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Abstract 

We present a free energy model for fluid hydrogen at high-density and high-
temperature. This model aims at describing pressure dissociation and ion­
ization, which occur in partially ionized plasmas encountered in the interi­
ors of giant planets and low-mass stars. The model describes an interacting 
mixture of H2,H,H+ and e~ in chemical equilibrium. The concentrations of 
H 2 + and H~ ions are found to be negligible for equation of state purposes. 
Our model relies on the so-called chemical picture approach, based on the 
factorization of the partition function into translational, internal and con-
figurational degrees of freedom. The present model is found to be unstable 
in the pressure-ionization regime and predicts the existence of a first-order 
plasma phase transition (PPT) which ends up at a critical point given by 
Tc = 15300 K, Pc = 0.614 Mbar, and pc = 0.35 g e m - 3 . The transition 
occurs between a weakly ionized phase and a partially ionized (~ 50%) 
phase. 

Nous presentons un modele d'energie libre pour l'hydrogene fiuide a haute 
densite et haute temperature. Le but de ce modele est de decrire la dissoci­
ation et l'ionisation en pression, telles qu'elles se produisent dans les plas­
mas partiellement ionises rencontres a l'interieur des planetes geantes et des 
etoiles de faible masse. Le modele decrit un fiuide en interaction compose 
de H2,H,H+ et e~ en equilibre chimique. Les concentrations de H 2 + et H~ 
sont negligeables pour les calculs d'equation d'etat. Notre modele repose sur 
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l 'approche chimique, basee sur la factorisation de la fonction de partition 
en degres de liberte translationnel, interne et configurationnel. Le modele 
presente une zone d'instabilite dans le domaine d'ionisation en pression et 
predit l'existence d'une transition de phase plasma (PPT) du premier or-
dre, se terminant en un point critique donne par Tc = 15300 K, Pc = 0.614 
Mbar, et pc — 0.35 g e m - 3 . La transition a lieu entre une phase faiblement 
ionisee et une phase partiellement ionisee (~ 50%). 

13.1 Introduct ion 

The similarities between hydrogen and alkali metals lead Wigner and Hunt­
ington (1935) to suggest that pressure-ionized hydrogen would behave like a 
monovalent 'metal ' even at zero-temperature, and it has often been argued 
that first-order phase transition must occur between the two states, given 
the large difference between the molecular and the metallic states (Steven­
son and Salpeter 1977; Ebeling and Richert 1985). Most of the recent inves­
tigations have focused on the zero-temperature or the room-temperature, 
where static compression experiments are now available above the megabar 
domain. These results indicate that a transition between a molecular and 
a semi-metal state occurs around 2 Mbar, but true metallization has not 
been observed unambiguously yet. This state is believed to occur around 
2-3 Mbar. 

Few models exist however at high-temperature, in the fluid range, where 
shock-wave experiments have clearly establish the stability of the fluid 
molecular phase up to 0.8 Mbar (Nellis et al. 1984). Fluid hydrogen is 
the main component of stellar interiors and atmospheres. In most of astro-
physical objects, hydrogen is ionized by temperature, but pressure ionization 
occurs in the interior of giant planets, brown dwarf stars and partially in the 
outermost layers of white dwarfs and low-masss stars. The recent discovery 
of global oscillations in Jupiter (see Mosser, these proceedings), as well as 
the recent achievements of helio- and astero-seismology (see Dappen and 
Fontaine, these proceedings) give us new information on the structure of 
these objects, and then on the properties of mat ter under extreme thermo­
dynamic conditions. This stress the need for a correct calculation of fluid 
hydrogen at high-density, including a proper treatment of pressure disso­
ciation and ionization. A simplified phase diagram of hydrogen at high 
temperature is shown on Figure 1, with the internal temperature profiles of 
a few dense astrophysical objects. 

In section II, we give a short presentation of our free energy model, 
which has been presented extensively elsewhere (Saumon and Chabrier 1991, 
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Fig. 13.1 Simplified (p,T) phase diagram for hydrogen. A few physical 
regimes are identified : above the line T = 1, where T is the usual coupling 
parameter, the classical ionic plasma is strongly coupled whereas correla­
tions are dominant in the quantum electron plasma below the line r, = 1, 
where r, is the mean inter-electronic distance in unit of Bohr radius. Elec­
trons are degenerate above the line & = kT/ej = 1, where ep is the electron 
Fermi energy. Protons are classical below the line A,- = 1, where A,- is the 
De Broglie wavelength in unit of the mean inter-ionic distance a. The 
curve T = 178 denotes the crystallization line of the H + plasma. The var­
ious temperature profiles are characteritic of the interior of Jupiter (J), a 
brown dwarf (BD), a ZZ-Ceti white dwarf (WD) and the Sun (S). 

1992). In section III, we discuss in detail the P P T predicted by our model 
whereas a comparison with other models is discussed in Section IV. Sec­
tion V is devoted to the astrophysical applications and Section VI to the 
conclusion. 

13.2 Descr ipt ion of the free energy mode l 

The model relies on the so-called chemical picture, in the sense that we as­
sume the existence of independent, bound configurations such as H atoms, 
H2 molecules, interacting with pair potentials. At densities correspond­
ing to pressure ionization, such a scheme is erroneous and the concept 
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of individual pair potential fails, requiring the use of quantum-statistical 
many-body theory, i.e. a physical picture where only fundamental particles 
(electrons and nuclei) exist (see the reviews by Rogers, Alastuey and Per-
rot and Dharma-wardana). In particular, our approach does not take into 
account the possibility of excitonic states, i.e. clusters or pseudo-atoms and 
pseudo-molecules, as described in Perrot and Dharma-wardana (these pro­
ceedings). Although formally exact, the physical picture, however, involves 
either diagramatic expansion which converge only at low-density or high-
temperature (see the reviews by Rogers and Alastuey), or, when extended 
to higher-density, involve a coupled treatment of classical and quantum-
mechanical N-body theories, which renders practical applications for the 
calculation of astrophysical EOS nearly impossible. In view of these diffi­
culties, the chemical picture, and its inherent factorization of the partiction 
function in terms of different particle interactions, remains a very powerful 
method. It can be view as the best compromise between the rigorous treat­
ment and the practical application. It is why it is important to compare 
the results obtained with "chemical" models with the ones derived from 
"physical" ones. 

Our EOS consists of a general free energy model which applies in the 
regime of partial temperature- or pressure-ionization, and which reduces 
to a so-called "neutral" model and "plasma" model respectively at low-
density/low-temperature and at high-density and/or high-temperature. 

13.2.1 Model for neutral hydrogen 

At low-density (p & 1 g e m - 3 ) , low temperature ( T ^ 104 K) , hydrogen 
is adequately described as a mixture of H atoms and H2 molecules. The 
concentrations of H~ and H 2 + ions are found to be negligible (< 1 0 - 3 ) for 
EOS purposes. Because all particles are very nearly classical in this regime, 
we can factorize the partition function and treat the small quantum effects 
with a semi-classical approximation. If we make the additional assumption 
that the internal levels of atoms and molecules are only weakly affected 
by the presence of nearby particles, as suggested by available experimental 
results up to electronic densities as large as Ne/V ~ 1021 c m - 3 (Weise 
et al. 1972, Grabowski et al. 1987, Hashimoto and Yamaguchi 1983), 
the Helmoltz free energy separates into ideal, configurational, internal, and 
quantum contributions : 

F(NH,NH2,V,T) = Fid + 
•r conf 

+ Fint + F, 

(1) 

https://doi.org/10.1017/S0252921100026415 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026415


Chabrier: Fluid hydrogen at high density 291 

13.2.1.1 the configuration term 

This term arises from the interaction between the different particles in their 
ground state. Computation of these interactions requires the knowledge of 
three interaction potentials ^>H2-H2I <t>H-H and (f>H2-H- For <f>H2-H2

 w e 

use an effective potential derived from shock tube experiments (Nellis et 
al. 1984; Ross et al. 1983) which implicitly includes many-body effects. 
Since no similar experimental data exist for 4>H-H

 a n d <t>H2-H-, w e have 
used ab-initio potentials (Kolos and Wolniewicz 1965; Porter and Karplus 
1964). We treat the spin dependence of the H-H interaction by averaging 
the interaction potentials of the singlet and triplet states; the resulting H-H 
potential has no bound states. The three potentials have been fitted by 
generalized Morse potentials. 

The configuration free energy Fconf is derived from theya interaction po­
tentials in the framework of the WCA fluid perturbation expansion (Weeks, 
Chandler and Andersen 1971). In this theory, the interaction potential 
is split into a repulsive reference potential <f>re^(r) and a weak, attractive 
perturbation potential <f^ert(r). We approximate the free energy of the ref­
erence system by that of a hard sphere fluid, which is known analytically 
(Mansoori et al. 1975), whereas the contribution of the perturbation poten­
tial is given by the first term of the free energy expansion (High Temperature 
Approximation) : 

Fconf(N,V,T) = FHS(NUN2,CTU<T2,V,T) 

+ ^ E NaNp I <&^\r)9ZS
p(r)dr (2) 

Here the ga^i?) are the hard sphere pair correlation functions (Griindke 
and Henderson 1972) and a\ and a2 are the density and temperature-dependent 
hard sphere diameters determined thermodynamically by the WCA crite­
rion (Weeks, Chandler and Andersen 1971). The standard WCA scheme, 
derived originally for liquid state theory, has been extended for this par­
ticular approach to high-density and high-temperature (Saumon, Chabrier 
and Weis 1989). The excess internal energy and pressure derived from 
this expansion scheme agree within less than 3% with MC simulations for 
the density and temperature range of interest (Saumon, Chabrier and Weis 
1989). This assesses the validity of the configuration energy (2) for the H-H2 
mixture. 
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13.2.1.2 The Internal Free Energy 

The effect of near-neighbor interactions on the internal structure of bound 
species is essential to a correct description of pressure dissociation and ion­
ization. We have used in our model the so-called occupation probability 
formalism (OPF) derived by Hummer and Mihalas (1988). In this formal­
ism, the internal free energy reads : 

2 

Fint = -kTLn £ > « £ u a i 9 a i e - £ a i / k T (3) 
a=l i 

where i runs over all internal states of species a and waii9ai and ea{ 
are respectively the occupation probability, the multiplicity and the unper­
turbed energy of state i. The density dependent uai are computed from 
the configuration term Fconf in the free energy. This ensures consistency of 
both the interactions and their effects on the IPF. It also provides a smooth 
cut-off of the IPF, and therefore a plausible pressure dissociation/ionization 
effect. Moreover the present method uses unperturbed energy eigenvalues 
and does not invoke hypothetical energy level shifts of doubtful validity. As 
a matter of fact, such shifts have been shown to be too small to be sig­
nificant, as mentioned above (Wiese et al. 1972, Grabowski et al. 1987, 
Hashimoto and Yamaguchi 1983). 

In practice, however, one must resort to a linearization of Fconf to com­
pute the occupation probability (see Hummer and Mihalas (1988) for de­
tails). Calculations including terms beyond the density-linear term have 
been computed recently for helium at high-density (Aparicio and Chabrier 
1994). In addition our occupation probabilities include neutral particle in­
teraction only. The effect of charged particles, i.e. Stark ionization, requires 
a knowledge of the plasma microfield distribution at high-density, which 
complicates tremendously the calculations. The effect of the microfield will 
be discussed in detail later in the paper. 

In our treatment of the IPF of H2, we have included all vibrational and 
rotational levels of each bound state of the molecule (Hiiber and Herzberg 
1979). 

The term Fqm in Eq.(l) is the quantum contribution to the free energy, 
which is always a weak perturbation of the classical free energy in the do­
main of interest for the hydrogen EOS, and then has been calculated to the 
first non-vanishing order in the Wigner-Kirkwood h expansion. 
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13.2.2 Model for fully ionized hydrogen 

For kT £ lRyd or p £ 2gcm- 3 (corresponding to r3 ~ 1, where rs is the 
mean inter-electronic spacing in units of Bohr radius a0), the fluid is a fully 
ionized electron-proton plasma. At these densities, the mean electron-ion 
potential energy Eie = e2 /rsa0 is smaller than the electron Fermi energy 
EF SO that the plasma can be described as a superposition of an electron-
screened ionic fluid and a rigid electron background (Ashcroft and Stroud 
1978). Under these conditions, the free energy of the plasma reads : 

F = Fid - NkTlnjepu<i'(rUr + Fxc + Fqm (4) 

where Fid denotes the ionic and electronic perfect gas contributions, Fxc is 
the exchange and correlation free energy of the electron gas at finite temper­
ature (Ichimaru et al. 1987). The second term on the r.h.s of equation (4) is 
the free energy of the screened ionic fluid, calculated within the framework of 
the hyper-netted chain (H.N.C) theory for the temperature and density de­
pendent screened Coulomb potential Ueff(k,V,T) = 4x(Ze)2/k2e(k,V,T) 
(Chabrier 1990). The dielectric function e is the finite temperature Lindhard 
function corrected with a local field correction for the short-range interac­
tion between electrons (Utsumi and Ichimaru 1982). The model free energy 
(4) shows excellent agreement with existing Monte-Carlo calculations at fi­
nite and zero-temperature and with non-adiabatic calculations (see Chabrier 
1990 for details). 

At very low-density and high-temperature, the electrons behave almost 
classically and the thermodynamics of the electron-proton plasma can be 
evaluated by the Debye-Huckel two-component limit, corrected for small 
degeneracy effects (DeWitt 1962) : 

< | j j ) ' - w 7f3 / 2 ( Z i + 1)I/2 < z2 >2/3 (1" I ? ? 7 - + -) (5) 

where < Z2 > = Ylaxa^ai a denoting the ionic and electronic species. 
The first term in Eq.(5) is the leading term of the classical cluster expansion, 
i.e. the Debye term, whereas the second term in the bracket represents 
the correction for electron quantum effects, given by the electron quantum 
diffraction parameter 7e = -^(2irh n e e 2 /m e ) . 

At intermediate densities, the free energy is interpolated smoothly be­
tween the high-density model (4) and the low-density model (5). The quan­
tum correction Fqm for the ions is also calculated to leading order in h2, 
using a Wigner-Kirkwood expansion for the screened potential Ueff. 

https://doi.org/10.1017/S0252921100026415 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026415


294 Chabrier: Fluid hydrogen at high density 

13.2.3 Model for partial ionization 

The two models described above are combined to give a description of the 
thermodynamics of the plasma in the partial ionization zone. The interac­
tion between charged and neutral particles in their ground state is treated 
through a polarization potential approach (Kraeft et al. 1986). The two-
body potential is approximated by an interpolation between a hard-core 
repulsion at short distance and a screened dipolar potential outside the 
core : 

^(r) = -T[^ri ] V t a p (6) 

The hard core radii R{ are chosen to be the radii for H and H2 obtained 
for the configuration energy from the WCA criterion, a,- denotes the polar-
izability of species i, and K is the inverse screening length of the electron-ion 
plasma, which enters the screened potential Ue/f in Eq.(4) (see Saumon and 
Chabrier 1992 for details). The hard core contribution effectively reduces 
the volume available for the ionic and electronic ideal terms by a factor 
(1 — 77) where rj is the hard core packing fraction for H and H2. The sec­
ond contribution introduces an additional polarization term Fpoi to the free 
energy given by : 

N - 2 

FPoi = MT-f- Y, NaBai (7) 

The Bai denote the virial coefficients of particle of species a, i.e. : 

f°° vol 
Bi,e- = BilH+ = Bi = 2w (1 - e'W (r))r2dr ( 8 ) 

The general model free energy for the hydrogen fluid finally reads: 

F(V, T, NH2,NH, NH+,Ne-) = Fid(V, T, NHi, NH) 

+ Fid({l-r,)V,T,NH+,Ne-) 

+ Ftf(V,T,NH2,NH) 

+ Ffx(V,T,NH+,Ne-) 

+ Fpol(V, T, NH2, N„, NH+, Ne-) (9) 

where the subscript " id" denotes the ideal contribution whereas Fffi and 
Ffx stand for the non-ideal contributions of the neutral model and the 
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V(cm3/mole of D2) 

Fig. 13.2 Single and double-shock Hugoniot curves of D2. The solid curves 
shows the theoretical Hugoniot curves derived from the model free energy 
(9) after suitable modification for deuterium. The squares, circles and 
triangles denot the experimental data. 

fully ionized model developed in the previous sections, respectively. Having 
imposed the electroneutrality condition, we minimize the free energy (9) at 
fixed total density and temperature to obtain the chemical equilibrium of 
the four component mixture (H2,H,H+,e~) : 

dF. dF. 
\x2,p,T - -Z—\xi,p,T = 0 dxi dl2 

(10) 

where F = F(xi,X2,p,T) is the specific free energy per proton, x\ = XJJ, 
*2 = Xfj3 and p is the mass density. 

13.3 Resu l t s and discussion 

Figure 2 shows the theoretical Hugoniot curves derived from our model for 
the single- and double-shock experiments on H and D2 respectively along 
with the experimental data. In view of the experimental uncertainty, the 
agreement is excellent. 

We calculated the limit of stability of the model free energy (9) as a 
function of the density along several isotherms and found a first order phase 
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transition (dP/dp < 0) in the regime of pressure ionization. The transition 
is associated with a sudden, discontinuous shift of the chemical equilibrium 
toward a high degree of ionization. We emphasize that this phase change 
occurs strickly as a result of the minimization of our free energy model. It 
does not arise from any additional assumption. We have accordingly studied 
the phase equilibrium in the regime of pressure ionization systematically 
(Saumon and Chabrier 1992) : 

Ti = Tn . pi = Pn ; p'H(p,T) = pg(P,T) (11) 

The characteristic of the coexistence curve are given in Table I. The phase 
transition ends in a critical point whose coordonates are : Pc = 0.614 Mbar, 
pc = 0.347 gem - 3 and Tc = 15300 K. The slope of the coexistence curve 
dP/dT is negative, which is consistent with the positive entropy disconti­
nuity 6S = S11 — S1, a likely consequence of the increasing contribution of 
thermal effects at higher temperature, and the larger entropy in the plasma 
phase than in the molecular phase. 

Figure 3 shows the concentration of molecules and charged particles as a 
function of density for a few isotherms. We draw the following conclusions: 

i) The system undergoes a first-order phase transition from a neutral 
phase (xe- < 10 - 2 for T < Tc) to a partially ionized phase (xe- « 0.5) as 
density increases. 

ii) At the transition pressure, the degree of ionization increases discon-
tinuously whereas the concentration of molecules drops drastically, indicat­
ing that molecular dissociation and pressure ionization occur at almost the 
same density. Pressure ionization does not occur by first dissociating the 
molecules into atomic hydrogen as believed usually. 

iii) Above the critical density, the system reaches complete ionization very 
gradually. This points out the qualitative difference found when treating 
pressure ionization with realistic potentials and with pure hard sphere inter­
actions (Ebeling and Richert 1985). Even though the model for the neutral 
species is highly questionable above the transition density, we believe these 
qualitative features to be physicaly realistic. 

iv) The first-order phase transition persists even when no coupling ex­
ists between the neutral and the fully ionized models. This indicates that 
the source of the PPT does not lie in the interaction between neutral and 
charged particles but rather in the very nature of the difference of interac­
tions in the respective neutral and plasma phase. We actually believe the 
PPT to be due to the large difference between the strongly repulsive, hard-
sphere type potential in the insulating, molecular phase and the smoother 
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Table 13.1. Characteristic of the plasma phase transition. For 
each temperature, we give the transition pressure, the density and 
the ionization fraction for each phase. The change in entropy is 
AS = Sn - S1. 

logT 
(K) 

3.70 
3.78 
3.86 
3.94 
4.02 
4.10 
4.18 
4.185 

P 
(Mbar) 

2.14 
1.95 
1.62 
1.39 
1.13 
0.895 
0.631 
0.614 

/ 
gem 3 

0.75 
0.70 
0.64 
0.58 
0.51 
0.43 
0.35 
0.35 

P11 

gem 3 

0.92 
0.88 
0.80 
0.74 
0.65 
0.55 
0.38 
0.35 

2xH+ 

xlO"3 

1.4 
2.1 
3.0 
5.1 
8.8 
20. 
170. 
180. 

IT11 

0.48 
0.50 
0.50 
0.51 
0.52 
0.50 
0.33 
0.18 

AS 
kfl /proton 

0.615 
0.590 
0.544 
0.508 
0.464 
0.421 
0.142 
0 

Yukawa-type potential in the conducting, plasma phase. This is supported 
by the fact that the PPT disappears above a temperature for which the 
dominant species in the neutral phase is no longer molecular hydrogen but 
atomic hydrogen, since the repusive part of the H-H potential is very similar 
to the screened inter-ionic potential (see Saumon and Chabrier 1992). In 
this sense, the PPT can be related to the metal-insulator transition in metals 
associated with the liquid-vapor transition. The crucial difference between 
the two effective interactions in the metallic and insulating phases, which 
reflects the change of the nature of the electronic states, leads eventually 
to a polarization catastrophe and the impending insulator-metal transition 
(Goldstein and Ashcroft 1985). 

13.3.1 Uncertainties in the plasma phase transition 

In order to examine importance of some physical inputs of our model on the 
final results, we have carried out a limited set of calculations of the PPT 
using variations on our free energy model. These various PPT results are 
summarized on Figure 4, where the solid curve is the PPT derived from the 
basic model (9). 

13.3.1.1 Influence of coupling 

The most basic approximation in our model is to forbid the neutral and 
the charged particles to mix. This corresponds to a simple comparison of 
the two free energies (1) and (4). The resulting phase transition is what 
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p(gcm 3 ) 

Fig. 13.3 Concentration of H2 and of charged particles (H++e~) near the 
PPT. Isotherms are labeled according to logT = A, 3.70; 5,3.86; C.4.02; 
D, 4.18; £7,4.34. The left panel shows the low-density behavior on a log-
density scale. 

we call the "forced" transition. It is shown by the dashed line in Fig. 4. 
The transition line lies at P « 3.2 Mbar and is nearly independent of the 
temperature. 

A more realistic variation on our final model is indicated by the triangles 
in Fig. 4. For these calculations, the PPT is computed without any cou­
pling between the two models (1) and (4). In this approximation, plasma 
and neutral particles are allowed to mix but the two fluids do not interact. 
This corresponds to the free energy model (9) with rj = 0 and Fpoi = 0. The 
highest temperature point shown for this calculation (logTc = 4.215) indi­
cates the corresponding critical point. As already mentioned, it is important 
to stress that the first-order phase transition persists in this approximation, 
when no coupling exists between the neutral and the fully ionized models, 
indicating that the source of the PPT does not lie in the interaction between 
neutral and charged particles. The next variation is provided using a differ­
ent expression for the screening length of the plasma so that the polarization 
free energy Fvo\ is increased by about a factor of 5. This results in the coex-
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3.8 4.0 
lO^TJK) 

Fig. 13.4 The effects of various assumptions in the free energy model upon 
the plasma phase transition. The solid and dashed curves are coexistence 
curves for the PPT and for the forced phase transition, respectively. The 
crosses (x) indicate the PPT obtained in a calculation where Fpoi (Eq.(7)) 
was overestimated by a factor of 5. The dotted line shows the coexistence 
curve obtained when using the polarization radius of Redmer et al. (1987) 
in Fp0i. When softened interaction potentials are used, the PPT occurs 
at higher pressures, as shown by the asterisks (*). When no coupling is 
allowed, the transition is shown by triangles (A). The open circle (o) 
indicates the effect of softening the lowest vibrational frequency of the H2 
molecule by 4%. See text for details. 

istence curve indicated by crosses, with the critical point at logTc = 4.175. 
The fourth variation is to use the polarisation radius for atomic H deter­
mined by Redmer, Ropke and Zimmermann (1987), RJJ = 1.4565 a.u. The 
H2 polarization radius was estimated by scaling the H value with polariz-
ability : RJJ2 « ^ H ( « f f 2 / o / / ) 1 ^ 3 ~ 1-55 a.u. These radii are about 50% 
smaller than the ones used in the original calculations, increasing Fpoi by 
about one order of magnitude. The free energy model still undergoes un-
stabilities and the resulting phase line is shown on Fig.4 by the dotted line. 
The transition pressure is lowered by about 40%. The new critical point lies 
near logTc = 4.0 and Pc = 0.76 Mbar. This is from far the most important 
variation in our results. 

We have examined ex post facto the effect of Stark ionization as a form 
of coupling between the neutral and the ionized free energy models on our 
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results. The effect of the plasma microfield is estimated by modifying the 
occupation probability in introducing a Holtzmark distribution. This is 
reasonnable in the low-density phase where the concentration of charged 
particles remains small, as discussed above. We find the effect to be negli­
gible for logT < 4.1. The importance rises rapidly near the critical point, 
however, following the increase in degree of ionization. 

13.3.1.2 #2 internal partition function 

In this section we examined the effect of the recently observed softening 
of the vibron frequency in the IPF of the H2 molecule (Hemley and Mao 
1988). We have recomputed the transition pressure with the model given 
by Eq.(9) after reducing the vibration constant We in the IPF of H2 by 4%, 
as suggested by the experiment. This raises the transition pressure by 1%, 
as shown by the open circle in Fig.4. 

An other important issue is the rotational partition function of H2. The 
asymetry of the H2-H2 potential is expected to hinder rotation at high-
pressure, which can be interpreted as an increase of the rotational temper­
ature 6rot- That could decrease substantially the entropy of the molecular 
phase and affect the location of the PPT. Our treatment uses the rotation 
temperature of the free molecule (« 85 K) at all densities. Recent exper­
iments (Hemley, Mao and Shu 1990) show that the H2 molecules undergo 
significant rotational motion up to 1.6 Mbar at 77 K, a pressure typical of 
the PPT coexistence curve. Interestingly, the Raman spectrum of the roton 
mode does not show any line shifts of consequence for the EOS : 9rot ap­
pears to be nearly independent of pressure, well above the PPT. Moreover, 
thermal effects are more important in our calculations so that we can expect 
rotational modes to freeze at much higher temperatures than is observed 
experimentally below room temperature. 

13.3.1.3 Softening of the potential 

Recently, Hemley et al. (1990) derived a new experimentally determined 
H2-H2 potential based on X-ray diffraction measurements of solid H2 at 
T=300 K and P £ 0.26 Mbar. This potential is slighly softer than the 
potential used in our calculations (Ross et al. 1983; Saumon and Chabrier 
1991). Given the lack of information for the H-H and H2-H potentials at 
high density, we mimicked many-body effects by softening arbitrarily the 
repulsive part of the potentials respectively by 20% and 35%. Results are 
shown by the asterisks in Fig.4. In all cases, the pressure and the density of 
transition increase slightly, as expected for a softened EOS in phase I. The 
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qualitative features of he PPT are not affected, and the magnitude of the 
effect is less than 5%. 

13.3.1.4 Strong ion-electron coupling 

Our free energy model in the fully ionized phase is based on the so-called 
linear response theory, which is valid as long as the ion-electron interaction 
is negligible compared with the ion-ion interaction, or the electron-ion po­
tential energy is negligible compared with the electron kinetic energy. This 
fails at low density, where the electrons become strongly correlated, and 
where electron localization begins. We expect the ion-electron non-linear 
effects in the plasma phase to lower slightly the free energy of the plasma 
(by a few percents around the critical point), favoring ionization. The same 
effect is expected from a proper inclusion of micro-field effects on the excited 
states. Table II shows preliminary comparison between the present calcula­
tions and calculations by Perrot and Dharma-wardana (these proceedings) 
based on the so-called density-functional theory, where ion-electron inter­
actions in the plasma are treated beyond the linear response. As expected 
the degree of ionization is underestimated in our calculations. However the 
pressure and the entropy obtained within the two formalisms are in very 
good agreement (£ 3%). This adds credibility to the present EOS for dense 
hydrogen since the results are based on two completely different type of 
calculations. 

13.3.1.5 Band effects 

A potentially important aspect of pressure ionization we have ignored is 
the onset of derealization of the electronic wave functions at high density, 
leading to possible electronic "conduction bands" in the neutral mixture, 
similar to band narrowing in solids. Given the lack of exact calculations 
of such electron derealization effect in a finite-temperature fluid, we have 
estimated the size of the effect in an ex post-facto calculation. We used 
zero-temperature band-gap calculations (Friedli and Ashcroft 1977). The 
fraction of electrons thermally excited into the conduction band varies from 
less than 10% at 8000 K to 2% at the critical point. Consequently we find 
the effect on the PPT to be small. Moreover, as discussed previously, the H2 
molecule is likely to undergo substantial rotation at pressures characteristic 
of the PPT, which probably widens the band gap. 
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Table 13.2. Comparison between the present model (lower row) 
and calculations based on the Density Functional formalism 
(DFT) of Perrot and Dharma-wardana (upper row) for hydrogen 
at high temperature and density. For each temperature-density 
point, we give the effective charge, the pressure and the entropy. 
The effective charge Z* denotes the average degree of ionization, 
(units are in CGS) 

iogr 

5.161 

5.462 

6.06 

\ogp 

-1.269 

-0.4755 

0.4275 

1.330 

-1.3455 

-0.4755 

0.4275 

1.331 

-1.375 

-0.4755 

0.4275 

1.331 

Z* 

0.777 
0.712 
1.000 
0.695 
1.000 
0.883 
1.000 
1.000 
0.923 
0.812 
1.000 
0.781 
1.000 
0.904 
1.000 
1.000 
0.992 
0.938 
1.000 
0.910 
1.000 
0.960 
1.000 
1.000 

logP 

12.045 
12.033 
12.837 
12.811 
13.85 
13.826 
15.182 
15.169 
12.313 
12.296 
13.169 
13.154 
14.104 
14.088 
15.273 
15.263 
12.908 
12.893 
13.802 
13.787 
14.702 
14.693 
15.652 
15.643 

logs' 

9.209 
9.213 
9.125 
9.128 
9.012 
9.009 
8.899 
8.879 
9.264 
9.263 
9.178 
9.178 
9.071 
9.067 
8.957 
8.943 
9.344 
9.340 
9.269 
9.266 
9.179 
9.176 
9.075 
9.066 

13.4 Other models 

Marley and Hubbard (1988) also computed a forced transition between a 
neutral and a fully ionized model. Compared to other efforts, their two 
models are closest to our own in level of accuracy and detail. Their transition 
line lies slightly above the one obtained in our calculations for the forced 
transition (see Fig.4). The difference arises from the cruder treatment of 
the internal levels of the molecules in Marley and Hubbard's calculations. 

Ebeling and Richert published two calculations for the PPT. Their two 
models differ in detail but are very similar in spirit and give essentially the 
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same critical point, at Tc = 16500 K, Pc = 0.228 Mbar and pc = 0.13 gem- 3 . 
In the first model (Ebeling and Richert 1985a), atoms and molecules interact 
through hard-sphere potentials with fixed diameters, plus a Van-der-Waals 
correction. Molecules are approximated as two atoms in the hard-sphere 
free energy. Internal states are not included in the treatment and there 
is no coupling between charged and neutral particles. Their approximate 
coexistence curve crosses the experimental double-shock Hugoniot curve for 
deuterium, where no evidence is found for a PPT. This rules out the model, 
based on too crude approximations. 

In a second paper (Ebeling and Richert 1985b), molecules are excluded 
from the model. Bound states are introduced in the form of the Planck-
Larkin partition function. This has been demonstrated to be incompatible 
with a chemical picture (Dappen et al. 1987). They find a second critical 
point surprisingly close to their previous dtermination. Again this is incom­
patible with existing shock-wave experiments at high-temperature which 
must be reproduced by any model aimed at describing the EOS of dense 
fluid hydrogen. In particular, the critical pressure is lower than predicted by 
the model (9). This fact stems from the excessively repulsive hard-sphere 
potentials between neutral particles. These potentials are completely in-
apropriate in the density range where pressure ionization occurs. 

13.5 Effect of the P P T on the structure and the evolution 
of low-mass stars and giant planets 

The PPT predicted by our model occurs at densities and temperatures char­
acteristic of giant planets and low-mass brown dwarfs. New interior mod­
els of Jupiter and Saturn including the PPT have been computed recently 
(Chabrier et al. 1992). Interior models assuming homogeneous H/He en­
velopes (i.e. no PPT) could not satisfy the observational constraints, adding 
titillating support for the presence of a PPT between a molecular Ife/He 
envelope and a metallic H + / H e + + envelope. The phase transition modifies 
the thermal structure of the planets, leading to a hotter internal adiabat 
than the one obtained with no PPT, because of the positive entropy jump 
at the PPT (see Table I). 

The effect of the PPT on the evolution of Jupiter, Saturn and low-mass 
brown dwarfs has also been examined in detail (Saumon et al. 1992). For 
fully convective, adiabatic objects, the evolutionary timescale is given by: 

Ldt = Lsdt - I (TSS)dm (12) 
Jo 
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for a time interval dt. L is the luminosity of the planet, La = 4rR2aTg 
is the heating caused by solar radiation, and S is the entropy per gram, in­
cluding (or not) the entropy discontinuity at the P P T . The phase transition 
was found to alter the present age of Jupiter and Saturn by a few percent. 
The cooling of brown dwarfs is most strongly affected at the time when the 
interior adiabat crosses the critical point. 

13.6 Conclus ion 

This review has focussed on an EOS of dense hydrogen suitable for as-
trophysical purposes, in particular for the interior of dense objects like gi­
ant planets and low-mass stars. Extension to the case of helium is under 
progress (Aparicio and Chabrier 1994). The proposed EOS is based on re­
alistic interparticle potentials and a self-consistent treatment of the internal 
levels. The model reproduces experimental Hugoniots up to P « 1 Mbar. In 
the domain of partial ionization, a complete model of the interacting four-
component (H2,H,H+,e~) fluid is generated. The present model, based on 
the so-called chemical picture, represents the best compromise between the 
rigorous treatment of the N-body problem, as in the physical picture, and 
the practical application. Preliminary comparisons between the two for­
malisms in the high-temperature limit of partially ionized hydrogen shows 
excellent agreement on the equation of state and the entropy, the two most 
important thermodynamic quantities used in stellar evolution. The model 
predicts a first-order phase transition between a mainly molecular phase and 
a partially ionized plasma. This model free energy leads to interior models 
for Jupiter and Saturn in better agreement with the observations. 
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