
Probability in the Engineering and Informational Sciences, 31, 2017, 505–515.

doi:10.1017/S0269964817000158

A MARKOV-MODULATED DIFFUSION MODEL FOR
ENERGY HARVESTING SENSOR NODES

OMER H. ABDELRAHMAN

Department of Electrical and Electronic Engineering,
Intelligent Systems and Networks,Imperial College,

London SW7 2BT, UK
E-mail: o.abd06@imperial.ac.uk

This paper presents a probability model of an energy-harvesting wireless sensor node,
with the objective of linking quality of sensed data to energy consumption and self-
sustainability. The model departs from the common energy discretization framework used
in the literature, and instead uses a diffusion process modulated by discrete packet arrival
and transmission processes for the detailed representation of renewable energy supply,
consumption and storage. An analytical–numerical method is developed to compute the
average time until the node experiences an outage, due to lack of energy, for a given work-
load and ambient energy characteristics, battery capacity and initial charge. The results
are illustrated with numerical examples.
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1. INTRODUCTION

Energy harvesting is a promising solution for powering the Internet of things (IoT). It allows
wireless sensing devices to operate autonomously for an extended period of time without
the need to frequently recharge batteries. However, this seemingly free energy alternative
creates new network design challenges (Gelenbe et al. [11], Gubbi et al. [20]), which require
careful balancing of the power budget during different phases of operation, with the amount
of energy available from the environment, along with the capacity and efficiency of energy
storage. Ideally, such sensing devices need to operate in an energy neutral manner (Kansal
et al. [24]), by adapting data gathering and transmission processes to the availability of
renewable and intermittent sources of energy.

In this paper, we study the evolution of the energy stored in a wireless sensor node that
harvests energy and uses the energy to collect and forward data. The arrival of energy and
of data packets to the node are both assumed to be random processes: energy is harvested
from random sources such as light, motion, and temperature, and data accumulates into the
node, also at random, through sensing or reception from other nodes. However, while data
are measured in terms of discrete packets, energy is quantified or measured in continuous
units using diffusion processes. Our aim is to provide a fine-grained mathematical framework
for optimizing the performance of these systems, which complements recent coarse-grained
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approaches based on queueing theory (Gelenbe and Kadioglu [12], Gelenbe [17], Gelenbe
and Marin [19], Seyedi and Sikdar [29], Tandon and Motani [31]), or based on fluid flow
approximations (Galinina et al. [8], Gautam and Mohapatra [9], Jones et al. [22], Tunc and
Akar [32]) that may not capture adequately the stochastic nature of energy availability and
consumption.

Much work has been devoted in recent years to the fundamental analysis and optimiza-
tion methods that can be used in energy-harvesting wireless communications. A common
approach in the literature is to represent the energy stored by a node in discrete units, called
energy packets in Gelenbe and Ceran [10], Gelenbe and Kadioglu [12], Gelenbe [15–17],
Gelenbe and Marin [19], where an energy packet is defined as the minimum amount of
energy needed to transmit a single data packet. Intuitively, one would expect that the
energy flow into the node should balance the flow of data packets. However, Gelenbe [17]
has shown that if the flows of energy and of data packets are exactly balanced, then the
system exhibits an unstable behavior, such that the variance of the imbalance between
data and energy packets increases indefinitely with time. This is a frequently encountered
problem in queueing theory (Abdelrahman and Gelenbe [1], Kendall [26]) concerning the
stability of the synchronization of two independent streams, when the synchronization time
is negligibly small. Smart scheduling policies have been suggested (Sharma et al. [30]) to
adapt sensing and transmission power to the energy and channel conditions, thus providing
stability and good performance. The approach presented herein can be extended to analyze
the performance of such energy-aware policies.

Cai et al. [6] modeled the state of battery for a renewable-operated wireless access
point as a G/G/1 queue with arbitrary arrivals and departures of unit energy. Diffusion
approximation is then used to analyze the time-dependent behavior of the buffer. We devel-
oped this idea further in our previous work (Abdelrahman and Gelenbe [4]) by representing
more explicitly the interactions between the energy and data buffers, as well as the energy
costs of sensing, processing and communication, which are usually neglected (Cai et al.
[6]) or combined (Jones et al. [22], Tunc and Akar [32]) in the literature. In the current
paper, we extend (Abdelrahman and Gelenbe [4]) by developing an analytical–numerical
method for computing the average time until the battery is depleted, which is a useful
metric for dimensioning the node and evaluating its performance. Our modeling frame-
work is based on Markov-modulated diffusion processes whose steady-state properties are
well-understood (Asmussen [5], Karandikar and Kulkarni [25]). While we do not consider
temporal variations in the environment (Jornet and Akyildiz [23], Naderi, Basagni, and
Chowdhury [27]) or adaptive communication policies based on instantaneous battery level
(Jones et al. [22], Tunc and Akar [32]), both aspects can be incorporated without much dif-
ficulty via multi-regime models and piecewise constant approximations (Abdelrahman and
Gelenbe [2]).

The rest of the paper is organized as follows. Section 2 introduces the mathe-
matical model and derives the stationary solution of the system along with the main
performance metric of interest. Numerical examples are presented in Section 2.3. The
paper concludes in Section 3 with a summary of results and directions for future
work.

2. THE MODEL

Consider a wireless harvesting sensor node with energy storage of size B > 0, and let 0 ≤
Xt ≤ B be the amount of energy stored at time t. We denote by Yt ∈ {0, 1, 2, 3, 4} the state
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of the node at t where:

Yt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if node is non-operational due to lack of energy,
1, if node is idle with no data buffered,
2, if node is collecting data,
3, if node is idle with data buffered,
4, if node is transmitting data.

At the beginning of operation, we assume that the energy stored is X0 = x0 > 0 and the
data buffer is empty. The time when the node first runs out of energy is then:

T = inf{t : Xt = 0|X0 = x0}. (1)

When the state of the node is Yt = i ≥ 1 (i.e. the battery is non-empty), we model
{Xt : t ≥ 0} as a diffusion process (Abdelrahman and Gelenbe [2,3], Gelenbe [13,14], Gelenbe
and Abdelrahman [18]) in which the mean change in the amount of energy stored in a small
time interval [t, t+ Δt) is biΔt, while the variance of the energy over the same time interval
is ciΔt:

bi = lim
Δt→0

E[Xt+Δt −Xt|Yt = i]
Δt

and

ci = lim
Δt→0

E[(Xt+Δt −Xt)2 − E[Xt+Δt −Xt]2|Yt = i]
Δt

> 0, for 1 ≤ i ≤ 4.

The variance ci is assumed to be strictly positive, so that there is no mass at the boundary B.
A schematic representation of the model is presented in Figure 1, showing the evolution

of the data and energy buffers. If there is energy in the battery, the state of the node is
governed by the following Markov process: data are accumulated at rate λ whenever the
node is idle, and each sensing process takes on average τ−1

c time; the data buffer is emptied
with rate μ and the average transmission time is τ−1

s .
When Yt = 1, the sensor node is idle, does not have any data buffered and is harvesting

energy. Accordingly, the parameters b1 and c1 capture the following energy aspects of the
node’s operation:

• Energy extracted from the environment, which typically varies with time.
• Leakage from the energy storage.
• Baseline power consumption of the node, excluding data processing and communi-

cation.

Thus, the drift b1 can sometimes be positive when the amount of energy being harvested
exceeds on average the node’s idle consumption, while in other times it can be negative, for
example, during the night in the case of solar harvesting.

The node will leave the idle state 1 at time t with rate λ and move to state 2, where
it will collect data by either: (a) receiving a transmission from a neighboring node, or (b)
sampling its own sensor and processing the sampled value. This data collection process
is assumed to last for an exponentially distributed time of average τ−1

c , during which the
energy level varies according to a diffusion process with parameters b2 and c2, which is the
result of both energy harvesting and data collection. Note, however, τ−1

c will typically be
very small, while b2 � 0 to represent the negative jump in the energy level due to data
reception or acquisition.
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Figure 1. The evolution of the data buffer (top), battery charge 0 ≤ Xt ≤ B (middle)
and state of the node Yt ∈ {0, 1, 2, 3, 4} (bottom). In each state Tt ≥ 1, battery level varies
following a distinct diffusion process that represents the combined effect of harvesting and
any processing performed within the state (e.g. sensing in state 2 and transmission in
state 3). The node experiences an outage due to lack of energy at time T .

The data collected by the node are subsequently stored in a data buffer, and the state
of the node changes to 3 indicating that the node has some data to transmit. Since the node
may have a different duty cycle when its data buffer is occupied than when it is empty, the
diffusion parameters in states 3 and 1 can be different. From state 3, the node may again
move to state 2, with rate λ, in order to gather and process more samples (e.g. to improve
quality of information) or it may move to state 4 with rate μ signifying the beginning of a
transmission. The sending of data occurs over an exponentially distributed time with mean
τ−1
s during which energy level diffuses with parameters b4 and c4, independently of the

number of data collection operations performed since the previous transmission. Thus, we
assume that the node may gather and process a number of samples (i.e. visiting states 2 and
3 multiple times), before finally sending all data in one packet in state 4. After that the buffer
becomes empty and the node returns to state 1. Again, the negative jump in energy level due
to a transmission can be represented by a small duration τ−1

s and a negative drift b4 � 0.
Note that the energy costs of sensing and of wireless transmission vary according to

the application domain, the sensing environment, the type of raw input used by the sensor
and so on. Indeed, transmission consumes most of the energy for low-quality, low-rate sen-
sor nodes, and for simple sensing modalities such as temperature and light. On the other
hand, sensing can be the most energy demanding process for some acoustic and seismic
sensing applications that require high-rate and high-resolution analog-to-digital conversion
(Raghunathan, Ganeriwal, and Srivastava [28]). Therefore, we do not make any assumptions
regarding the relative magnitude of the diffusion parameters in states 1 and 3, except that
ci > 0.

https://doi.org/10.1017/S0269964817000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000158


A MARKOV-MODULATED DIFFUSION MODEL 509

The above normal operation of the node is interrupted if the battery is depleted, taking
the state of the node to Yt = 0, where the node becomes temporarily non-operational until
energy is replenished. However, as an artifact to construct a recurrent random process in
order to simplify the computation of E[T ] – the average battery depletion time – it is
assumed that after one time unit the energy level is restored to x0 and the diffusion process
proceeds as before.

Denote by fi(x, t) the probability density that the sensor node has energy level x and
in occupancy state i = 1, 2, 3, 4 at time t, and by p(t) the probability that the node runs
out of energy at time t. Mathematically, these quantities are defined as:

p(t) = Pr[Xt = 0],

fi(x, t) = lim
Δx→0

Pr[x ≤ Xt ≤ x+ Δx, Yt = i]
Δx

, 1 ≤ i ≤ 4.

Thus, Yt = 0 is a fictitious state that we use to make the diffusion process repeats itself
indefinitely, and E[T ] is the average time that it takes from any successive start of the
process until the first instance when state 0 is reached again. Let limt→∞ p(t) = p, then:

p =
1

1 + E[T ]
, E[T ] = p−1 − 1. (2)

2.1. System of Differential Equations

The evolution of fi(x, t), x > 0 is governed by the coupled diffusion or Fokker–Planck
equations:

∂tf1(x, t) =
c1
2
∂xxf1(x, t) − b1∂xf1(x, t) − λf1(x, t) + τsf4(x, t) + p(t)δ(x− x0),

∂tf2(x, t) =
c2
2
∂xxf2(x, t) − b2∂xf2(x, t) − τcf2(x, t) + λ[f1(x, t) + f3(x, t)],

∂tf3(x, t) =
c3
2
∂xxf3(x, t) − b3∂xf3(x, t) − [λ+ μ]f3(x, t) + τcf2(x, t),

∂tf4(x, t) =
c4
2
∂xxf4(x, t) − b4∂xf4(x, t) − τsf4(x, t) + μf3(x, t), (3)

where δ(x− x0) is the Dirac delta function at x0. Furthermore, the probability mass p(t)
satisfies the equation:

∂tp(t) = −p(t) +
4∑

i=1

lim
x→0

[ci
2
∂xfi(x, t) − bifi(x, t)

]
. (4)

The initial conditions can be written as:

p(0) = 0, (5)

fi(x, 0) =

{
δ(x− x0), for i = 1,
0, otherwise.

(6)

Since energy level cannot exceed B, the probability current across the upper boundary of
the energy storage must be zero:

lim
x→B

[
−ci

2
∂xfi(x, t) + bifi(x, t)

]
= 0, (7)
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while the probability densities will vanish at the lower boundary:

fi(0, t) = 0. (8)

We also have that the sum of the probabilities at any time t must be one:

p(t) +
4∑

i=1

∫ B

0

fi(x, t) dx = 1. (9)

2.2. Stationary Analysis

To derive the stationary solution of the system, we set limt→∞ ∂tfi(x, t) = 0,
limt→∞ fi(x, t) = fi(x) and limt→∞ p(t) = p so that (3) and (4) become:

−pδ(x− x0) =
c1
2
f ′′1 (x) − b1∂xf1(x) − λf1(x) + τsf4(x),

0 =
c2
2
f ′′2 (x) − b2f

′
2(x) − τcf2(x) + λ[f1(x) + f3(x)],

0 =
c3
2
f ′′3 (x) − b3f

′
3(x) − [λ+ μ]f3(x) + τcf2(x),

0 =
c4
2
f ′′4 (x) − b4f

′
4(x) − τsf4(x) + μf3(x) (10)

and

p =
4∑

i=1

lim
x→0

[ci
2
∂xfi(x)

]
, (11)

with the boundary conditions:

fi(0) = 0, and lim
x→B

[ci
2
∂xfi(x) − bifi(x)

]
= 0, 1 ≤ i ≤ 4 (12)

and the normalization condition:

p+
4∑

i=1

∫ B

0

fi(x) dx = 1. (13)

The solution to the above set of equations can be obtained by considering two regimes
for the energy level: (i) 0 ≤ x < x0 and (ii) x0 < x ≤ B. In each regime, the set of equations
(10) can be written in matrix form as:

f ′′(x) − C−1Bf ′(x) − C−1Af(x) = 0, (14)

where f =
(
f1(x), f2(x), f3(x), f4(x)

)T and

A =

⎛
⎜⎜⎝
λ 0 0 −τs
−λ τc −λ 0
0 −τc λ+ μ 0
0 0 −μ τs

⎞
⎟⎟⎠ , B = diag

(
b1, . . . , b4

)
, C =

1
2
diag

(
c1, . . . , c4

)
. (15)

The linear system of four second-order ordinary differential equations (14) can be
transformed into a set of 8 first-order equations as follows:

d

dx

(
f
f ′

)
=

(
0 I

C−1A C−1B

) (
f
f ′

)
≡ M

(
f
f ′

)
, (16)

where 0 and I are the zero and identity matrices, respectively.

https://doi.org/10.1017/S0269964817000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000158


A MARKOV-MODULATED DIFFUSION MODEL 511

Solving (16) involves computing the eigen-decomposition of the matrix M. Since the
characteristic equation |M − ξI| = 0 has real coefficients, any complex roots must occur in
conjugate pairs, each of which will give, up to sign, the same solutions and therefore only
one of the conjugate eigenvalue–vector pair is required.

Result 1. Let ξR be the vector of real eigenvalues of M and ξC the vector of complex
eigenvalues where only one of each conjugate pairs is included, and denote by ΦR,ΦC the
matrices formed by taking the first four elements of the corresponding eigenvectors. Also,
define the following quantities:

Q = diag(ξR), Qexp(x) = diag(eξRx),

r = �(ξC), R = diag(r), Rexp(x) = diag(erx),

s = �(ξC), S = diag(s), Ssin(x) = diag(sin(sx)), Scos(x) = diag(cos(sx)),

Ψ = �(ΦC), Ω = �(ΦC), (17)

where �,� denote the real and imaginary parts of a complex number. Then, the average
time until the node runs out of energy with an initial charge of x0 is:

E[T ] =
[c1

2
G′

1(x0)(k− − k+)
]−1

− 1, (18)

where k− and k+ are vectors of size 8 such that k =
(
k−

k+

)
is the last column of the inverse

of the 16 × 16 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

G(0) 0

0 C G′(B) − B G(B)
G(x0) −G(x0)

G′
−1(x0) −G′

−1(x0)

11×4

(
C G′(0) +

∫ x0

0
G(x)dx

)
11×4

∫ B

x0
G(x)dx

⎞
⎟⎟⎟⎟⎟⎟⎠
. (19)

Here 11×4 denotes a row vector of ones; B and C are the energy diffusion matrices as
specified in (15); and G(x) is the 4 × 8 matrix:

G(x) ≡

⎛
⎜⎜⎝
G1(x)
G2(x)
G3(x)
G4(x)

⎞
⎟⎟⎠ =

(
U(x) V(x) W(x)

)
, G−1(x) =

⎛
⎝G2(x)
G3(x)
G4(x)

⎞
⎠

whose components are constructed as follows:

U(x) = ΦRQexp(x),

V(x) =
[
ΨScos(x) − ΩSsin(x)

]
Rexp(x),

W(x) =
[
ΨSsin(x) + ΩScos(x)

]
Rexp(x), (20)
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with first derivative and integral given by:

U′(x) = U(x)Q,
∫

U(x)dx = U(x)Q−1,

V′(x) = V(x)R − W(x)S,
∫

V(x)dx = [V(x)R + W(x)S](R2 + S2)−1,

W′(x) = W(x)R + V(x)S,
∫

W(x)dx = [W(x)R − V(x)S](R2 + S2)−1.

Proof: The solution to (16) has the form:

f(x) =

{∑
j

[
α−

j �(eξjxφj) + β−
j �(eξjxφj)

]
, for 0 ≤ x ≤ x0,∑

j

[
α+

j �(eξjxφj) + β+
j �(eξjxφj)

]
, for x0 ≤ x ≤ B,

where ξj is an eigenvalue of M, φj is the corresponding eigenvector (its first four elements
since we are only interested in solving for f and not f ′), and α∓

j , β
∓
j are constants to be

determined from (a) the boundary conditions (12) at 0 and B, (b) the continuity condition of
the probability density function and the probability current at x0, and (c) the normalization
condition (13). Note that f(x) takes a slightly different form than above if there are repeated
eigenvalues, but we do not go into the details of this special case.

Using the definitions in (17) we can write the jth complex eigenvector and eigenvalue
more explicitly as φC

j = ψj + ωj

√−1 and ξC
j = rj + sj

√−1 so that eξC
j x = erjx

[
cos(sjx) +

sin(sjx)
√−1

]
and:

�(eξC
j xφC

j ) = erjx[ψj cos(sjx) − ωj sin(sjx)],

�(eξC
j xφC

j ) = erjx[ωj cos(sjx) + ψj sin(sjx)],

which represent the jth columns of the matrices V(x) and W(x) defined in (20). It is then
straightforward to express f(x) in matrix form as:

f(x) =
(
U(x) V(x) W(x)

) (
k−

k+

)

where k− is the vector of constants for x ≤ x0, and k+ the vector for x ≥ x0; the entries of
the matrix U(x) are associated with the real eigenvalues, while those of V(x) and W(x)
correspond, respectively, to the real and imaginary parts of the complex eigenvalues.

Now if we apply the boundary conditions (12) at x = 0 and x = B we obtain:

G(0)k− = 0,
[
C G′(B) − B G(B)

]
k+ = 0,

which form the first two rows of (19). Furthermore, to ensure continuity of the probability
density function at x = x0, we have f(x−0 ) = f(x+

0 ) or equivalently:

G(x0)k− − G(x0)k+ = 0

yielding the third row of the solution matrix. Moreover, integrating the differential equations
(10) from x = x− ε to x = x+ ε and taking the limit as ε→ 0 give p = c1

2 [f ′1(x
−
0 ) − f ′1(x

+
0 )]
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and f ′i(x
−
0 ) − f ′i(x

+
0 ) = 0, i > 1 or:

p =
c1
2
G′

1(x0)[k− − k+], G′
i(x0)k− −G′

i(x0)k+ = 0, 2 ≤ i ≤ 4

from which the expression for E[T ] in (18) and the fourth row of (19) follow. We can also
obtain another equivalent expression for p using (11):

p = 11×4 C G′(0)k−

which can be substituted in the normalization equation (13) to arrive at the last row of
(19). Thus, k is the solution of a system of linear equations and is given by the inverse of
(19) multiplied by a vector with zeros everywhere except for a one in the last position. �

2.3. Numerical Examples

We illustrate in Figure 2 the effect of increasing the node’s power budget and workload on
the average time until battery is first depleted. Specifically, we plot E[T ] as a function of the
data gathering rate λ, when the net energy cost during sensing (calculated as the product of
average power consumption and sensing duration, i.e. b2/τc) and during transmission (which
is b4/τs) is increased in relation to the battery size B = 1. The parameters of the model are
set as follows: the mean and variance of energy in the inactive states are (b1, c1) = (b3, c3) =
(0.01, 0.01), while for sensing and transmission we have b2 = b4 ∈ [−0.01,−0.05,−0.1] and
c2 = c4 = 0.001; the average sensing and transmission durations are τ−1

c = τ−1
s = 0.2s; the

data buffer is flushed at rate μ = 0.2; and the initial charge x0 is 60% of the total battery
capacity. As λ is increased, the node spends more time gathering data, which improves the
quality of information but reduces E[T ] significantly when the associated energy expenditure
is high. However, if sensing and communication incur negligible costs, we see that the average
battery depletion time is unaffected by λ and is largely determined by energy availability,
battery leakage and idle consumption whose combined effects are captured by the diffusion
parameters.

Figure 2. Average battery depletion time E[T ] versus the data sensing rate λ when the
energy cost of sensing or transmission is z% of the battery size, with z ∈ [0.2, 1, 2].
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3. CONCLUSIONS

In this paper, we presented a diffusion model of a battery-operated wireless sensor node
that uses renewable energy sources such as wind and solar. We obtained an expression for
the average time before the node’s battery is depleted, by solving a set of diffusion equations
with specific boundary conditions. In future work, we will extend the model to incorporate
temporal variations in the energy source as well as battery-level-dependent behaviors. We
also plan to investigate variants of the model that capture the same dynamics of the node’s
operation but with fewer parameters and states. This could be achieved by combining
discrete Poisson jumps, to represent the sudden drops in energy level due to sensing or
communication, with background stochastic diffusion for the energy harvesting and leakage
processes. Such jump-diffusion models have been applied successfully in other domains
such as financial engineering, insurance, mathematical biology and medicine (Dufresne and
Gerber [7], Hanson [21]). Finally, the model of a single node will be integrated into a network
setting so as to predict the quality of service and amount of energy available across multiple
interconnected sensor nodes.
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