j is identical to the number of modes φ−j . We can

even choose the basis such that φ−j = φ+j and ξ−j =−ξ+j for all j≤N . In the following, we will
always work with a basis (φ+1 , ..., φ+N , φ−1 , ..., φ−N ) as described before and in (2.9).

We already noted that Property (a) of Definition 2.3 is generically satisfied. Property (b)
demands that there is no nontrivial wave with vanishing flux. The existence of a wave with
vanishing flux implies the existence of a nontrivial solution to the homogeneous radiation prob-
lem, which contradicts the uniqueness statement of Theorem 1.1. In this sense, Definition 2.3 (b)
is a necessary condition for Theorem 1.1. The non-singularity of all frequencies ω is verified in
certain settings. Theorem 5.3.2 of [19] provides also the orthogonality with respect to Qs. The
orthogonality is derived also in [9], see their Theorem 3.

Projections and radiation condition.
We proceed with the construction of function spaces and projections. For a non-

singular frequency ω and basis functions as above, we define the following two subspaces
of H1(W0),

X+ := span{φ+j | 1≤ j≤N} , X− := span{φ−j | 1≤ j≤N} . (2.10)

Every function φ+ ∈ X+ can be extended to a solution of the homogeneous problem. Here,
some care should be taken, since a function in X+ is, in general, not quasiperiodic for any ξ .
We construct as follows: Every basis function φ+j ∈ X+ has a ξ+j -quasiperiodic extension. We

denote the extension as E+j φ
+
j , it is characterised by the property E+j φ

+
j (x+me1)= eimξ+j φ+j (x)

for every m ∈Z. An arbitrary element φ+ ∈ X+ is a linear combination of basis elements,
φ+(x) :=∑

j αjφ
+
j (x) for some coefficients αj ∈C, and we have to extend every basis func-

tion with the appropriate quasiperiodicity. More precisely, the extension of φ+(x) as above is
given by

(Eφ+)(x) :=
∑

j

αj(E
+
j φ
+
j )(x) .

This defines an extension operator E which maps elements of X+ to solutions of the homogeneous
problem Aφ =ω2φ in �. Later on, we oftentimes simplify the notation and write again φ+ for
the extension Eφ+. Analogously, extensions are defined for φ− ∈ X−.

Since the basis functions are linearly independent, there holds X = X+ ⊕ X−. An arbitrary
element u ∈ X can be written uniquely as u=∑N

j=1 αjφ
+
j +

∑N
j=1 βjφ

−
j . The natural projections
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�X ,+ : X→ X+ ⊂ X and �X ,− : X→ X− ⊂ X are given by

�X ,+(u)=
N∑

j=1

αjφ
+
j and �X ,−(u)=

N∑
j=1

βjφ
−
j .

We emphasise that the basis function φ±j is, in general, not L2-orthogonal. Accordingly, the
projections are not necessarily L2-orthogonal projections.

The L2(W0)-orthogonal projection onto the subspace X is denoted as �X : L2(W0)→ L2(W0).
With the help of �X , we define the two projections �+ :=�X ,+ ◦�X : L2(W0)→ L2(W0) onto
X+ and �− :=�X ,− ◦�X : L2(W0)→ L2(W0) onto X−.

The case of two different periodic media.
Let us now discuss how the above concepts can be applied when a is given by aleft for x1 <−R0

and by aright for x1 > R0. In this case, the spaces X± can be determined for aright, which defines
X right
± , and for aleft, which defines X left± . Accordingly, we can define �right

± and �left± , Qright and
Qleft, Qright and Qleft. In order to take limits, it is still convenient to identify a function in L2(Wr)
with a function in L2(W0). Nevertheless, one has to be careful in the definition of the forms
Q, since we have no information on a in W0: The form Qright is defined as in (2.1), but with
a replaced by aright. Accordingly, on the left, Qleft is defined as in (2.1) with the coefficient
function aleft.

Radiation condition.
The projections allow to introduce the radiation condition that is used in this work. We remark

that the equivalence with the usual radiation condition is established in Lemma 3.2. The norm
‖u‖sL was introduced in (2.6).

Definition 2.4 (Radiation condition) Let ω be non-singular in the sense of Definition 2.3. For
r ∈N we consider boxes W±r and the corresponding projections �±. We say that u :�→C

with ‖u‖sL <∞ satisfies the radiation condition if

�−(u|Wr )→ 0 and �+(u|W−r )→ 0 as r→+∞ . (2.11)

In this formula, we identify a function on Wr with a function on W0 via a shift. The convergence
is that of L2(W0).

In the case of two different media at infinity, aright and aleft, the condition (2.11) is modified in
the natural way to

�
right
− (u|Wr )→ 0 and �left

+ (u|W−r )→ 0 as r→+∞ . (2.12)

2.3 Orthogonality

For notational convenience, we return to the discussion of one periodic medium a. The spaces
X+ and X− are not orthogonal in L2(W0). Nevertheless, we will obtain orthogonality with respect
to the form Qs.

We have announced that the width l ∈N of the boxes can be chosen arbitrarily. In this section,
in order to derive the orthogonality, we will use l as a variable parameter. Here and below, we
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normalise the basis functions such that

1

l

∫
W0

|φ±j |2 = 1 . (2.13)

A normalised basis function remains normalised when l is changed. This follows immediately
from quasiperiodicity, which provides by its definition that |φ±j |2 is 1-periodic in x1.

Proposition 2.5 (Orthogonality). Every two different elements u and v of the set
{φ+1 , ..., φ+N , φ−1 , ..., φ−N } satisfy

Qs(u, v)= 0 . (2.14)

Proof. In the case that u and v have the same quasimoment ξ , there holds Qs(u, v)= 0 by the
orthogonalisation of the basis functions. The construction was performed after Definition 2.3.

It remains to consider the case that u has the quasimoment ξ and v has the quasimoment ζ �= ξ .
We want to calculate the expression

Qs(u, v)= 1

2

(
Q(u, v)−Q(v, u)

)= 1

2l

∫
W0

a∇u · e1v̄ − 1

2l

∫
W0

a∇v̄ · e1u .

Equation (2.4) of Lemma 2.1 shows that the sesquilinear form Qs is independent of the
x1-position. This implies that Qs is independent of l.

With the notation �r1,r2 := (r1, r2)× S, we calculate for the first expression

1

2l

∫
W0

a∇u · e1v̄= 1

2l

l−1∑
k=0

∫
�k,k+1

a∇u · e1v̄

= 1

2l

l−1∑
k=0

∫
�0,1

eikξa∇u · e1 e−ikζ v̄= 1

2l

l−1∑
k=0

eik(ξ−ζ )
∫
�0,1

a∇u · e1 v̄ .

The integral on the right is independent of l. With β := ei(ξ−ζ ) we write the factor in front of

the integral as 1
2l

∑l−1
k=0 eik(ξ−ζ ) = 1

2l

∑l−1
k=0 β

k = 1
2l

1−βl

1−β → 0 for N � l→∞. Note that β �= 1 is
satisfied because of ξ �= ζ . The other term is treated in the same way and we obtain (2.14).

Corollary 2.6 (Sign of the sesquilinear form). For some γ > 0 holds

± Im Q(u, u)≥ γ
l
‖u‖2

L2(W0) ∀ u ∈ X± . (2.15)

Proof. Let u ∈ X+ be arbitrary, u=∑N
j=1 αjφ

+
j . We use γ+ :=minj Im Q(φ+j ), which is positive

by (2.9). The orthogonality (2.14) allows to calculate

Im Q(u, u)= Im Qs(u, u)=
N∑

j=1

|αj|2 Im Qs(φ+j , φ+j )≥ γ+
N∑

j=1

|αj|2 . (2.16)

The immediate inequality ‖u‖2
L2(W0)

≤Cl
∑N

j=1 |αj|2 for a constant C> 0 provides the claim in
X+ for γ = γ+/C> 0. The argument for X− is analogous.
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We defined X to consist of restrictions of homogeneous solutions u on �. We now turn to a
more quantitative version of this fact: If u is a homogeneous solution on a large subdomain, then
its restriction is close to an element of X .

Lemma 2.7 (Outside a compact region, solutions are close to X). Let l ∈N be fixed and let
η > 0 be an arbitrary error quantifier. There exists a large number r0 ∈N such that, for every
N � r> r0, there holds: Every function ur ∈H1

loc(�) with the properties

Aur =ω2ur in �−r,r and ‖ur‖sL ≤ 1 (2.17)

satisfies

∥∥ur|W0 −�X (ur|W0 )
∥∥

H1(W0)
≤ η . (2.18)

We will later use repeatedly the following immediate consequence of (2.18), which exploits
�X =�+ +�−:

∥∥ur|W0 −�+(ur|W0 )−�−(ur|W0 )
∥∥

L2 ≤ η . (2.19)

Proof. The aim is to show that ur|W0 is near an element of X . We recall that l and η are fixed.
We want to show the existence of r0 and argue by contradiction. If there is no r0 with the desired
property, then there exists a sequence r→∞ and a sequence of functions ur, which satisfy
(2.17), but not (2.18). In the following, we work with this sequence and our aim is to derive a
contradiction.

The boundedness of (2.17) allows to select a subsequence and to find a limit function
u such that ur→ u converges weakly in H1(K) for every bounded subset of the form
K = (−l0, l0)× S ⊂�, l0 > 0. From now on, we work with this subsequence. As a limit
function, u also satisfies both properties of (2.17), the solution property and the boundedness.
Locally, the sequence ur converges even strongly in H1, as can be shown easily by testing the
equation for ur − u with (ur − u) θ , where θ is a cut-off function. The strong convergence ur→ u
in H1(W0) implies that the limit u satisfies the same inequality as the approximate functions:

∥∥u|W0 −�X (u|W0 )
∥∥

H1 ≥ η . (2.20)

This provides a contradiction: u|W0 ∈ X holds by definition of X in (2.7), so the left hand side of
(2.20) vanishes.

We will later also exploit the H1-regularity of the elements φ ∈ X , where X is either X left or
X right: For some constant C, there holds

‖φ‖H1(W0) ≤C‖φ‖L2(W0) (2.21)

for all elements φ ∈ X . The constant C=C(ω, λ) depends only on the frequency ω and on the
ellipticity constant λ of the coefficients. The property (2.21) can be obtained by testing the
equation with the solution and a cut-off function, but it can be concluded for general C also
immediately from the fact that the basis functions are of class H1(W0) and that the space X is
finite-dimensional.
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3 Uniqueness

As mentioned in the introduction, we show uniqueness and existence with energy methods,
using the conservation of fluxes. The essential proofs rely on a simple trick that we want to
describe here in loose terms. We explain the trick for the uniqueness proof, it is very similar in
the existence proof.

Let u be a solution to the radiation problem with f = 0, and our aim is to show that u vanishes.
We use a contradiction argument and assume that for a position ρ ∈N the function u|Wρ does not
vanish. The radiation condition yields that for a large number r ∈N the function u|Wr is close to
a right-going wave.

If we use the flux equality for u, we conclude that the flux of u in Wρ coincides with the flux
in Wr – but this information in itself is not very helpful, since u|Wρ can consist of right-going and
left-going waves.

The trick is to consider the following: Let φ be the projection of u|Wρ to right-going waves.
We extend φ to all of � and set w := u− φ. The properties of w are the following: (a) w is a
solution, since u and φ are. (b) w is (approximately) right-going in Wr, since u and φ are. (c) w is
left-going in Wρ , since we subtracted the right-going part from u. The flux equality for w yields
that the fluxes in Wρ and Wr coincide. This is a valuable information, since the two fluxes have
opposite sign (up to small errors). We conclude that all fluxes are small, which implies that w is
small in Wρ , from which it follows that u has a small left-going component in Wρ . In the same
way, choosing r to the left of ρ, one concludes that u has a small right-going component in Wρ .
This yields that u is small in Wρ . We find the desired contradiction to the choice of ρ.

We now turn to the rigorous proofs and make the above ideas precise. We recall the norm of
(2.6) for u :�→C, ‖u‖sL := supr∈Z ‖u‖L2((r,r+1)×S).

Proposition 3.1 (Uniqueness on the unbounded domain). For non-singular frequencies ω> 0,
the problem of Theorem 1.1 has at most one solution. More precisely, every solution u ∈H1

loc(�)
of Au=ω2u with ‖u‖sL <∞ that satisfies the radiation conditions of Definition 2.4 vanishes
identically.

Proof. Let us assume that u is a non-vanishing solution to the homogeneous problem. Our aim
is to arrive at a contradiction.

Step 1: Preparations. We normalise u such that supr∈Z ‖u|Wr‖L2(Wr) = 1. Let ρ ∈Z be a number
with ‖u|Wρ‖L2(Wρ ) ≥ 1/2.

We choose a small quantifier 1≥ ε > 0, and the choice will be specified below after inequality
(3.5). The radiation condition (2.11) allows to choose r ∈N, r≥ |ρ| large, so that the small-
ness ‖�−(u|Wr )‖L2 + ‖�+(u|W−r )‖L2 ≤ ε is satisfied (and remains satisfied for every larger r).
Using the H1-regularity property ‖φ±‖H1(W0) ≤C‖φ±‖L2(W0) of (2.21), we can improve the
regularity to

‖�−(u|Wr )‖H1 + ‖�+(u|W−r )‖H1 ≤Cε . (3.1)

We consider φ(x) :=∑
j αjφ

+
j (x) with �+((u− φ)|Wρ )= 0 and set w= u− φ. There holds

�−(w|Wr )=�−(u|Wr )−�−(φ|Wr )=�−(u|Wr ) ,
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hence ‖�−(w|Wr )‖L2 ≤ ε and ‖�−(w|Wr )‖H1 ≤Cε. This quantifies the fact that w is approxi-
mately right-going in Wr.

Regarding boundedness, we observe that supr∈Z ‖φ‖L2(Wr) ≤C holds, since φ is obtained by a
projection of u. As a difference, w satisfies supr∈Z ‖w‖L2(Wr) ≤ 1+C.

Step 2: Flux equality. We use a cut-off function which is similar to that of Figure 3: We
choose ϑρ corresponding to the four points (ρ, ρ + l, r, r+ l). Multiplication of Aw=ω2w with
w̄ ϑρ yields

0=
∫
�ρ,r+l

a∇w · ∇w̄ϑρ −
∫
�ρ,r+l

ω2 ww̄ϑρ −Q(w|Wr )+Q(w|Wρ ) .

Taking the imaginary part provides the flux equality

Im Q(w|Wρ )= Im Q(w|Wr ) . (3.2)

Step 3: Conclusion. The fact that w is a solution on� implies that w|Wr is an element of X , we
can write w|Wr =�+(w|Wr )+�−(w|Wr ). The smallness of �−(w|Wr ) therefore yields

∥∥w|Wr −�+(w|Wr )
∥∥

H1 ≤C0ε . (3.3)

This allows to calculate the quadratic form on the right hand side of (3.2) as

Im Q(w|Wr )= Im Q (
�+(w|Wr )+ [w|Wr −�+(w|Wr )]

)
.

Inserting the definition of the quadratic form Q, using ‖w‖L2(Wr) ≤ 1+C and ‖w‖H1(Wr) ≤C1,
we find from (3.3) and the definition of Q in (2.1), for some constant C2 that depends on C, C0,
and C1,

Im Q(w|Wr )≥ Im Q(�+(w|Wr ))−
C2�ε

l
≥−C2�ε

l
, (3.4)

where we used the positivity of Q on X+ of (2.15) in the second inequality. The flux equality
(3.2) transfers this lower bound to the domain Wρ .

Since also u|Wρ is an element of X , there holds w|Wρ = u|Wρ − φ|Wρ = u|Wρ −�+(u|Wρ )=
�−(u|Wρ ) ∈ X−. We calculate with (3.4), (3.2), and (2.15):

C2�ε

l
≥−Im Q(w|Wr )=−Im Q(w|Wρ )≥ γ

l
‖�−(u|Wρ )‖2

L2 . (3.5)

Choosing ε > 0 so small that
√

C2�ε/γ ≤ 1/6 holds, we find ‖�−(u|Wρ )‖L2 ≤ 1/6.
The argument can be repeated with the left-going wave φ− =�−(u|Wρ ), which yields the same

estimate for �+(u|Wρ ). Together, we obtain

‖u|Wρ‖L2 ≤ ‖�−(u|Wρ )‖L2 + ‖�+(u|Wρ )‖L2 ≤ 1

3
, (3.6)

in contradiction to the choice of ρ.

3.1 An equivalent radiation condition

We next provide another formulation of the radiation condition. Indeed, in the literature, usually
variants of (3.7) are used; one has some liberty in the choice of the precise convergence condition.
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We describe the equivalence here in the setting of Theorem 1.1. Since the two directions
x1→±∞ can be treated independently, the equivalence follows with the same proof also in the
setting of Theorem 1.2.

Lemma 3.2 (Equivalent radiation condition). Let the coefficient a be as in Theorem 1.1, let ω> 0
be a non-singular frequency, let u ∈H1

loc(�) be a function that satisfies (i) and (ii) of our solution
concept, that is: u solves (1.1) in the sense of distributions and supr∈Z ‖u‖L2((r,r+1)×S) <∞.

The function u satisfies the radiation condition of Definition 2.4 if and only if the following
holds: There exist φ+ ∈ X+ and φ− ∈ X−, which we identify with their extensions Eφ+ and Eφ−,
such that, as r→∞,

‖(u− φ+)|Wr‖L2(Wr)→ 0 and ‖(u− φ−)|W−r‖L2(W−r)→ 0 . (3.7)

Proof. The ‘if’-part. Let u satisfy (3.7) with φ+ ∈ X+ and φ− ∈ X−. Using a triangle inequality,
boundedness of projections, and �−(φ+|Wr )= 0, we find

‖�−(u|Wr )‖L2(Wr) ≤ ‖�−((u− φ+)|Wr )‖L2(Wr) + ‖�−(φ+|Wr )‖L2(Wr)

≤C‖(u− φ+)|Wr‖L2(Wr)→ 0

by (3.7). This shows one part of (2.11) the calculation for �+(u|W−r ) is analogous.
The ‘only-if’-part. Vice versa, let u satisfy the radiation condition (2.11). We consider the right

boundary. For any sequence R→∞, the sequences u|WR are bounded in L2(W0) by the assump-
tion on the boundedness of the sL-norm. As a preparation of the proof, we subtract the right-going
part: With the help of a projection, we define φR =�+(u|WR ) ∈ X+ (and we identify, as usual, φR

with its extension as a solution on all of �, the extension operator is now the one that extends
functions on WR). We obtain �+((u− φR)|WR)= 0.

The sequence of functions φR|W0 is bounded in H1(W0). We select a subsequence R→∞
(not relabelled) and a limit function φ+ with φR|W0→ φ+, weakly in H1(W0) and strongly in
L2(W0). The space X+ is finite-dimensional and hence closed; we therefore have φ+ ∈ X+. Once
more, we identify φ+ with its extension Eφ+ to a homogeneous solution on �. In particular,
φR→ φ+ holds locally on all of �. Our aim is to show, for an arbitrary sequence r→∞, that
(u− φ+)|Wr→ 0 holds in L2. With that, (3.7) for the right half-axis is shown.

We fix an arbitrary error quantifier η > 0. A large number r ∈N is chosen in dependence of η,
the choice is specified below.

We define φr corresponding to u|Wr as above, with �+((u− φr)|Wr )= 0, and consider w :=
wr := u− φr. We assume that the number r is sufficiently large such that the support of f is con-
tained in {x1 < r}. Then, w solves the homogeneous problem on �∩ {x1 > r} and hence satisfies
the flux equality

Im Q(w|WR)= Im Q(w|Wr ) (3.8)

for every number R ∈N, R> r+ l.
Upper bound for the right hand side of (3.8). The difference w|Wr −�−(u|Wr )= u|Wr −

φr|Wr −�−(u|Wr )= u|Wr −�X (u|Wr ) is small by Lemma 2.7; more precisely, we achieve
‖w|Wr −�−(u|Wr )‖H1 ≤ η when r is sufficiently large (large distance to the support of f ).
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Together with the definition of Q, this allows to calculate the right hand side of (3.8) as

Im Q(w|Wr )= Im Q(�−(u|Wr )+ [w|Wr −�−(u|Wr )])

≤ Im Q(�−(u|Wr ))+Cη≤Cη . (3.9)

In this calculation, we inserted in a trivial way the function�−(u|Wr ). We then used the definition
of Q, in particular, its continuity on H1 as a bilinear form, treating the squared bracket as an error
term. In the last inequality we used Im Q(�−(u|Wr ))≤ 0 of Corollary 2.6.

Lower bound for the left hand side of (3.8). We exploit that, for large R, the function w|WR

is close to an element of X+, which follows from the radiation condition. Let us make this fact
precise: By definition of w, using �+(φr|WR)= φr|WR , we find

w|WR −�+(w|WR)= u|WR − φr|WR −�+(u|WR )+�+(φr|WR)

= (
u|WR −�X (u|WR )

)+�−(u|WR )→ 0

as R→∞. The smallness of the first bracket follows from Lemma 2.7 and the smallness of the
last term from the radiation condition (2.11). The convergence is in L2, but the solution property
allows once more to lift the regularity order and we obtain convergence also in H1. This can be
used to calculate the left hand side of (3.8):

Im Q(w|WR)= Im Q(�+(w|WR )+ [w|WR −�+(w|WR )])

≥ Im Q(�+(w|WR ))+ o(1)≥ γ
l
‖�+(w|WR)‖2

L2 + o(1)

as R→∞, where we used the quantitative estimate (2.15) in the last step.
Combining the calculations for the two sides of (3.8), we have obtained the smallness result

‖�+(w|WR)‖2
L2 ≤ Cl

γ
η+ o(1) (3.10)

as R→∞. We evaluate the left hand side:

�+(w|WR )=�+((u− φr)|WR)= (φR − φr)|WR .

The functions φR and φr are both extensions of elements in X+. This implies that also the
difference φR − φr is an extension of an element in X+, we may write it with the basis functions
φ+j as φR − φr =∑

j αjφ
+
j . For every ρ, the norm of the restriction (φR − φr)|Wρ is equivalent to

the norm defined by
(∑

j≤N |αj|2
)1/2

. In particular, ‖(φR − φr)|Wr‖2
L2 ≤C‖(φR − φr)|WR )‖2

L2 for

some constant C. Quasiperiodicity and relation (3.10) allow to calculate for the limit R→∞

‖(φ+ − φr)|Wr‖2
L2←‖(φR − φr)|Wr‖2

L2 ≤C‖(φR − φr)|WR )‖2
L2 ≤ Cl

γ
η+ o(1) .

It remains to exploit once more the radiation condition (2.11) and Lemma 2.7 to find ‖(u−
φr)|Wr )‖2

L2 = ‖u|Wr −�+(u|Wr )‖2
L2 ≤ η for sufficiently large r. Since we have shown that φr is

close to φ+, and since η > 0 was arbitrary, we have shown the desired result (u− φ+)|Wr→ 0.
The condition on the left follows in the same way.
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4 The truncated problem

The definition of the truncated problem is at the heart of our analysis. We recall the overall strat-
egy: (1) Define truncated problems with a domain width parameter m. The truncated problems
should be easy to solve. Denote the solutions by um. (2) Take the limit m→∞. Any limit u of
the sequence, um→ u, should be a solution of the original problem. The problem is to define a
truncated problem with these two properties. If, for example, one solves a Dirichlet problem on
truncated domains, then the limit solution will in general not satisfy the radiation condition.

In order to obtain the radiation condition in the limit, our approach is to demand that um looks
like an outgoing wave in a neighbourhood of the artificial boundary. Indeed, we enforce this
property in a hard way in our function space VL,R, see (4.1). Once this space is defined, it is
quite natural how to encode the equation with a bilinear form. Testing the equation Au=ω2u
with an element v ∈ VL,R is not helpful since the integration by parts leads to unwanted boundary
integrals. We therefore test the equation with vϑ where ϑ is a cut-off function. In this way, no
boundary integrals occur; they are replaced by integrals in the radiation boxes, which are exactly
those of the bilinear form Q. Testing Au=ω2u with vϑ provides exactly the bilinear form β of
(4.2). The truncated problem has strong similarities with that in [5].

Let us now turn to the precise construction. We use truncated domains of the form �−L,R :=
(−L, R)× S with two natural numbers R, L> 0. With the four consecutive points on the real line
(−L− l,−L, R, R+ l), we define (as before) a cut-off function ϑ : R→R as the piecewise affine
function which vanishes to the left of the first and to the right of the fourth point, and which is
1 between the second and the third point. The length parameter l ∈N is the same as in the first
sections and suppressed in everything that follows.

We will study solutions u to Au=ω2u on different subdomains Wr. In this process, we exploit
the following fact: For every function φ ∈ X+, we can identify φ with its extension Eφ. We
therefore identify φ ∈ X+ with a solution of Aφ =ω2φ on �. This extension satisfies φ|Wr ∈ X+
for every r ∈Z. This follows immediately from the extension process, see the text after (2.10).
The same is true for X−.

In this section, we consider the situation of Theorem 1.2, a must only describe a periodic
medium for x1 large and a (possibly different) periodic medium for −x1 large. We denote the
spaces X± for the periodic medium of the far right by X right

± and for the periodic medium of the
far left by X left± . Projections, bilinear and quadratic forms are defined for the two media separately,

�
right
± , �left± , Qright, Qleft, Qright, and Qleft.

Definition 4.1 (Function space and sesquilinear form). For R, L ∈N we use the function
space

VL,R :=
{

u ∈H1(�−L−l,R+l)
∣∣ u|WR ∈ X right

+ , u|W−L−l ∈ X left
−

}
. (4.1)

With ϑ as above, corresponding to the points (−L− l,−L, R, R+ l), we introduce the sesquilin-
ear form

β(u, v) :=
∫
�−L−l,R+l

a∇u∇v̄ϑ −
∫
�−L−l,R+l

ω2 uv̄ϑ

−Qright(u|WR , v|WR )+Qleft(u|W−L−l , v|W−L−l ) . (4.2)

We define the following approximate problem.
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Definition 4.2 (Truncated problem). Given f ∈H−1(�) with support in �−M ,M for some M > 0,
we say that a function u solves the truncated problem for N � R, L>M , if

u ∈ VL,R and β(u, v)= 〈f , v〉 ∀v ∈ VL,R . (4.3)

The main line of our existence proof is to solve truncated problems and to take limits. We show
the existence of solutions for the truncated problems in an indirect way, namely by concluding
existence from uniqueness, see Lemma 4.4. Accordingly, later on, we need a uniqueness prop-
erty, at least along some sequences N � Rk , Lk→∞. We derive this property in Corollary 4.7.

First observations on uniqueness.
Let us observe already here that, for most choices of L and R, uniqueness can be expected.

Non-uniqueness occurs only if ω2 is an eigenvalue of A to Dirichlet boundary conditions at the
lateral boundaries. For notational convenience, we use here the setting of Theorem 1.1 with a
single periodic medium.

Remark 4.3 (On non-uniqueness in the truncated problem). Let L, R ∈N be two parameters such
that the truncated problem has a nontrivial solution to f = 0. Then there exists a function u that
satisfies Au=ω2u in �−L,R and homogeneous Dirichlet conditions on {−L} × S and {R} × S.

Proof. Let u= uL,R �= 0 be a solution to the truncated problem with f = 0. We use the test function
v := u ∈ VL,R in the sesquilinear form β. With ϑ as in Definition 4.1, we find

0= β(u, u)

=
∫
�−L−l,R+l

a∇u · ∇u ϑ −
∫
�−L−l,R+l

ω2 |u|2 ϑ −Qright(u|WR )+Qleft(u|W−L−l ) .

Taking the imaginary part yields the flux equality

Im Qright(u|WR )= Im Qleft(u|W−L−l ) .

By definition of VL,R, there holds u|WR ∈ X right
+ and u|W−L−l ∈ X left− . The sign property (2.15) can be

used to conclude that both flux terms vanish. Since the functions are elements of the appropriate
spaces X±, the sign property (2.15) implies additionally u|WR = 0 and u|W−L−l = 0.

By the H1(�−L−l,R+l)-property of VL,R in (4.1) we see that u is a solution on �−L,R satisfying
homogeneous Dirichlet conditions on {−L} × S and {R} × S.

4.1 Conditional existence for the truncated problem

We now turn to existence properties. As in a Fredholm alternative, the uniqueness property can
imply an existence result. We use a limiting absorption principle to derive this fact.

Lemma 4.4 (Conditional existence for the truncated problem). Let the setting be either that
of Theorem 1.1 or that of Theorem 1.2, in particular: �=R× S, f ∈H−1(�) with support in
�−M ,M for some M > 0, the coefficient a :�→R periodic in e1-direction outside a compact set,
ω> 0 a non-singular frequency for the one or the two periodic media, respectively. We consider
parameters N � R, L≥M.
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If the truncated problem of Definition 4.2 has at most one solution, then there exists a solution
to the truncated problem of Definition 4.2.

Proof. We use a limiting absorption principle. For every δ > 0, we define a modified sesquilinear
form by setting

βδ(u, v) :=
∫
�−L−l,R+l

a∇u∇v̄ϑ −
∫
�−L−l,R+l

(ω2 + iδ) uv̄ϑ

−Qright(u|WR , v|WR )+Qleft(u|W−L−l , v|W−L−l ) . (4.4)

Step 1: Solution for δ > 0. We claim that the sesquilinear form βδ is coercive on VL,R. For
u ∈ VL,R, we first calculate

Im βδ(u, u)= Im
∫
�−L−l,R+l

a∇u · ∇uϑ − Im
∫
�−L−l,R+l

(ω2 + iδ) |u|2ϑ

− Im Qright(u|WR )+ Im Qleft(u|W−L−l )

≤−
∫
�−L−l,R+l

δ |u|2ϑ − γ
l
‖u|WR‖2

L2 − γl ‖u|W−L−l‖2
L2 ,

where we have used (2.15). This shows the coercivity inequality

− Im βδ(u, u)≥ γ (δ)‖u‖2
L2(�−L−l,R+l)

(4.5)

for γ (δ) :=min{δ, γ /l}> 0. Let us now consider the real part of βδ(u, u). From (4.4) with v = u
we obtain, for a constant C0 > 0 that depends only on λ, � and ω,

Re βδ(u, u)≥ λ‖∇u‖2
L2(�−L,R) −C0

(
‖u‖2

L2(�−L−l,R+l)
+ ‖u|WR‖2

H1 + ‖u|W−L−l‖2
H1

)

≥ λ‖∇u‖2
L2(�−L,R) −C‖u‖2

L2(�−L−l,R+l)
, (4.6)

where we used the definitions of Qright and Qleft in the first inequality and the regularity prop-
erty ‖φ|W0‖H1 ≤C‖φ|W0‖L2 for φ ∈ X of (2.21) in the second inequality; for the latter we recall
that, by definition of the space VL,R, the functions u|WR and u|W−L−l are in the spaces X left

and X right.
We next calculate, using first (4.6) and C1 =C1(R, L, C0, λ), then once more the regularity

property of (2.21) and a corresponding constant C2 =C2(C1), and finally (4.5):

λ‖u‖2
H1(�−L−l,R+l)

≤C1

(
Re βδ(u, u)+ ‖u‖2

L2(�−L−l,R+l)
+ ‖u|WR‖2

H1 + ‖u|W−L−l‖2
H1

)

≤C2

(
Re βδ(u, u)+ ‖u‖2

L2(�−L−l,R+l)

)

≤C2 Re βδ(u, u)− C2

γ (δ)
Im βδ(u, u)

=Re
[
C2

(
1+ iγ (δ)−1

)
βδ(u, u)

]
.
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This inequality ensures coercivity of βδ on VL,R. We can apply the Lax-Milgram lemma and
obtain that the equation βδ(uδ , .)= 〈f , .〉 can be solved with uδ ∈ VL,R for every δ > 0. The solution
satisfies

‖uδ‖H1(�−L−l,R+l)
≤C(δ)‖f ‖H−1(�) . (4.7)

We note that this estimate is not helpful for the limit process δ→ 0 since C(δ)∼ 1/γ (δ)→∞
for δ→ 0.

Step 2: Limit δ→ 0. In order to perform the limit, we distinguish two cases. The distinction
regards the numbers

Nδ := ‖uδ‖L2(W−L−l,R+l)
. (4.8)

Case 1: Nδ bounded along a subsequence. If Nδ is bounded along a subsequence, then we
choose this subsequence δ→ 0. The sequence uδ is not only bounded in L2, but also in H1; this
can be concluded by taking the real part of βδ(uδ , uδ)= 〈f , uδ〉, and using (2.21); we refer to the
detailed argument in (4.6). We therefore find a limit function u and a further subsequence δ→ 0
such that uδ ⇀ u weakly in H1(W−L−l,R+l).

The properties u|WR ∈ X right
+ and u|W−L−l ∈ X left− are satisfied, since all uδ satisfy these proper-

ties. This shows u ∈ VL,R. The weak convergence uδ ⇀ u is sufficient to take the limit δ→ 0 in
the relation βδ(uδ , ϕ)= 〈f , ϕ〉, and we obtain β(u, ϕ)= 〈f , ϕ〉. This shows that u is a solution of
the truncated problem, and the existence statement is shown.

Case 2: Nδ→∞. In this case, we study the normalised functions vδ :=N−1
δ uδ . The sequence

vδ has all the properties of uδ in the first case: The boundedness implies the existence of a limit
function v (weak limit in H1 and strong limit in L2). Since vδ solves the truncated problem
with fδ =N−1

δ f , the limit v solves β(v, ϕ)= 〈0, ϕ〉. Uniqueness for the truncated problem implies
v = 0. We find a contradiction since vδ has L2-norm 1 and converges strongly to v = 0. Case 2
cannot occur.

4.2 Radiation conditions for limits

We have constructed a truncated problem that can be solved with standard methods. The test
whether or not the truncated problem was chosen appropriately lies in the question: Do limits of
solutions to the truncated problem satisfy the radiation condition?

In the proof below, we use a flux equality which was, at least formally, not yet observed:
Differences also satisfies a flux equality. We speak here of differences of two solutions, one to
the truncated problem and one to the original problem. The proof is along the same lines as in
the other flux equalities, and we therefore moved this elementary observation to the appendix,
see Lemma A.1.

Proposition 4.5 (Radiation conditions for limits). Let the setting be either that of Theorem 1.1
or that of Theorem 1.2. For sequences Rk , Lk→∞, let uk be a sequence of solutions to the
truncated problems with right hand side f, we assume that the sequence sup{‖uk|Wr‖L2(Wr) | r ∈
Z,−Lk − l≤ r≤ Rk} is bounded. Let u ∈H1

loc(�) be locally the weak H1-limit of the solutions
uk. Then u satisfies the radiation conditions.
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Proof. In this proof, we treat only the right boundary and the left boundary can be treated analo-
gously. Correspondingly, we only use the notation Q and Q of the setting of Theorem 1.1. In the
setting of Theorem 1.2,we should everywhere write Qright and Qright.

We suppress the subscript k in the following and write R and L instead of Rk and Lk .
As solutions to the truncated problems, the functions uk satisfy uk ∈ VL,R, in particular uk ∈
H1(�−L−l,R+l), and β(uk , v)= 〈f , v〉 for every v ∈ VL,R. It is clear that the local limit u solves
the Helmholtz equation with source term f . Our aim is to verify the radiation condition.

A crucial step will be to derive the following property. Let (rk)k be a sequence in N such that
rk→∞ with Rk − rk→∞. We will suppress the subscript k also in the sequence rk and claim
that there holds, in L2(Wr),

�−(uk|Wr )→ 0 . (4.9)

Step 1: Verification of (4.9). We choose an error quantifier η > 0.
As in other proofs, we use φ(x) :=∑

j αjφ
+
j (x) with �+((uk − φ)|Wr )= 0 (φ is the projection

onto the right-going part). We subtract this function from uk and consider in the following wk :=
uk − φ. We use the flux equality of Lemma A.1 with the positions r and R; this is possible for
large k since f has compact support and r has the property r→∞. Together with the positivity
of (2.15), we have

Im Q(wk|Wr )= Im Q(wk|WR )≥ 0 . (4.10)

We used that both uk and φ (and hence w) are right-going waves in WR.
We now study wk|Wr and the left hand side of (4.10). Because of r→∞ and R− r→∞, the

function wk is a solution of the homogeneous problem on a large domain with centre in r. This
allows to use inequality (2.18) with the result that

∥∥wk|Wr −�+(wk|Wr )−�−(wk|Wr )
∥∥

H1 ≤ η
for all k ≥ k0(η). We observe that �+(wk|Wr )=�+(uk|Wr )−�+(φ|Wr )= 0 vanishes. We are
therefore in the situation that

∥∥wk|Wr −�−(wk|Wr )
∥∥

H1 ≤ η is small, wk|Wr is close to a left-going
wave.

After these preparations, we next obtain a further smallness condition. The subsequent calcu-
lation starts with the positivity of the quadratic form, obtained in (4.10). The equality is a trivial
insertion of the projection of wk . The first inequality of the second line exploits the definition
of Q as an integral and the η-smallness of the error term; we assume here η≤ 1 in order to
absorb the quadratic term into the linear term. The estimate (2.15) for Q on X− is used in the last
inequality.

0≤ Im Q(wk|Wr )= Im Q(�−(wk|Wr )+ [wk|Wr −�−(wk|Wr )])

≤ Im Q(�−(wk|Wr ))+
C�

l
η≤−γ

l
‖�−(wk|Wr )‖2

L2 + C�

l
η .

The constant depends, among others, on the bound for uk . The calculation provides the
smallness

‖�−(uk|Wr )‖2
L2 = ‖�−(wk|Wr )‖2

L2 ≤ C�

γ
η .

Since η > 0 was arbitrary, this provides the claim of (4.9).
Step 2: The radiation condition for u. We fix a sequence rm→∞ as m→∞. We will verify

the radiation condition along this sequence.

https://doi.org/10.1017/S0956792522000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000080


Energy methods for the Helmholtz equation in wave guides 231

Given the sequence (rm)m, we can choose a subsequence of indices (km)m with km→∞ as
m→∞, satisfying the following properties: (a) Lk , Rk→∞ and Rk − rk→∞ along the subse-
quence k = km. (b) ‖(uk − u)|Wr‖L2(Wr)→ 0 as m→∞ along the sequences k = km and r= rm.
Property (b) can be satisfied because of the local convergence uk→ u: For fixed rm, we can
choose k = km such that the error is smaller than 1/m.

In the following, we fix the subsequence (km)m and omit the subscript m. The triangle
inequality provides

∥∥�−(u|Wr )
∥∥

L2(Wr)
≤ ∥∥�−(uk|Wr )

∥∥
L2(Wr)

+ ∥∥�−(u|Wr )−�−(uk|Wr )
∥∥

L2(Wr)
.

The first term vanishes by (4.9) as k→∞. The second term is small by choice of the subse-
quence. This shows the smallness of the left hand side for large k and thus the radiation condition
for u.

4.3 Limits of normalised solutions

We continue our investigation of limits of solutions to truncated problems. In the last section,
we have seen that limits satisfy the radiation condition. In this section, we consider normalised
solution sequences; our goal is to show that the limit of a normalised solution sequence is nec-
essarily nontrivial. Technically, the lemma is used to show, with a contradiction argument, the
uniqueness (and hence the existence) of solutions to truncated problems, see Corollary 4.7 below.

Lemma 4.6 (Limits of solutions to homogeneous truncated problems).
Let the setting be either that of Theorem 1.1 or that of Theorem 1.2. Let uk :�→C be a

normalised sequence of solutions to the truncated problems with Lk , Rk and f = 0 that converges
locally:

sup
ρ

‖uk|Wρ‖L2(Wρ ) = 1 , uk→ u in H1((−l0, l0)× S) for every l0 > 0 , (4.11)

the supremum is taken over all integers ρ with−Lk − l≤ ρ ≤ Rk. Then, the limit u is a nontrivial
radiating solution to Au=ω2u.

Proof. Because of the local convergence, there holds ‖u‖sL ≤ 1. Since locally uk are solutions,
also u is a distributional solution to Au=ω2u. Proposition 4.5 provides that u satisfies the radia-
tion condition. The important information of Lemma 4.6 is u �= 0. We argue by contradiction and
assume u= 0. We furthermore select a sequence ρ = ρ(k) with ‖uk|Wρ‖L2(Wρ ) = 1 (the supremum
is a maximum since uk is defined only on a bounded domain). We have to distinguish three cases.

Case 1: ρ(k) bounded. If there exists a bounded subsequence ρ(k), then a further subsequence
is constant: We find ρ0 ∈Z such that ρ(k)= ρ0 for all k along the new subsequence. Since uk→ u
strongly in L2 locally, the limit function u satisfies ‖u|Wρ0

‖L2 = 1, and we find a contradiction to
u= 0.

Case 2: ρ(k) unbounded. Since Case 1 is excluded, we know |ρ(k)|→∞. Without loss of
generality, we assume that ρ(k)→∞. Accordingly, in the following, Q and Q stand for Qright

and Qright.
To prepare the further arguments, we note that uk can be used as a test function for the trun-

cated problem. Because of f = 0 there holds β(uk , uk)= 〈f , uk〉 = 0. Taking the imaginary part
and exploiting the sign properties of Q yields uk|WRk

= uk|W−Lk−l = 0.
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Case 2a: Interior points. We assume that Rk − ρ(k)→∞, which means that the critical point
ρ(k) has a large distance to both 0 and Rk .

As in earlier proofs, we consider φ ∈ X+, extended as a solution to all of �, with �+((uk −
φ)|Wρ )= 0. The difference wk := uk − φ satisfies the flux equality of Lemma A.1,

Im Q(wk|Wρ )= Im Q(wk|WRk
) . (4.12)

The right hand side is positive because of uk|WRk
, φ|WRk

∈ X+. Actually, uk|WRk
even vanishes

(see the arguments in the beginning of Case 2); hence, only φ|WRk
remains in the argument. For

the left hand side of (4.12), we use that, by choice of φ, there holds �+(wk|Wρ )= 0; this implies
the smallness of wk|Wρ −�−(wk|Wρ ) by Lemma 2.7. The left hand side of (4.12) therefore can be
calculated to satisfy Im Q(wk|Wρ )≤ Im Q(�−(wk|Wρ ))+ η for any small error quantifier η > 0.
Equation (4.12) yields

Im Q(φ|WRk
)− Im Q(�−(wk|Wρ ))≤ η .

We obtain that both φ|WRk
(and hence�+(uk|Wρ )) and�−(wk|Wρ )=�−(uk|Wρ ) are small. Using

Lemma 2.7 again, we find a contradiction to ‖uk|Wρ‖L2(Wρ ) = 1.
Case 2b: Large values close to boundaries. For a subsequence, the shifted sequence ũk (shifted

by Rk) consists of solutions to the homogeneous problem with vanishing Dirichlet data on {0} ×
S, but not vanishing in some subdomain, ‖ũk|W−D‖L2(W−D) = 1 for all k and for some D ∈N. We
find a local limit function ũ. The limit shares the above properties of ũk .

For every L0, the solutions ũk|W−Rk+L0
converge to 0 by assumption (local convergence of uk

to u= 0). The usual argument (subtracting the right-going part φ from ũk) we find that ũk|Wrk

converges to 0 for any sequence rk with rk→∞ and Rk − rk→∞.
This implies that the limit ũ vanishes as x1→−∞, but is different from 0 on W−D. With an

odd extension of ũ, we see that this is in contradiction to (a) of Definition 2.3.

We mention that the above proof, in particular regarding the Cases 2a and 2b, has strong
similarities with the proof of Lemma 5.1 and its Cases 2a and 2b, see below. Since the arguments
are slightly more quantitative in the proof of Lemma 5.1, the reader might want to compare that
proof for more details.

4.4 Uniqueness for truncated problems along a subsequence

This section is devoted to a uniqueness result for truncated problems. This is particularly use-
ful since, by Lemma 4.4, uniqueness implies also existence of solutions. The following result
improves Remark 4.3 in the direction that we do not have to choose Lk and Rk in an appropriate
way to obtain uniqueness, but all sequences will guarantee uniqueness, at least for all sufficiently
large indices k.

Corollary 4.7 (Uniqueness for the truncated problem). Let the setting be either that of Theorem
1.1 or that of Theorem 1.2. Let N � Rk , Lk→∞ be two sequences. Then there exists k0 ∈N such
that for every pair (L, R)= (Lk , Rk) with k ≥ k0 there exists at most one solution to the truncated
problem of Definition 4.2. In particular, we also have existence of a solution to the truncated
problem for all k ≥ k0.
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Proof. We argue by contradiction. The sequences N � Rk , Lk→∞ are fixed, and we want to
obtain the existence of k0. Assuming that no k0 with the desired properties exists, there must
exist a subsequence k→∞ such that the truncated problems for parameters (Lk , Rk) possess a
nontrivial solution uk to f = 0. We normalise uk to have supρ ‖uk|Wρ‖L2(Wρ ) = 1 as in Lemma 4.6.
We can extract a further subsequence k→∞ and a limit function u such that uk→ u locally in
H1 (at first, one concludes weak convergence in H1 on every subset of the form (−l0, l0)× S ⊂�,
then, by regularity of solutions, also strong convergence in H1 on such sets). Lemma 4.6 provides
that the limit function u is a nontrivial radiating solution to Au=ω2u.

In the situation of Theorem 1.1, Proposition 3.1 yields that the radiation problem on � for
f = 0 has only the trivial solution. This provides the desired contradiction. In the situation of
Theorem 1.2, we have excluded the existence of such a function in the assumptions.

In both situations, we find the desired contradiction and conclude that there cannot exist
sequences Lk , Rk→∞ with non-uniqueness.

The existence statement follows from Lemma 4.4.

Let us illustrate with an example that Corollary 4.7 improves the observation of Remark 4.3.
We consider the elementary case of A=−� in dimension d = 1. Every ω> 0 is non-singular in
the sense of Definition 2.3: The two basis functions are φ±1 = e±iωx and, with m :=max{n ∈
N|2πn≤ω}, the quasimoments are ξ+1 =ω− 2πm and ξ−1 =−ξ+1 . We check that Q(φ+1 )=
1
l

∫ l
0 ∂xφ

+
1 φ
+
1 = iω and Q(φ−1 )=−iω.

In the above setting, we study the linear combination v(x) := φ+1 (x)+ φ−1 (x)= 2 cos(ωx).
For R= L ∈ (π/ω)(N+ 1

2 ), the function v solves the Dirichlet problem that was obtained in
Remark 4.3. We see that resonances can occur even for large numbers R and L.

Our example makes clear that Corollary 4.7 is a surprising and strong result: Even if the
values of R and L allow for some resonance phenomenon, the solution to the truncated problem
is nevertheless unique. The point in the above construction is that v is a solution of a Dirichlet
problem, but neither v nor any extension of it is a solution to the truncated domain problem.

5 Existence on unbounded domains

The aim of this section is to prove the two main theorems. It remains to derive existence in both
settings, which is the content of the next two lemmas. Theorem 1.1 is a consequence of Lemma
5.1, and Theorem 1.2 is a consequence of Lemma 5.2.

Lemma 5.1 (Existence for the periodic problem). Let the assumptions of Theorem 1.1 be
satisfied. Then there exists a solution u to the radiation problem.

Proof. We use a sequence of solutions uk to the truncated problems with Lk , Rk→∞, which
exist by Lemma 4.4. We consider the sequence of real numbers

Nk := sup
{
‖uk‖L2(Wρ )

∣∣ρ ∈Z,−Lk − l≤ ρ ≤ Rk

}
. (5.1)

We distinguish two cases.
Case 1: The sequence Nk is bounded. In this case, the sequence uk is locally bounded

in H1. It therefore possesses (up to choosing a subsequence) a limit u such that uk→
u in H1 for subdomains of the form (−l0, l0)× S ⊂�. As a local limit of solutions,
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u satisfies Au=ω2u+ f in �. With the local limit u, the sequence uk satisfies all assumptions of
Proposition 4.5, which yields that u satisfies the radiation condition. The function u is the desired
solution and the existence assertion is shown.

Case 2: Along a subsequence, there holds Nk→∞.
We choose such a subsequence and assume from now on Nk→∞. Our aim is to arrive at

a contradiction. We study the normalised functions vk :=N−1
k uk . The sequence vk has all the

properties of uk of Case 1: The local boundedness implies the existence of a local limit function v.
Since vk solves Avk =ω2vk +N−1

k f in the sense of the truncated problem, the limit solves Av =
ω2v in �. Proposition 4.5 implies that v satisfies the radiation condition. Uniqueness for this
problem was shown in Proposition 3.1, we therefore obtain v= 0.

Another property of vk is the following. Using vk as a test function in the equation for vk (with
right hand side N−1

k f ), taking the imaginary part and exploiting that vk is locally bounded, we
find ∣∣∣Im Q(vk|W−Lk−l )− Im Q(vk|vRk

)
∣∣∣≤C0N−1

k .

Since vk|WRk
is in X+ and vk|W−Lk−l is in X−, by Corollary 2.6, the two flux expressions have

opposite signs. Moreover, the corollary provides bounds for the two arguments, which yields
∥∥∥vk|W−Lk−l

∥∥∥2

L2
+

∥∥∥vk|WRk

∥∥∥2

L2
≤C1N−1

k . (5.2)

The definition of Nk implies that there is a position ρ = ρ(k) ∈Z such that ‖vk‖L2(Wρ ) ≥ 1/2.
We observe that there holds |ρ(k)|→∞. Indeed, in the opposite case, we find a number ρ0 ∈Z
and a constant subsequence, ρ(k)= ρ0 along the subsequence. This is in contradiction with the
local convergence vk|Wρ0

→ v|Wρ0
= 0. We distinguish once more two cases.

Case 2a: Interior points. The first case is that a sequence ρ = ρ(k) can be found with Rk −
ρ(k)→∞ and ρ(k)− (−Lk)→∞.

We argue as in Proposition 4.5. We fix an error quantifier η > 0. From the function vk , we want
to subtract the right-going part in Wρ : We consider φ ∈ X+, extended as a solution to all of�, with
�+((vk − φ)|Wρ )= 0 (loosely speaking, φ =�+(vk|Wρ )). We study the difference wk := vk − φ.
The function wk satisfies Awk =ω2wk +N−1

k f , and hence a flux equality as in Lemma A.1, now
with an error term introduced by the right hand side N−1

k f . The flux inequality is obtained by
testing the equation for wk with the (locally bounded) function wk , we hence find∣∣∣Im Q(wk|Wρ )− Im Q(wk|WRk

)
∣∣∣≤CN−1

k . (5.3)

We note that Im Q(wk|WRk
)≥ 0 holds since wk|WRk

is in X+.
Regarding the first flux term, we note that wk|Wρ −�−(wk|Wρ )=wk|Wρ −�(wk|Wρ ) is small

because of the fact that wk|Wρ is close to the subspace X by Lemma 2.7 (we exploit here |ρ(k)|→
∞ and Rk − ρ(k)→∞ and ρ(k)+ Lk→∞).

This allows to evaluate (up to small error) the first term in (5.3). For arbitrary η > 0, exploiting
the sign property of Corollary 2.6, we obtain

−CN−1
k ≤ Im Q(wk|Wρ )≤ Im Q(�−(wk|Wρ ))+ η≤−γ

l
‖�−(wk|Wρ )‖2

L2 + η

=−γ
l
‖�−(vk|Wρ )‖2

L2 + η
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for k sufficiently large. We therefore have the smallness

‖�−(vk|Wρ )‖2
L2 ≤ l

γ
(CN−1

k + η) (5.4)

for k sufficiently large. With the same arguments, exchanging �+ with �−, we find the same
estimate for �+(vk|Wρ ). Invoking Lemma 2.7 once more (which is possible since ρ(k) has an
increasing distance to boundary points), we know that ‖vk|Wρ −�(vk|Wρ )‖L2 is small. This is in
contradiction with the normalisation ‖vk‖L2(Wρ ) ≥ 1/2. We conclude that Case 2a cannot occur.

Case 2b: Large values near boundaries. It remains to treat the case that we cannot find points
ρ = ρ(k) with Rk − ρ(k)→∞ and ρ(k)+ Lk→∞ satisfying ‖vk‖L2(Wρ ) ≥ 1/2. In this case,
along the sequence, the distance of ρ(k) to a boundary point remains bounded. Without loss
of generality, let this be Rk ; hence, Rk − ρ(k)≥ 0 remains bounded. We can select a constant
subsequence: Without loss of generality, we can assume for D ∈N that Rk − ρ(k)=D for all k.

We consider shifted versions of the sequence vk , defined by ṽk(x)= vk(x+ Rke1). The func-
tions ṽk are defined on domains �−Lk−Rk−l,l and have the following properties. In the subdomain
W0, the solution ṽk is outgoing, but even more is true: By (5.2), ṽk|W0 is vanishing in L2 as
k→∞. In contrast, the L2-norm in the subdomain W−D is bounded from below by a posi-
tive number by the choice of ρ. For arbitrary L0 ∈Z, in the domains W−Rk+L0 , the solutions
ṽk converge to 0 by local convergence of vk to v= 0. As in Case 2a regarding interior points,
we can conclude that vk is small on any sequence of domains Wσ with σ = σ (k) satisfying
Z � σ (k)→−∞ and σ (k)+ Rk→∞.

The local boundedness of the functions ṽk allows to find a local limit ṽ. The limit function
solves the homogeneous problem Aṽ =ω2ṽ in �−∞,0 and has vanishing Dirichlet data on
{0} × S. We can extend ṽ as an odd function to all of �. This provides a solution to the
homogeneous problem in all of �, vanishing at x1→±∞, but different from 0 on W−D. This is
a contradiction to (a) of Definition 2.3.

Lemma 5.2 (Existence for the problem with periodicity at infinity). Let the assumptions of
Theorem 1.2 be satisfied. Then there exists a solution u to the radiation problem.

Proof. We choose two sequences Lk , Rk→∞. By Corollary 4.7, we can select a subsequence
such that the truncated problems possess solutions. This provides a sequence of solutions uk to
truncated problems. The same arguments as in Lemma 5.1 provide that the approximate solutions
are necessarily sL-bounded. This yields that, locally, a limit u exists. As a limit, it also satisfies
Au=ω2u+ f in �.

The radiation condition for the limit u is shown in Proposition 4.5.
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A Another form of a flux equality

The flux equality is the central tool of our approach to existence results. It was formulated in
Lemma 2.1 for solutions, but it actually holds also for solutions to the truncated problem. Here,
we will show something more general: The difference of a solution and a solution of the truncated
problem also satisfies the flux equality.

Lemma A.1 (Flux equality). Let u be a solution to the truncated problem of Definition 4.2 to
parameters R, L ∈N. Let φ ∈ X+ be extended to a quasiperiodic solution of Aφ =ω2φ on �.
Then, for every ρ ∈N, −L≤ ρ ≤ R− l, the difference w= u− φ satisfies the flux equality

Im Q(w|Wρ )= Im Q(w|WR) . (A.1)

Proof. As a solution of the truncated problem, the function u ∈ VL,R satisfies, with the cut-off
function ϑ corresponding to the four points (−L− l,−L, R, R+ l),

0= β(u, v)=
∫
�−L−l,R+l

a∇u · ∇v̄ϑ −
∫
�−L−l,R+l

ω2 uv̄ϑ

−Q(u|WR , v|WR )+Q(u|W−L−l , v|W−L−l )

for every v ∈ VL,R.
We introduce the cut-off function θ corresponding to the points (ρ, ρ + l, R+ l, R+ 2l). We

claim that v :=wθ ∈ VL,R. Indeed, both u and φ are in X+ on the right radiation box WR; hence,
also w is (θ = 1 in WR). In the left radiation box W−L−l, the function θ vanishes; hence, v :=wθ
is trivially in X−.

Due to these considerations, we can use v=wθ as a test function. We note that the prod-
uct of cut-off functions provides a new cut-off function: ϑρ := θϑ is the piecewise affine
cut-off function which corresponds to the four points (ρ, ρ + l, R, R+ l). Inserting v=wθ
above yields

0=
∫
�ρ,R+l

a∇u · ∇w̄ϑρ + 1

l

∫
Wρ

a∇u · e1w̄−
∫
�ρ,R+l

ω2 uw̄ϑρ −Q(u|WR , w|WR )

=
∫
�ρ,R+l

a∇u · ∇w̄ϑρ −
∫
�ρ,R+l

ω2 uw̄ϑρ −Q(u|WR , w|WR )+Q(u|Wρ , w|Wρ ) .

Regarding the solution φ of Aφ =ω2φ, we can proceed as in Lemma 2.1. The equation for φ
is multiplied with v̄= ϑρw̄ and integrated. We find essentially the same expressions as above,

0=
∫
�ρ,R+l

a∇φ · ∇w̄ϑρ −
∫
�ρ,R+l

ω2 φw̄ϑρ −Q(φ|WR , w|WR )+Q(φ|Wρ , w|Wρ ) .

We can now subtract the relation for φ from the relation for u and obtain

0=
∫
�ρ,R+l

a∇w · ∇w̄ϑρ −
∫
�ρ,R+l

ω2 ww̄ϑρ −Q(w|WR , w|WR )+Q(w|Wρ , w|Wρ ) .

Taking the imaginary part, we find the flux equality (A.1).
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