

John R. de Bruyn[†]

Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6G 2R1, Canada

A flowing granular material can behave like a collection of individual interacting grains or like a continuum fluid, depending in large part on the energy imparted to 2 the grains. As yet, however, we have no general understanding of how or under what 3 conditions the fluid limit is reached. Marston, Li & Thoroddsen (J. Fluid Mech., this 4 issue, vol. 704, 2012, pp. 5–36) use high-speed imaging to investigate the ejection 5 of grains from a granular bed due to the impact of a spherical projectile. Their 6 high temporal resolution allows them to study the very fast processes that take place 7 immediately following the impact. They demonstrate that for very fine grains and high 8 impact energies, the dynamics of the ejecta is both qualitatively and quantitatively 9 similar to what is seen in analogous experiments with fluid targets. 10

Key words: granular media, fluidized beds, particle/fluid flows 11

1. Introduction 12

Granular materials play a role in almost every aspect of our lives, and are important 13 in agriculture, pharmaceuticals, construction, and many other industries. The properties 14 of a granular material can vary dramatically. Sand on a beach is solid-like, but sand 15 on a hillside can flow - sometimes catastrophically - if the conditions are right. If a 16 container filled with many small particles is shaken, the granular system will behave as 17 a solid, liquid, or gas depending on how hard you shake. To complicate matters, 18 granular flows generally differ from conventional fluid flows because of packing 19 effects and the strong dissipation that results from friction and collisions among the 20 grains. There is as yet no general theory that describes the flow behaviour of granular 21 systems, and the question of when a collection of grains can be adequately described 22 as a continuum fluid is a major open issue in the field. One interesting and complex 23 granular flow results from the impact of a falling projectile into a granular target. 24 Portions of the granular material are fluidized by the impact, with grains initially being 25 forced outwards, then collapsing back inwards as the projectile penetrates below the 26 surface. In addition, some grains are ejected from the target in a process analogous to 27 the familiar formation of a splash in liquids. The end result is an impact crater similar 28 to those seen on the Moon and rocky planets. The flow is transient and evolves very 29 quickly, making it challenging to study. 30

Early work on granular impacts was motivated by an interest in the formation of planetary craters. Several recent papers have studied the morphology and scaling of 32 granular craters (Uehara et al. 2003; Walsh et al. 2003; de Vet & de Bruyn 2007)

†Email address for correspondence: debruyn@uwo.ca

31

Journal of Fluid Mechanics

FIGURE 1. Video images showing the ejecta produced by the impact of a solid sphere onto targets of: (a) 520 μ m glass beads; (b) 178 μ m glass beads; (c) 31 μ m glass beads; and (d) water. The size of the sphere and the impact velocity were the same in all cases. While the granular nature of the ejecta is evident in (a), the flow for the finest spheres looks qualitatively very similar to that for water. (From Marston *et al.* 2012: scale bars are 1 cm.)

as well as the granular flows involved in their formation (de Vet et al. 2010). The 33 dynamics of the impact and the penetration of the projectile into the target has been 34 studied as a probe of the forces exerted by the granular medium on the projectile 35 (de Bruyn & Walsh 2004; Ambroso, Kamien & Durian 2005; Katsuragi & Durian 36 2007; Goldman & Umbanhowar 2008). In addition, impact into a target of fine, loosely 37 packed grains can produce impressive granular jets (Thoroddsen & Shen 2001) that are 38 analogous to the well-known Worthington jets seen in fluid impacts. 39

40

42

43

44

45

46

47

48

49

A recent paper by Marston, Li & Thoroddsen (2012, this issue) reports a detailed investigation of the very early stages of the granular impact process, focusing on 41 the ejection of grains from the target. Marston et al. (2012) use high-speed imaging to study the appearance and early evolution of the ejecta with a time resolution of up to 10 µs, much better than that in previous studies of granular ejecta (Boudet, Amarouchene & Kellay 2006; Deboeuf, Gondret & Rabaud 2009). This allows them to view the very rapid events that take place immediately following the impact. In addition to more fully characterizing this complex granular flow, their research helps to address the question of when a granular flow displays truly fluid behaviour.

2. Overview

Marston *et al.* (2012) studied the ejection of material caused by the impact of steel 50 spheres of a range of diameters and impact speeds into targets consisting of small 51 spherical glass beads or sand grains. Images (a-c) in figure 1, which is taken from 52 their paper, are snapshots of the curtain of granular ejecta produced by impact into 53 targets of different sized glass beads. The last image (figure 1d) shows the fluid ejecta 54 following an impact into water. An evolution of the granular ejecta towards more 55 fluid-like appearance and behaviour is evident as the grains get smaller. The Froude 56 number $(Fr = V_0/\sqrt{gD_0})$, where D_0 is the sphere diameter, V_0 its impact speed, and 57 g the acceleration due to gravity) is the same in all four cases illustrated in figure 1, 58 as is the dimensionless time from the sphere's first contact with the target material. 59 The packing fraction of the grains and the ratio of D_0 to the diameter of the grains 60

are different. The shape and size distributions of the grains also play a role. Marston *et al.* systematically characterize the effects of these parameters on the ejecta.

Experiments with targets made of larger glass beads display an 'early stage' in 63 which individual grains are ejected prior to the development of a coherent ejecta 64 sheet in the 'main stage'. The first ejected grains appear within a few milliseconds 65 of the initial contact of the sphere with the target. Although seemingly fast, this is 66 an order of magnitude longer than the time for the splash to appear when a sphere 67 hits a fluid (Thoroddsen et al. 2004). Marston et al. suggest that this delay is due the 68 compressibility of the granular material, which reduces the propagation speed of the 69 disturbance produced by the sphere. This effect is even larger for sand grains, which 70 are less spherical and have a broader shape distribution. When distances are scaled by 71 the sphere diameter D_0 and times by the reciprocal of the local shear rate V_0/D_0 , both 72 the time and the radial position at which the grains emerge are independent of Fr, and 73 largely independent of both the size ratio and the packing fraction. 74

The high-speed imaging technique used by Marston *et al.* gives them access to 75 the previously unobserved early stage of the ejection process. Streakline images of 76 individual grains ejected before the formation of the main ejecta sheet allow direct 77 determination of the angle and speed of ejection for each grain; over the time range 78 studied air drag is almost negligible and the grains travel in straight lines. The fastest 79 grains can be ejected with a speed five times that of the impacting sphere. In a given 80 experiment, the grains ejected at early times are on average faster and are emitted at 81 lower angles than at later times, although there is a large range of both speed and 82 angle due to collisions among the particles as they make their way out of the bulk 83 material. The evolution of the ejection angle is simply explained by the change in the 84 angle between the surface of the sphere and that of the target as the sphere penetrates 85 more deeply, and the range of angles and speeds narrows with time as the ejected 86 grains converge to a fluid-like sheet. 87

In impacts into the finest grains, in contrast, the ejecta forms a coherent sheet, 88 similar in appearance to that seen in impacts into water, from the earliest observable 89 times. The velocity of the emerging sheet is proportional to the impact velocity and 90 increases with the sphere diameter, but is independent of the packing fraction. The tip 91 of the ejecta sheet thickens with time, but air resistance causes individual grains to 92 break off from the tip, forming a hazy cloud around the sheet. The dynamics of this 93 sheet can become quite complex due to an interplay among air entrainment, a vortex 94 ring generated inside the ejecta curtain, and the porosity of the sheet itself. While the 95 packing fraction of the granular target has little effect on the early stages of ejecta formation, it does affect the later evolution of the sheet, as higher packing fractions 97 lead to more porous ejecta sheets. 98

Marston et al. tracked the location of the narrowest point of the coherent ejecta qq sheet as a measure of its expansion with time. They found a power-law scaling of 100 the neck radius at early times, but with a non-universal exponent. Interestingly, the 101 exponents they found are all much lower than the value of 2 predicted by a model due 102 to Deboeuf et al. (2009). Marston et al. speculate that the early-time behaviour they 103 observe is quite different from the later-time dynamics treated previously, and point 104 to indications that their exponent may in fact be approaching 2 at later times. For 105 the lowest packing fractions, finest grains, and largest impact energies, the exponent 106 measured by Marston et al. is close to the value of 0.5 seen in the fluid ejecta 107 sheets produced by impacts into liquid films. This scaling, along with the fluid-like 108 appearance of the sheet seen with the finest grains, suggest that the granular ejecta 109 sheet approaches true fluid-like behaviour in the fine-particle limit. 110

There are some differences between these granular ejecta sheets and those sheets 111 seen in fluid impact experiments. For example, for similar values of the effective 112 Reynolds number, the velocity of the ejecta sheet is roughly a factor of 2 smaller 113 for granular impacts than in the fluid case. Marston et al. (2012) suggest that such 114 differences may be resolved by a better understanding of the effective viscosity of the 115 granular bed, and the changes in packing fraction that occur in response to the impact. 116

3. Future

The work of Marston *et al.* (2012) gives us a much more complete picture of the ejection of grains in a granular impact and demonstrates the approach of this particular 119 granular flow to fluid-like behaviour as the flow parameters are changed. Many other 120 aspects of granular impacts are not understood in detail, however, including the 121 complex flows involved in excavating the crater (de Vet *et al.* 2010) and the physics 122 that leads to the observed scaling of crater dimensions (de Vet & de Bruyn 2007). 123 In addition, the degree to which the present results apply to other granular systems 124 is unclear, as different granular flows can behave quite differently. Substantial further 125 work will be required to address these challenging issues. 126

References

- AMBROSO, M. A., KAMIEN, R. D. & DURIAN, D. J. 2005 Dynamics of shallow impact cratering. 128 Phys. Rev. E 72, 041305. 129
- BOUDET, J. F., AMAROUCHENE, Y. & KELLAY, H. 2006 Dynamics of impact cratering in shallow sand layers. Phys. Rev. Lett. 96, 158001.
- DEBOEUF, S., GONDRET, P. & RABAUD, M. 2009 Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79, 041306.
- DE BRUYN, J. R. & WALSH, A. M. 2004 Penetration of spheres into loose granular media. Can. J. 134 Phys. 82, 439-446. 135
- DE VET, S. J. & DE BRUYN, J. R. 2007 Shape of impact craters in granular media. Phys. Rev. E 76, 041306.
- DE VET, S. J., YOHANNES, B., HILL, K. M. & DE BRUYN, J. R. 2010 Collapse of a rectangular well in a quasi-two-dimensional granular bed. Phys. Rev. E 82, 041304.
- GOLDMAN, D. I. & UMBANHOWAR, P. 2008 Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308.
- KATSURAGI, H. & DURIAN, D. J. 2007 Unified force law for granular impact cratering. Nature *Phys.* **3**, 420–423.
- MARSTON, J. O., LI, E. Q. & THORODDSEN, S. T. 2012 Evolution of fluid-like granular ejectas generated by sphere impact. J. Fluid Mech. 704, 5-36.
- THORODDSEN, S. T., ETOH, T. G., TAKEHARA, K. & TAKANO, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139-148.
- THORODDSEN, S. T. & SHEN, A. Q. 2001 Granular jets. Phys. Fluids 13, 4-6.
- UEHARA, J. S., AMBROSO, M. A., OJHA, R. P. & DURIAN, D. J. 2003 Low-speed impact crater in loose granular media. Phys. Rev. Lett. 90, 194301.
- WALSH, A. M., HOLLOWAY, K. E., HABDAS, P. & DE BRUYN, J. R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91, 104301.

4

118

117

ocus

127

130

131

132

133

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152