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Abstract. The Minimum Orbit Intersection Distance (MOID) between two confocal Keplerian
orbits is a useful tool to know if two celestial bodies can collide or undergo a very close approach.
We describe some results and open problems on the number of local minimum points of the
distance between two points on the two orbits and the position of such points with respect
to the mutual nodes. The errors affecting the observations of an asteroid result in uncertainty
in its orbit determination and, consequently, uncertainty in the MOID. The latter is always
positive and is not regular where it vanishes; this prevents us from considering it as a Gaussian
random variable, and from computing its covariance by standard tools. In a recent work we have
introduced a regularization of the maps giving the local minimum values of the distance between
two orbits. It uses a signed value of the distance, with the sign given to the MOID according to
a simple orientation property. The uncertainty of the regularized MOID has been computed for
a large database of orbits. In this way we have searched for Virtual PHAs, i.e. asteroids which
can belong to the category of PHAs (Potentially Hazardous Asteroids) if the errors in the orbit
determination are taken into account. Among the Virtual PHAs we have found objects that are
not even NEA, according to their nominal orbit.
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1. Introduction
The orbit distance between two Keplerian orbits with a common focus is useful to

know if two celestial bodies moving along these orbits can collide or undergo a very close
approach. If the orbit distance is large enough there is no possibility of such an event,
at least during the time span in which the Keplerian solutions are a good approximation
of the real orbits. This distance is called MOID (Minimum Orbit Intersection Distance)
in the literature; this acronym was introduced in (Bowell & Muinonen 1994) with the
definition of Potentially Hazardous Asteroids (PHA), an asteroid with MOID � 0.05 AU
and absolute magnitude H � 22.

Two confocal Keplerian orbits can get close at more than a pair of points, for example
near both the mutual nodes, thus it is useful to compute all the local minima of the
Keplerian distance function d, distance between two points on the two orbits as a function
of the two anomalies along the orbits (see Figure 1), not only the absolute minimum. We
compute these values as the stationary points of the function d2, squared to be smooth
also in case of orbit crossing, when the distance can be zero (see Section 2).

When a new celestial body is detected and its observations are enough, the orbit of
the body can be determined by means of a least squares fit. Moreover the uncertainty in
the determination of the nominal orbit produced by the errors in the observations can
be represented by a covariance matrix (see, e.g., Milani 1999). The errors in the orbit
determination also affect the computation of the MOID, and it is important to estimate
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Figure 1. Two confocal orbits and the distance d for two selected values of the anomalies. The
apsidal lines and the mutual nodal lines (intersection of the two orbital planes) are also drawn.

the resulting uncertainty. In other cases, the covariance of some function of the orbital
elements can be computed by a covariance propagation formula (see Section 3), but in
the case of the MOID the possibility of orbit crossings produces a singularity in this
computation. An additional difficulty is that the uncertainty of a non-zero but small
orbit distance may allow negative values of the distance, that are meaningless. Both
these problems prevent us from computing a meaningful confidence interval just when
the MOID can be small or vanishing.

We use the results of (Gronchi & Tommei 2007), in which we regularize the local
minima of d as maps of the orbit configurations according to an intuitive geometric
rule. Using these regularized maps we can compute a meaningful confidence interval for
the local minimal distance maps also when they vanish (see Section 4). With this new
algorithm we compute the covariance of the regularized maps for a large database of
orbits with covariance matrix, and we search for Virtual PHAs, i.e. asteroids which can
belong to the PHA category if the errors in the orbit determination are taken into account
(see Section 5). Among the Virtual PHAs we have found objects whose nominal orbits
are not even Near Earth Asteroids (NEA), that is have a nominal perihelion q > 1.3 AU.

A mathematical theory to compute the uncertainty of the orbit distance is relevant to
applications such as to produce an observation priority list for follow up of NEAs based
on the possible orbit distance with the Earth. We briefly comment on this in Section 6.

2. Stationary points of the squared Keplerian distance function
2.1. Computation of the stationary points of d2

There are several papers in the literature on the computation of the minimum points of d
(e.g. Sitarski 1968; Hoots 1984; Dybczynski et al. 1986). Recently some algebraic methods
to compute all the stationary points of d2 have been introduced, using the Gröbner bases
(Kholshevnikov & Vassiliev 1999) and the resultant theory (Gronchi 2002; Gronchi 2005).
They are both based on a polynomial formulation of the problem. The resultant method
is used to compute the MOID and all the stationary points of d2 (also for cometary
orbits) by the orbit determination software Orbfit† and in the NEODyS website‡. In

† A free software, released under a GNU Public License software, by the Orbfit consortium
lead by the University of Pisa. To download see http://newton.dm.unipi.it/orbfit

‡ The Near Earth Objects Dynamic Site, maintained at the Universities of Pisa and Valladolid,
http://newton.dm.unipi.it/neodys and http://unicorn.eis.uva.es/neodys
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Table 2.1 and Figure 2.1 we show the result of the computation of the stationary points
for the Near Earth Asteroid 1991 TB2. The data for all the examples in this paper are
from the NEODyS site for the NEOs and from JPL ephemerides for the planets.
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Figure 2. Level curves of d2 for the asteroid 1991 TB2 in the plane of the eccentric anomalies u
(for the asteroid), u⊕ (for the Earth). Asterisks (*) are saddle points, squares (�) are maxima,
crosses (+) are minima.

u u⊕ d type

50.73 138.52 0.11 MINIMUM
310.72 285.75 0.14 MINIMUM

1.50 33.86 0.56 SADDLE
1.15 212.86 1.45 SADDLE

180.21 210.96 2.61 SADDLE
180.05 30.90 4.61 MAXIMUM

Table 1. Stationary points for asteroid 1991 TB2, giving the values of the eccentric anomalies
(in degrees), the values of the distance d (in AU) and the type of stationary point.

The algebraic formulation of the problem has two main advantages: (a) allows to search
for all the solutions using the efficient methods of modern Computational Algebra (Cox
1992; Bini 1997); (b) allows to give a bound for the maximum number of stationary
points, as discussed below.

2.2. Mutual geometry of confocal Keplerian orbits
How many stationary points of d2 may exist? And among them, how many local minima?
In (Gronchi 2002) we found that the stationary points are at most 16 for the case of two
ellipses and at most 12 if one orbit is circular, except for very particular cases with
infinitely many stationary points. We do not have a proof that these are the optimal
bounds. By a large number of numerical experiments we have found cases with at most
12 stationary points of d2 and at most 4 local minima (see Gronchi 2002; Gronchi 2005).

In Table 2 we show a statistics of the stationary and minimum points of the distance
function d between points on the orbit of the Earth and on the orbit of a NEA. On August
4, 2006 the NEODyS database contained the orbits of 4102 Near Earth Asteroids.
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NEAs with 4 stationary points: 1829 NEAs with 1 minimum point: 1830
NEAs with 6 stationary points: 2244 NEAs with 2 minimum points: 2267
NEAs with 8 stationary points: 28 NEAs with 3 minimum points: 5
NEAs with 10 stationary points: 1 NEAs with 4 minimum points: 0

Table 2. Statistics with NEODyS database. Total number of NEAs: 4102.

Note that most mutual orbit configurations from this database have 2 local minima
of d, among 6 stationary points. This is the most intuitive case, with a simple geometry.
Moreover at least one maximum point must always exist, for topological reasons (d is
a continuous function defined on a compact set, more precisely a 2–torus). There are
also several cases with only 1 local minimum of d: surprisingly enough, the asteroid 2000
DK79 shows 2 maximum and 1 minimum point, that is not intuitive at all. This explains
the difference of one unit between the NEAs with 4 stationary points and the NEAs
with only 1 minimum. From a classical mathematical theory (see Milnor 1963) there is
a simple relation among the stationary points, apart from special cases, in which the
Hessian matrix of d2 evaluated at the stationary points is degenerate. Generically

NUMBER of MIN. + MAX. POINTS = NUMBER of SADDLE POINTS .

The only NEA so far discovered with 10 stationary points is 2004 LG; this asteroid and
1997 US9, 2004 BU58, 2004 XM14, 2005 NK1 have 3 minimum points. No real asteroid
has been found so far with 4 minimum points, although we know this case is possible
from numerical experiments conducted with large sets of fictitious orbits.

Is there a geometric method to locate the minimum points along the orbits? When
there is a crossing between the orbits (MOID=0) the minimum point of d corresponds
to a mutual node. Is it always true that at least a local minimum point of d is close to a
mutual node? The answer is negative: we can find examples, like asteroid 1991 TB2 (see
Figure 2.1 and Table 2.1), with two minima, both far enough from the mutual nodes. We
can understand such cases arising from orbit configurations with low mutual inclination.

3. Uncertainty of the MOID
In this section we describe a method to define a meaningful uncertainty for all the local

minima of d (see Gronchi & Tommei 2007), and in particular for the MOID, taking into
account the uncertainty of the orbit of the asteroids. The second orbit is always the one
of the Earth, so that its uncertainty is negligible. Nevertheless the method would allow
to take into account also the uncertainty of the second orbit.

3.1. Uncertainty of the orbit

The observations of a celestial body are affected by errors, producing an error in the
determination of the orbit. Let (E, v) be a set of orbital elements: E describes the geo-
metric configuration of the orbit and v is a parameter along the trajectory. For example
we can use the 5 Keplerian elements E = (a, e, I,Ω, ω), and the true anomaly as v. For
cometary orbits we can use the perihelion distance q in place of a.

Gauss’ method gives us a nominal orbit (E∗, v∗), solution of a least squares fit, together
with its uncertainty. The uncertainty is represented by the 6 × 6 covariance matrix

Γ(E,v) =

(
ΓE

...
. . . Γv

)
,
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which is the inverse of the normal matrix

C(E,v) =
[

∂ Ξ
∂(E, v)

]t [
∂ Ξ

∂(E, v)

]
,

where Ξ is the vector of the observational residuals. Note that the 5 × 5 sub-matrix ΓE

gives the marginal covariance of the five elements E, independently from the value of the
sixth one v, and CE = Γ−1

E is the marginal normal matrix.
One way of representing the uncertainty of the orbital elements E is by means of

confidence ellipsoids, an appropriate approximation whenever the least squares problem
is quasi-linear and the uncertainty is moderate (see Milani 1999). By truncating the
expansion of the target function (sum of squares, suitably weighed, of the residuals) to
order 2 it is possible to represent the region in the orbital elements space where the target
function does not increase above the minimum by more than a given value σ2 as

ZE(σ) = {E | (E − E∗)t CE (E − E∗) � σ2} ,

that is, as an ellipsoid in the space of the geometric configurations E. If the eigenvalues
of the covariance matrix ΓE are too large this representation is inaccurate, because the
truncation to order 2 is a poor approximation.

3.2. The minimal distance maps and their singularities
Let E be the vector of 5 orbital elements representing the orbit configuration of the
asteroid and v the anomaly, and let (E⊕, v⊕) be the orbit of the Earth, supposedly
known with negligible errors.

Given the two orbit configuration (E,E⊕), the Keplerian distance function can be
regarded as a map V = (v, v⊕) �→ d(E, V ), with E⊕ as fixed parameters. Moreover the
number of stationary points of V �→ d(E, V ) is constant for E in a neighborhood U of
E∗; actually this number can change only if the 2 × 2 Hessian matrix of the function
V �→ d(E∗, V ) is degenerate. For each configuration E in U we consider the minimum
points Vh(E) and we define the maps

dh(E) = d(E, Vh(E)) local minimal distance ;

dmin(E) = min
h

dh(E) orbit distance (MOID) .
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Figure 3. The singularities of the maps dh and dmin are shown in the figure: from left to
write we draw a sketch of the problems described in (i), (ii), (iii).

In Figure 3 we show the singularities of dh and of dmin:
(i) dh and dmin are not differentiable where they vanish;
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(ii) in a neighborhood of an orbit configuration E∗, two local minima can exchange
their role as absolute minimum: then dmin can lose its regularity even without vanishing;

(iii) when a bifurcation occurs the definition of the maps dh may become ambiguous.
Note that this ambiguity does not occur for the dmin map. The bifurcation phenomena
can occur only where the Hessian matrix of d2(E, V ) is degenerate.

3.3. Computation of the uncertainty of dh and dmin

The errors in the orbit affect the computation of the local minima of d: we want to
estimate the size of this effect. Let us consider the orbit distance map dmin; the same
method can be applied to compute the uncertainty of the minimal distance maps dh.

For a given (E∗, E⊕), the nominal orbit configuration E∗ being endowed with its
covariance matrix ΓE , we can compute the covariance of dmin(E∗) by a linear propagation
of the matrix ΓE (Jazwinski 1970)

Γdm in (E) =
[
∂dmin

∂E
(E∗)

]
ΓE

[
∂dmin

∂E
(E∗)

]t

. (3.1)

The possibility of crossings between the orbits produces a singularity in this compu-
tation because the partial derivatives ∂dmin/∂E(E∗) do not exist when dmin(E∗) = 0,
e.g., when the two orbits in the configuration (E∗, E⊕) intersect each other.

An additional problem is that the uncertainty of a non–zero but small orbit distance
may allow meaningless negative values of the distance.

Note that we are interested in knowing the uncertainty just when the orbit distance
can be small or vanishing, that is when a collision or a close approach is possible. Thus
an algorithm exploiting the classical covariance propagation to compute the uncertainty
of the MOID is available only when it is not very useful. As a result of this deeply
rooted mathematical difficulty, so far all the authors discussing the distribution of the
MOID of asteroid orbits (e.g., the PHA population) have given up the use of the available
orbit uncertainty information, with the only exception of the paper discussed in the next
subsection.

3.4. An approximation of the MOID

An approximation of the MOID has been proposed in Wetherill (1967) by using the
straight lines tangent to the orbits at the mutual nodes and taking the distance between
these lines as two approximations of the local minima. (See the comments by ReVelle on
Wetherill’s biography in this volume.)

In Bonanno (2000) the uncertainty for the approximated MOID is computed by us-
ing Wetherill’s approximation, as a distance between two straight lines. This distance
can be given a sign, in accordance with the sign of the nodal distance (positive if the
asteroid and the Earth mutual nodal points and the Sun are in this order, negative other-
wise). This regularizes the approximated MOID function and allows to use the covariance
propagation formulae of Section 3.3.

This approach gives useful approximate results in many cases, but has the following
problems:

1) if the mutual orbital inclination IM is zero the mutual nodes are not defined;
2) the minimum points can be located far from the mutual nodes; they also can be

close to only one node;
3) the approximations of the local minima at the mutual nodes cannot be more than

two while there are known cases with up to four local minimum points.
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4. Regularization of the minimal distance maps
In Gronchi & Tommei (2007) a regularization of the maps dh, dmin is introduced. Let

us take into account the map dmin, the same method can also be applied to dh. It is
possible to make dmin locally analytic even where its value is zero, simply by changing
its sign according to some properties of the orbit configuration.

The idea of the regularization can be illustrated by a simple example. Let us consider
the positive function, defined on the whole plane, f(x, y) =

√
x2 + y2 and the function

f̃ , defined on a smaller domain by f̃(x, y) = sign(x) f(x, y). The directional derivative
of f in (x, y) = (0, 0) does not exist for every choice of the direction. The regularized
function f̃ , extended by continuity to the origin (0, 0), has all the directional derivatives
in (x, y) = (0, 0). How to extend such method to the problem at hand is discussed below.

4.1. Geometric definition of the regularization

Let τ1, τ2 be the tangent vectors to the orbits at the minimum point and let ∆min be
the vector joining the two tangency points (|∆min| = dmin). If ∆min �= 0 and τ1 is not
parallel to τ2 we can define the nonzero vector τ3 = τ1 × τ2. Due to the stationary points
properties ∆min is parallel to τ3.

τ3

orbit 1

orbit 2

τ2

∆min

τ1

Figure 4. The orientation of the two parallel vectors ∆min , τ3 is the key to define a regular
map d̃min by simply changing the sign of dmin on selected configurations E.

We define the regularized map d̃min by setting |d̃min| = dmin and choosing the sign +
for d̃min if ∆min and τ3 have the same orientation, the sign − otherwise. This sign is
well defined, with the only exception of the cases in which τ1 and τ2 are parallel.

Then we extend the definition domain to most crossing orbits setting d̃min = 0 if
dmin = 0. The orbit configurations with parallel tangent vectors to minimum points are
also excluded from the definition domain even if they are not crossing points.

The resulting map E �→ d̃min(E) is locally analytic almost everywhere (see Gronchi
& Tommei 2007), including in a neighborhood of most orbit configurations E such that
dmin(E) = 0. In particular the partial derivatives can be computed as

∂d̃min

∂Ek
(E∗) =

〈
τ̂3(E∗),

∂∆
∂Ek

(E∗, Vmin(E∗))
〉

k = 1 . . . 5 (4.1)

where Vmin(E∗) is the absolute minimum point and ∆(E, V ) is the vector joining the
points corresponding to v and v⊕ on the orbit of the asteroid and of the Earth respectively.

Thus it becomes possible to use for the smooth function d̃min(E) the standard covari-
ance propagation formula, applicable only to differentiable functions, including the really
interesting low MOID cases.
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4.2. Covariance of d̃min

For each configuration (E∗, E⊕), with covariance matrix ΓE , we can compute the covari-
ance of d̃min(E∗) as

Γd̃m in (E) =

[
∂d̃min

∂E
(E∗)

]
ΓE

[
∂d̃min

∂E
(E∗)

]t

(4.2)

by using the smooth partial derivatives of eq. (4.1). The standard deviation, defined as

σmin(E∗) =
√

Γd̃m in (E∗),

allows us to define an uncertainty interval for d̃min(E∗). If we assume that the minimal
distance d̃h(Ē) is a Gaussian random variable, there is a high probability (∼ 99.7%)
that its value is within the interval [d̃min(E∗)−3σmin(E∗), d̃min(E∗)+3σmin(E∗)]. This
statement needs to be taken with some caution. It is necessary to check that the singular
case (τ1 parallel to τ2) does not occur at E∗ and is not even within the confidence
ellipsoid. We need to check the variance of the determinant of the Hessian matrix to look
for possible bifurcations of the stationary points. Last but not least, the propagation of
the covariance by the linear formula of eq. (4.2) may be mathematically consistent, but
to consider d̃min(E) as a Gaussian random variable is a good approximation only if the
function d̃min is quasi-linear, when the uncertainty on E is small.

In this paper we are using only this quasi-linear approximation, thus the results are
meaningful only when the distance between the nominal orbit configuration E∗ and
the ones corresponding to low MOID is small. This implies that the estimate of the
probability is only approximate, and this approximation is useful only for comparatively
high probabilities of being a PHA. Thus in the next Section we will present the results
of the numerical tests on real asteroids by giving the probabilities approximated to 1%
and by neglecting entirely the cases with probabilities < 1%. We will also apply this
method only to asteroids for which there are enough data to compute an orbit with low
to moderate uncertainty.

5. Search for Virtual NEAs and Virtual PHAs
We have computed the uncertainty of all the local minima of d using the orbit of the

Earth and a large database of asteroid orbits, each with a covariance matrix representing
its uncertainty. These orbits have been computed using the astrometric and photometric
data made public by the Minor Planet Center (MPC) on March 2006, and they are
divided into quality classes, according to their Arc–Type (see Milani et al. 2006).

The regularized distance maps d̃h, d̃min, and the perihelion distance q can be considered
as Gaussian random variables, thus for each asteroid we can decide if it is a Virtual NEA
or a Virtual PHA according to the following definitions:

1) a Virtual NEA (VNEA) is an asteroid that has a nonzero probability of being a
NEA, i.e. having the perihelion distance q � 1.3 AU;

2) Virtual PHA (VPHA) is an asteroid that has a nonzero probability of being a PHA,
i.e. having MOID (= |d̃min)|) � 0.05 AU and absolute magnitude H � 22.†

Because of the limitations discussed above, we report only the cases in which the
probabilities are � 1%. The computation of such probabilities are explained below.

† We are not taking into account the uncertainty of the absolute magnitude; it depends on the
uncertainty in the radial geocentric distance and in a deeper analysis it should be considered.
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5.1. Probability of being a NEA
According to the standard formulae for the probability that a Gaussian random variable
belongs to a given interval, we can compute the probability that for a given nominal
two–orbit configuration E∗ the perihelion distance q = q(E∗) is less than 1.3 AU as

P (q � 1.3AU) =
1√
2π

∫ z2

z1

exp(−z2/2) dz (5.1)

with zi = (xi − q(E∗))/σq(E∗) for i = 1, 2, where xi are the extrema of the interval

[x1, x2] = [0, 1.3] ∩ [q(E∗) − 3σq(E∗), q(E∗) + 3σq(E∗)] ,

and σq(E∗) is the standard deviation of q, defined by

σq(E∗) =
√

Γq(E∗), Γq(E∗) =
[

∂q

∂E
(E∗)

]
ΓE

[
∂q

∂E
(E∗)

]t

.

5.2. Probability of being a PHA
We describe the computation of the probability that a local minimum value dh of d is less
than 0.05 AU. We stress that the use of the regularized minimal distances d̃h is essential
for this purpose: for small nominal values of dh also negative values of the distance have
to be admissible to perform the computation and the function measuring the minimal
distance has to be regular also when it vanishes. The regularized map d̃h fulfills these
properties and can be regarded as a random variable.

The probability that d̃h belongs to [−0.05AU, 0.05AU] is

P
(
|d̃h| � 0.05AU

)
=

1√
2π

∫ z2

z1

exp(−z2/2) dz (5.2)

with zi = (xi − d̃h(E∗))/σd̃h
(E∗) for i = 1, 2, where xi are the extrema of the interval

[x1, x2] = [−0.05, 0.05] ∩ [d̃h(E∗) − 3σd̃h
(E∗), d̃h(E∗) + 3σd̃h

(E∗)] ,

and σd̃h
(E∗) is the standard deviation of d̃h, defined by

σd̃h
(E∗) =

√
Γd̃h (E∗), Γd̃h

(E∗) =

[
∂d̃h

∂E
(E∗)

]
ΓE

[
∂d̃h

∂E
(E∗)

]t

.

5.3. Results of the computation
In this section we show first the asteroids that are not present in the “official” list of
NEAs given by the Minor Planet Center (MPC)†, updated to August 4, and indeed have
a non–negligible probability of being NEA or even PHA, we display the probability that
they belong to such classes. Then we show the asteroids in the “official” list of NEA,
that are not PHAs according to their nominal orbit, but are VPHAs.

The “official” lists of NEA and PHA are compiled by the MPC by using the ele-
ments of the nominal least squares orbits computed by the MPC. We recompute the
least squares orbit, obtaining a slightly different result because of some different orbit
determination algorithms and because we use of a different observations error model (see
Carpino et al. 2003). Then we compute the uncertainty of both the perihelion q and the
(regularized) MOID. In Tables 3 to 8 we show the VNEAs and VPHAs that are not
present in the list given by the MPC. These asteroids are divided into classes according
to their Arc–Type (see Milani et al. 2006).

† It is maintained at http://cfa-www.harvard.edu/iau/NEO/TheNEOPage.html
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VNEA q RMS prob

1994 RD 0.4955 0.00122 100%
2002 ON4 1.2989 4.18×10−6 100%
2002 PT140 1.2936 9.10×10−6 100%
2003 UW26 1.2959 1.29×10−5 100%
2004 SB 1.3028 0.00359 22%
1999 JS6 1.3176 0.00831 2%

Table 3. VNEAs not present in the list of NEAs given by the MPC: Arc–Type � 5

VPHA dist RMS H prob

1994 RD -0.020 1.72×10−4 17.21 100%
1994 RD -0.034 1.61×10−4 17.21 100%

Table 4. VPHAs not present in the list of NEAs given by the MPC: Arc–Type � 5

First we take into account the best determined orbits, i.e. Arc–Type � 5. In Table 3
there are asteroids with a nominal perihelion distance very close to the boundary of the
NEA class (i.e. 1.3 AU). This is a consequence of the use of an arbitrary boundary, not
corresponding to a gap in the population: comparatively small differences in the nominal
orbits computed by us and by the MPC result in a different classification.

We also find a very peculiar case: asteroid 1994 RD is present in the table as a NEA with
probability 100% and a nominal value of q < 0.5 AU; moreover it is present in Table 4
as a PHA at both local minima of d with probability 100%. Further investigations led us
to the following conclusion: indeed 1994 RD has been identified with 1991 AQ, and later
numbered as (85182). It is present in the NEODyS website as (85182) 1991 AQ. Then
why the name 1994 RD is present in the database provided by the MPC? The answer
is that a sort of administrative error occured: the arc of 1994 RD, made by observations
done on September 2,4,5,6,7,11 1994, is not present in the observation file for (85182)
which contains the observations of September 8,17,18,22,17,19 and October 3,4, 1994.

VNEA q RMS prob

2000 GM146 1.044 0.020 100%
2005 QN87 1.281 0.048 65%
2006 DV62 1.230 0.001 59%
2004 AT1 1.503 0.564 36%
2004 BD11 1.305 0.012 35%
2003 FF42 1.701 1.306 28%
2005 JK173 1.647 2.079 22%
2004 VT16 1.315 0.017 18%
2002 VF118 1.478 0.178 16%

Table 5. VNEAs not present in the list of NEAs given by the MPC: Arc–Type = 4. We list
only the asteroids with probability of being a NEA > 10%.

The results for orbits with Arc–Type 4 are described in Table 5. The asteroid 2000
GM146 has probability 100% of being a NEA with nominal q < 1.05 AU. This asteroid
has been observed for 2 nights only, and it has not even an orbit computed by the MPC.
We have found some VPHAs with Arc–Type 4 (see Table 6), but the probabilities are
low.

In Tables 7, 8 we show our results for less well determined orbits: these have Arc–
Type=3, but are still considered reliable enough for claiming discovery of the corre-
sponding asteroids, according to (Milani et al. 2006).
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VPHA dist RMS H prob

2004 AT1 -0.654 1.146 16.34 3%
2003 FF42 -0.714 1.308 15.51 3%
2005 JK173 -0.812 1.820 15.04 2%
2002 VF118 -0.634 0.278 17.06 1%
2004 BS159 -1.560 0.732 17.06 1%

Table 6. VPHAs not present in the list of NEAs given by the MPC: Arc–Type = 4.

VNEA q RMS prob

2005 UO497 1.044 0.084 100%
2005 TQ79 1.112 0.034 100%
2002 TO301 0.947 0.040 100%
2001 FN91 0.974 0.007 100%
2000 TF2 1.289 0.007 94%
2002 EP150 0.928 0.254 93%
2004 XZ44 1.044 0.216 88%
2005 PX21 1.072 0.215 85%
2005 JC78 0.959 0.394 80%
2005 YX231 1.187 0.183 73%
2001 SG340 1.233 0.202 63%
1999 CG130 0.844 0.704 63%
2003 LD3 1.053 0.618 61%

Table 7. VNEAs not present in the list of NEAs given by the MPC: Arc–Type = 3. We list
only the asteroids with probability of being a NEA > 60%.

Note that asteroid 2005 UO497, present as a sure VNEA and as a VPHA with 37%
probability, has a constrained orbit (see Milani et al. 2005). Another interesting case is
2001 FN91, that is both a VNEA and a VPHA with probability 100%. The cases with the
highest probability of being a PHA, namely 2001 FN91, 1999 CG130 and 2005 UO497, do
not have an orbit computed by the MPC. This indicates that their orbit determination
with the available data is not a trivial task. For 1999 CG130 there are no photometric
data, leaving doubts on the nature of the object; note that in this case the minimum
distance could be less than 0.05 AU near both nodes.

VPHA dist RMS H prob

2001 FN91 -0.025 0.001 21.39 100%
1999 CG130 0.050 0.037 – 50%
1999 CG130 -0.016 0.077 – 48%
2005 UO497 -0.062 0.076 20.28 37%
2005 JC78 -0.084 0.134 17.52 24%
2005 PX21 0.101 0.176 17.02 19%
2002 EP150 0.133 0.098 17.85 17%
2004 XZ44 0.089 0.284 19.01 13%
2006 DA72 -0.067 0.311 15.67 13%
2005 YX231 -0.197 0.184 19.52 12%
2006 DZ65 0.088 0.353 18.70 11%
2005 RE26 -0.134 0.067 13.29 10%

Table 8. VPHAs not present in the list of NEAs given by the MPC: Arc–Type = 3. We list
only the asteroids with probability of being a NEA > 10%.

In Table 9 we display the VPHAs, found in the MPC list of NEAs updated to August
4, 2006, which are not PHA according to their nominal orbit.
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VPHA dist RMS H prob

1994 XG 0.063 0.030 18.58 33%
2006 FW33 0.066 0.111 20.12 30%
2000 VZ44 -0.052 0.003 21.03 25%
2006 FW33 0.108 0.115 20.12 22%
2006 KT67 0.111 0.145 19.59 20%
2006 CD -0.142 0.155 20.46 17%
1999 UZ5 0.055 0.004 21.87 12%
1984 QY1 0.179 0.084 14.16 6%
2006 OV5 0.192 0.090 19.02 6%
2000 RK12 0.056 0.004 21.27 5%

Table 9. VPHAs (down to probability > 5%) in the “official” list of NEAs, that are not PHAs
according to their nominal orbit.

6. Conclusions and future work
We have done some progress in the understanding of the mutual geometry of two

confocal Keplerian orbits: this seems to be a fairly difficult problem and there are still
some interesting geometric features to investigate. The regularization of dh and dmin

explained above allows to define a meaningful uncertainty of the local minima of d even
if this uncertainty leads to negative values of the distance. Moreover the orbit crossing
singularity is removed, except for the tangent crossing case. We have computed the
uncertainty of the local minima of d for several thousands of asteroids, whose orbit
uncertainty is not too large, and for all the known NEAs. By this computation we have
found some VPHAs among asteroids that are not even NEAs, according to their nominal
orbits. The effect of the nonlinear terms, neglected in the determination of the orbit
uncertainty and in the covariance propagation formula, still needs to be investigated.
We expect that if the orbit of an asteroid is poorly determined, like for objects whose
observations form an arc with Arc–Type 2, then the uncertainty of d̃h and d̃min might
need to be computed with a method taking properly into account the nonlinearity of the
orbit determination. This is the target for our future work.
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