S. KondōNagoya Math. J.Vol. 116 (1989), 1-15

ALGEBRAIC K3 SURFACES WITH FINITE AUTOMORPHISM GROUPS

SHIGEYUKI KONDŌ

Introduction

The purpose of this paper is to give a proof to the result announced in [3]. Let X be an algebraic surface defined over C. X is called a K3 surface if its canonical line bundle K_x is trivial and $\dim H^1(X, \mathcal{O}_x) = 0$. It is known that the automorphism group $\operatorname{Aut}(X)$ of X is isomorphic, up to a finite group, to the factor group $O(S_x)/W_x$, where $O(S_x)$ is the automorphism group of the Picard lattice of X (i.e. S_x is the Picard group of X together with the intersection form) and W_x is its subgroup generated by all reflections associated with elements with square (-2) of S_x ([11]). Recently Nikulin [8], [10] has completely classified the Picard lattices of algebraic K3 surfaces with finite automorphism groups.

Our goal is to compute the automorphism groups of such K3 surfaces. Let X be an algebraic K3 surface with finite automorphism group Aut(X). By definition, there exists a nowhere vanishing holomorphic 2-form ω_X on X. Since an automorphism g of X preserves ω_X , up to constants, $g^*\omega_X = \alpha_X(g) \cdot \omega_X$ where $\alpha_X(g) \in C^*$. Therefore we have an exact sequence

(1)
$$1 \longrightarrow G_X \longrightarrow \operatorname{Aut}(X) \xrightarrow{\alpha_X} \mathbb{Z}/m \longrightarrow 1$$

where Z/m is a cyclic group of m-th root of unity in C^* and G_x is the kernel of α_x . Moreover the representation of the cyclic group Z/m in $T_x \otimes Q$ is isomorphic to a direct sum of irreducible representations of the cyclic group Z/m over Q of maximal rank $\phi(m)$, where T_x is a transcendental lattice of X and ϕ is the Euler function. In paticular $\phi(m) \leq \operatorname{rank} T_x$ and hence $m \leq 66$ ([6], Theorem 3.1 and Corollary 3.2).

An algebraic K3 surface X is called *general* if the image of α_X is of order at most 2, and X is called *special* if it is not general. The meaning of this definition is as follows: Let X be an algebraic K3 surface with

Received January 26, 1987.

a Picard lattice S_x . Let S be an abstract lattice which is isomorphic to S_x . Denote by M_S the moduli space for algebraic K3 surfaces whose Picard lattices are isomorphic to S. Then the dimension of M_S is equal to 20 - rank(S). A general K3 surface Y with $S_Y = S$ corresponds to a point of the complement of hypersurfaces in M_S .

Theorem. Let X be an algebraic K3 surface with finite automorphism group Aut(X).

(i) If X is general, then Aut(X) is as in the following table:

 S_X Aut (X) $U \oplus E_8 \oplus E_8 \oplus A_1$ $\mathfrak{S}_3 imes \mathbf{Z}/2$ $U \oplus E_8 \oplus E_8, \ U \oplus E_8 \oplus E_7$ $U \oplus E_8 \oplus D_6, \ U \oplus E_8 \oplus D_4 \oplus A_1$ $U \oplus D_8 \oplus D_4, \ U \oplus E_8 \oplus A_1^4$ $U \oplus E_7 \oplus A_1^4, \ U \oplus D_6 \oplus A_1^4$ $U \oplus D_4 \oplus A_1^5$ $U(2) \oplus D_4 \oplus D_4, \ U \oplus A_1^8$ $U(2) \oplus A_1^7$ $U(2) \oplus A_1^7$ $U(2) \oplus A_1^7$ $U(2) \oplus A_1^7$

Table 1.

where U (resp. U(2)) is the lattice of rank 2 with the intersection matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (resp. $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$), A_m , D_n and E_k are negative definite lattices associated with the Dynkin diagrams of type A_m , D_n and E_k respectively and A_1^k denotes the direct sum $A_1 \oplus A_1 \oplus \cdots \oplus A_1$ (k times).

(ii) If X is special, then Aut(X) is a cyclic extension of the group in the above table.

We remark here that there exists a special K3 surface X with $\operatorname{Aut}(X) \simeq \mathbb{Z}/66$. This automorphism acts on the Picard group of X as identity. In [4], we studied automorphisms with this property.

Also for Enriques surfaces with finite automorphism groups, we refer the reader to [2], [9].

To prove the above theorem we use the following phenomenon: In

the exact sequence (1), if $rank(S_x)$ becomes smaller, then G_x too becomes smaller, and the group Z/m grows bigger.

In Section 1, we recall the Picard lattices of algebraic K3 surfaces with finite automorphism groups. Section 2 is devoted to the results on finite automorphisms of K3 surfaces due to Nikulin [6] and Mukai [5]. In particular from these results we obtain all the possible cases of G_x (Lemma 2.3). In Sections 4 and 5 we prove the above theorem. In case $\operatorname{rank}(S_x) \geq 15$ we have the dual graph of all smooth rational curves on X ([8], Sect. 4, Part 5, Table 2) and hence we can compute $\operatorname{Aut}(X)$. In case $\operatorname{rank}(S_x) \leq 14$ it follows from the result in Section 2 that G_x is a subgroup of $\mathbb{Z}/3$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$. To determine $\operatorname{Aut}(X)$ we use the theory of symmetric bilinear forms (cf. [7]) and that of elliptic pencils due to Kodaira [1] and Shioda [12] (Sect. 3).

§1. Picard lattices of K3 surfaces with finite automorphism groups

In this section we recall the Nikulin's classification [8], [10] of Picard lattices of algebraic K3 surfaces with finite automorphism groups.

A lattice L is a free Z-module of finite rank endowed with an integral bilinear form $\langle \ , \ \rangle$. By $L_1 \oplus L_2$ we denote the orthogonal direct sum of lattices L_1 and L_2 . For a lattice L and an integer m we denote by L(m) the lattice whose bilinear form is the one on L multiplied by m. Also we denote by U the lattice of rank 2 with the intersection matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and by A_m , D_n and E_k the negative definite lattices associated with the Dynkin diagram of type A_m , D_n and E_k respectively. A lattice L is called even if $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$. Let S be a non degenerate lattice. We denote by $S^* = \operatorname{Hom}(S, \mathbb{Z})$ the dual of S. Put $A_S = S^*/S$. Then A_S is a finite abelian group which is called the discriminant group of S. We denote by l(S) the number of minimal generators of A_S . A lattice S is called a 2-elementary if A_S is a 2-elementary abelian group. For a 2-elementary lattice S, we define a parity $\delta(S)$ of S as follows:

$$\delta(S) = egin{cases} 0 & ext{if } q_{\scriptscriptstyle S}(x) = 0 ext{ for all } x \in A_{\scriptscriptstyle S} \ 1 & ext{otherwise} \end{cases}$$

where q_s is the quadratic form on A_s induced from the one on S.

Proposition 1.1 ([8], Theorem 4.3.2). An indefinite 2-elementary even lattice is determined, up to isomorphisms, by the invariants (rank(S), l(S),

 $\delta(S)$).

The following tables give the description of Picard lattices of rank ≥ 9 of algebraic K3 surfaces with finite automorphism groups which we need for the proof of our theorem.

Table 2 $(S_x \text{ is 2-elementary, rank } S_x \geq 9).$

$\operatorname{rank}(S_{\scriptscriptstyle{X}})$	$S_{\scriptscriptstyle X}$					
19	$U \oplus E_{\scriptscriptstyle 8} \oplus E_{\scriptscriptstyle 8} \oplus A_{\scriptscriptstyle 1}$					
18	$U \oplus E_{{ ext{ iny 8}}} \oplus E_{{ ext{ iny 8}}}$					
17	$U \oplus E_8 \oplus E_7$					
16	$U\!\oplus\!E_{\scriptscriptstyle{8}}\!\oplus\!D_{\scriptscriptstyle{6}}$					
15	$U \oplus E_8 \oplus D_4 \oplus A_1$					
14	$U \oplus E_{\scriptscriptstyle 8} \oplus D_{\scriptscriptstyle 4}, \ U \oplus D_{\scriptscriptstyle 8} \oplus D_{\scriptscriptstyle 4}, \ U \oplus E_{\scriptscriptstyle 8} \oplus A_{\scriptscriptstyle 1}^{\scriptscriptstyle 4}$					
13	$U \oplus E_{\scriptscriptstyle 8} \oplus A_{\scriptscriptstyle 1}^{\scriptscriptstyle 3}, \ U \oplus E_{\scriptscriptstyle 7} \oplus A_{\scriptscriptstyle 1}^{\scriptscriptstyle 4}$					
12	$U \oplus E_8 \oplus A_1^2, \ U \oplus E_7 \oplus A_1^3, \ U \oplus D_6 \oplus A_1^4$					
11	$U \oplus E_8 \oplus A_1, \ U \oplus E_7 \oplus A_1^2, \ U \oplus D_6 \oplus A_1^3, \ U \oplus D_4 \oplus A_1^5$					
10	$U \oplus E_8, \ U \oplus D_8, \ U \oplus D_4 \oplus D_4, \ U(2) \oplus D_4 \oplus D_4, \ U \oplus E_7 \oplus A_1, \ U \oplus D_6 \oplus A_1^2, \ U \oplus D_4 \oplus A_1^4, \ U \oplus A_1^8$					
9	$U \oplus E_7$, $U \oplus D_6 \oplus A_1$, $U \oplus D_4 \oplus A_1^3$, $U \oplus A_1^7$, $U(2) \oplus A_1^7$					

Table 3 $(S_x \text{ is not 2-elementary and } \operatorname{rank}(S_x) \geq 9).$

$\mathrm{rank}\left(S_{\scriptscriptstyle X} ight)$	S_{x}
13	$U \oplus E_8 \oplus A_3$
12	$U \oplus E_{\scriptscriptstyle 8} \oplus A_{\scriptscriptstyle 2}$
11	$U \oplus E_{\scriptscriptstyle 6} \oplus A_{\scriptscriptstyle 2}$
9	$ U \oplus A_7, \ U \oplus D_4 \oplus A_8, \ U \oplus D_5 \oplus A_2, \ U \oplus D_7, \ U \oplus E_6 \oplus A_1 $

§ 2. Finite automorphisms of K3 surfaces

Let X be an algebraic K3 surface. We denote by $\operatorname{Aut}(X)$ the group of automorphisms of X. Let G be a finite subgroup of $\operatorname{Aut}(X)$ and let ω_X be a nowhere vanishing holomorphic 2-form on X. Then for $g \in G$, $g^*\omega_X = \alpha_X(g) \cdot \omega_X$ where $\alpha_X(g) \in C^*$. Therefore we have an exact sequence

$$1 \longrightarrow K \longrightarrow G \xrightarrow{\alpha_X} Z/m \longrightarrow 1$$

where \mathbf{Z}/m is a cyclic group of m-th root of unity in \mathbf{C}^* and K is the kernel of α_x . Moreover the representation of the cyclic group \mathbf{Z}/m in $T_x \otimes \mathbf{Q}$ is isomorphic to a direct sum of irreducible representations of the cyclic group \mathbf{Z}/m over \mathbf{Q} of maximal rank $\phi(m)$, where ϕ is the Euler function. In particular $\phi(m) \leq \operatorname{rank}(T_x)$ and hence $m \leq 66$ ([6], Theorem 3.1 and Corollary 3.2).

An automorphism g of X is called *symplectic* if $\alpha_X(g) = 1$. The classification of finite symplectic automorphism groups of K3 surfaces is recently given by S. Mukai [5], based on the study of abelian groups due to Nikulin [6].

PROPOSITION 2.1 ([6], § 5, [5], (0.1)). Let g be a symplectic automorphism of finite order n of a K3 surface. Then $n \leq 8$ and the number of fixed points f(n) depends only on n and is as follows:

n	2	3	4	5	6	7	8
f(n)	8	6	4	4	2	3	2

Let G be a finite symplectic automorphism group of a K3 surface. Put f(1) = 24 and $\mu(G) = (1/|G|) \sum_{g \in G} f(|g|)$. By the Lefschetz fixed point formula and an elementary representation theory, we have

Proposition 2.2 ([5], Proposition 2.4). $\mu(G) = 2 + \operatorname{rank}(L^G)$ where $L = H^2(X, \mathbb{Z})$ and $L^G = \{x \in L \mid g^*x = x \text{ for any } g \in G\}.$

In what follows we assume that Aut(X) is finite. Then we have an exact sequence

$$1 \longrightarrow G_X \longrightarrow \operatorname{Aut}(X) \xrightarrow{\alpha_X} \mathbb{Z}/m \longrightarrow 1$$

where G_X is the kernel of α_X . In Section 5 we shall need the following:

LEMMA 2.3. (i) If $\operatorname{rank}(S_x) \leq 14$, then G_x is a subgroup of $\mathbb{Z}/3$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$; (ii) If $\operatorname{rank}(S_x) \leq 12$, then G_x is a subgroup of $\mathbb{Z}/2$; (iii) If $\operatorname{rank}(S_x) \leq 8$, then $G_x = \{1\}$.

Proof. It follows from [6], Theorem 1.1 that L^{G_X} contains T_X . Since G_X is finite, the signature of $S_X^{G_X}$ is equal to (1, r), where r is a nonnegative integer. Hence $\operatorname{rank}(L^{G_X}) \geq \operatorname{rank}(T_X) + 1$. Note that $\operatorname{rank}(T_X) + \operatorname{rank}(S_X) = 22$. Now the assersions easily follows from Propositions 2.1 and 2.2.

PROPOSITION 2.4 ([6], § 10). Assume that $G = G_X$ is a subgroup of $\mathbb{Z}/3$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$. Then the discriminant group A_{L^G} of L^G is as follows:

\overline{G}	Z/2	Z/2 imes Z/2	Z/3	
$A_{{\scriptscriptstyle L}^{\scriptscriptstyle G}}$	$(Z/2)^8$	$(Z/2)^8 imes (Z/4)^2$	$(Z/3)^6$	

§ 3. Elliptic pencils on K3 surfaces

Let X be a K3 surface. An *elliptic pencil* $\pi: X \to \mathbf{P}^1$ is a holomorphic map π from X to \mathbf{P}^1 whose general fibres are smooth elliptic curves. An effective divisor D is called a m-section of π if $D \cdot F = m$, where F is a fibre of π and $m \in \mathbb{N}$. A 1-section is simply called a *section*. All singular fibres of an elliptic pencil were classified by Kodaira [1]. We use the terminology of singular fibres in [1]. The following lemma follows from [11], §3, Corollary 3, the Riemann-Roch theorem and the classification of singular fibres of elliptic pencils [1].

LEMMA 3.1. Let X be an algebraic K3 surface and let S_X be the Picard lattice of X. Assume that $S_X = U \oplus K$, where K is a negative definite lattice. Then

- (i) there exists an elliptic pencil $\pi: X \to P^1$ with a section.
- (ii) If $K = K_1 \oplus N$, where K_1 and N are negative definite lattices and N is generated by elements with square (-2), then π has a singular fibre F as in the following table:

N	A_1	A_2	$A_n (n \ge 3)$	$D_n \ (n \geq 4)$	$E_{\scriptscriptstyle 6}$	E_{7}	E_{8}
\overline{F}	I_2 or III	I ₃ or IV	I_{n+1}	\mathbf{I}_{n-4}^*	IV*	III*	П*

The following will be used in the latter to prove the existence of symplectic automorphisms.

PROPOSITION 3.2 ([1], Theorem 12.2, [12], Corollaries 1.5, 1.7). Let X be an algebraic K3 surface and S_X the Picard lattice of X. Let $\pi\colon X\to \mathbf{P}^1$ be an elliptic pencil with a section and let F_{ν} $(1\leq \nu\leq k)$ be all singular fibres of π . We denote respectively by ε_{ν} , m_{ν} or μ_{ν} the Euler number of F_{ν} , the number of irreducible components of F_{ν} or the number of simple components of F_{ν} . Then

- (i) $\sum_{\nu=1}^k \varepsilon_{\nu} = 24$ (= the Euler number of X),
- (ii) $\operatorname{rank}(S_x) = r + 2 + \sum_{\nu=1}^k (m_{\nu} 1)$ where r is the rank of the group of sections of π ,
- (iii) when r = 0, let n denote the order of the group of sections of π . Then we have

$$|\det(S_X)| = \prod_{\nu=1}^k \mu_{\nu}/n^2$$
.

§ 4. Proof of the Theorem—the case when $rank(S_X) \ge 15$

In this section and the next we prove our theorem. By our proof in the following, we can see:

PROPOSITION. Let X be an algebraic K3 surface with finite automorphism group Aut(X). Then the subgroup G_X of symplectic automorphisms of Aut(X) is uniquely determined by the isomorphism class of S_X .

The assersion (ii) in Theorem follows from this Proposition and the exact sequence (1). For simplicity, in the following, we assume that X is a general algebraic K3 surface with finite automorphism group.

Let X be a general algebraic K3 surface with finite automorphism group and rank $(S_x) \geq 15$. Then S_x is a 2-elementary lattice (see Table 2). By [8], Section 4, there exists an automorphism σ of order 2 such that $\sigma^*|S_x=1_{S_x}$ and $\sigma^*|T_x=-1_{T_x}$. Therefore we have an exact sequence:

$$1 \longrightarrow G_X \longrightarrow \operatorname{Aut}(X) \xrightarrow{\alpha_X} \mathbb{Z}/2 \longrightarrow 1$$

where $\mathbb{Z}/2$ is generated by σ . Since $g^*|T_X=1_{T_X}$ for all $g\in G_X$, $g^*\circ\sigma^*=\sigma^*\circ g^*$. It follows from the global Torelli theorem [11] that $g\circ\sigma=\sigma\circ g$. Hence the above exact sequence splits: $\operatorname{Aut}(X)\simeq G_X\times \mathbb{Z}/2$.

A dual graph of smooth rational curves is the following simplicial complex Γ : (i) the set of vertices is a set of smooth rational curves on

X; (ii) the vertices C, C' are joined by m-tuple line if $C \cdot C' = m$.

To determine the group G_X we use the dual graph of all smooth rational curves on X. Such graphs were found by Nikulin [8]. However for $S_X = U \oplus E_8 \oplus E_8 \oplus A_1$, his graph is not complete (compare the following graph in Figure 1 with the table 2 in [8], § 4, Part 5). It follows from [13], Proposition 1 and [14], Lemma 2.4 that the following graph represents all smooth rational curves on X.

Let Γ be the dual graph of all smooth rational curves on X (see Figures 1–5). Consider the natural homomorphism ρ : $\operatorname{Aut}(X) \to \operatorname{Aut}(\Gamma)$, where $\operatorname{Aut}(\Gamma)$ is the symmetry group of Γ . Since S_X is generated by the classes of smooth rational curves in Γ , the kernel of ρ acts on S_X as identity. Hence the symplectic group G_X is regarded as a subgroup of $\operatorname{Aut}(\Gamma)$.

(4.1) $S_x = U \oplus E_{\mathfrak{s}} \oplus E_{\mathfrak{s}} \oplus A_{\mathfrak{l}}$. The following diagram Γ is the dual graph of all smooth rational curves on X:

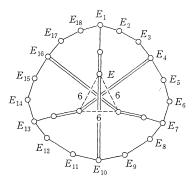


Figure 1

Obviously the symmetry group $Aut(\Gamma)$ is isomorphic to \mathfrak{S}_3 .

We now claim that $G_X \simeq \mathfrak{S}_3$. First consider the elliptic pencil $|\mathcal{L}_1| = |\sum_{i=1}^{18} E_i|$ which has a section and a singular fibre of type I_{18} . By the formulas in Proposition 3.2, we can see that $|\mathcal{L}_1|$ has only one reducible singular fibre of type I_{18} and the group of sections of $|\mathcal{L}_1|$ is isomorphic to $\mathbb{Z}/3$. These sections act on X as a symplectic automorphism of order 3 which is a rotation of Γ of order 3. Next consider the elliptic pencil $|\mathcal{L}_2| = |E + E_{10}|$ which has a section and two singular fibres of type I_2 and of type I_{12} . Again it follows from the formulas in Proposition 3.2 that $|\mathcal{L}_2|$ has only two reducible singular fibres of type I_2 and of type

 I_{12}^* and the group of sections of $|\mathcal{L}_2|$ is isomorphic to $\mathbb{Z}/2$. Therefore $G_{\mathcal{X}} \simeq \mathfrak{S}_3$.

(4.2) $S_X = U \oplus E_{\mathfrak{g}} \oplus E_{\mathfrak{g}}$. The following diagram Γ is the dual graph of all smooth rational curves on X:

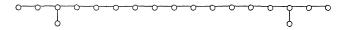


Figure 2

We claim that $G_X \simeq \operatorname{Aut}(\Gamma)$ ($\simeq \mathbb{Z}/2$). Let φ be an isometry of S_X defined by $\varphi((x,y,z)) = (x,z,y)$ where $(x,y,z) \in U \oplus E_{\mathfrak{g}} \oplus E_{\mathfrak{g}}$. Note that the second cohomology lattice $L = H^2(X,\mathbb{Z})$ is the direct sum of S_X and T_X . Put $\tilde{\varphi} = (\varphi, 1_{T_X}) \colon S_X \oplus T_X \to S_X \oplus T_X$. Then by the global Torelli theorem [11], there exists an automorphism g of X such that $g^* = \tilde{\varphi}$ on L. By construction, g is symplectic and generates $\operatorname{Aut}(\Gamma)$. Hence $G_X \simeq \mathbb{Z}/2$ and $\operatorname{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(4.3) $S_X = U \oplus E_3 \oplus E_7$. The following diagram Γ is the dual graph of all smooth rational curves on X:

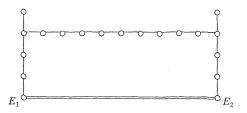


Figure 3

Obviously $\operatorname{Aut}(\Gamma) \simeq \mathbb{Z}/2$. By considering the elliptic pencil $|E_1 + E_2|$ with a section, we have a symplectic automorphism of order 2 which acts on Γ as a symmetry of order 2. Hence we have $\operatorname{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(4.4) $S_X = U \oplus E_{\mathfrak{g}} \oplus D_{\mathfrak{g}}$. The following diagram Γ is the dual graph of all smooth rational curves on X:

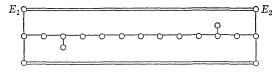


Figure 4

We can see $\operatorname{Aut}(\Gamma) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$. We select a generator $\{\gamma_1, \gamma_2\}$ of $\operatorname{Aut}(\Gamma)$ as follows; γ_1 is the reflection of Γ with $\gamma_1(E_1) = E_2$ and γ_2 is the reflection with respect to the middle horizontal line. By considering the elliptic pencil $|E_1 + E_2|$ with a section, we have a symplectic automorphism g whose action on Γ coincides with γ_1 . On the other hand, if γ_2 is represented by a symplectic automorphism g', then g' preserves 15 smooth rational curves respectively (see Figure 4). Hence the number of fixed points of g' is greater than 8 which is impossible (Proposition 2.1). Thus we have $G_{\chi} \simeq \mathbb{Z}/2$ and $\operatorname{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(4.5) $S_X = U \oplus E_{\mathfrak{s}} \oplus D_{\mathfrak{s}} \oplus A_{\mathfrak{l}}$. The following diagram Γ is the dual graph of all smooth rational curves on X:

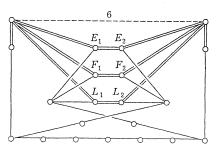


Figure 5

We can see that $\operatorname{Aut}(\varGamma)\simeq \mathfrak{S}_3\times \mathbb{Z}/2$ where $\mathbb{Z}/2$ is generated by the reflection Υ with $\Upsilon(E_1)=E_2$ and \mathfrak{S}_3 is the permutations of the set $\{E_1,\,F_1,\,L_1\}$. By considering the elliptic pencil $|E_1+E_2|$ with a section, Υ is represented by a symplectic automorphism of order 2. On the other hand, any element of \mathfrak{S}_3 is not represented by a symplectic automorphism because a symplectic automorphism of order 2 (resp. of order 3) has exactly 8 (resp. 6) isolated fixed points (Proposition 2.1). Therefore we have $G_{\mathfrak{X}}\simeq \mathbb{Z}/2$ and $\operatorname{Aut}(X)\simeq \mathbb{Z}/2\times \mathbb{Z}/2$.

§ 5. Proof of the Theorem—the case when rank $(S_X) \leq 14$

(5.1) First we remark that G_X is trivial if $\operatorname{rank}(S_X) \leq 8$ (Lemma 2.3, (iii)). Hence it suffices to consider the case that $9 \leq \operatorname{rank}(S_X) \leq 14$. In these cases, G_X is a subgroup of $Z/2 \times Z/2$ or Z/3 (Lemma 2.3). Consider a primitive embedding $T_X \subset L^{G_X}$ and denote by T_X^{\perp} the orthogonal complement of T_X in L^{G_X} . Then $T_X \oplus T_X^{\perp}$ is a sublattice of L^{G_X} of finite index and $A_{L^{G_X}}$ is a quotient group of $A_{T_X \oplus T_X^{\perp}}$, and hence $l(T_X \oplus T_X^{\perp}) \geq l(L^{G_X})$.

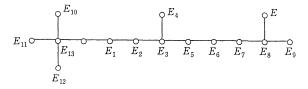
Since $\operatorname{rank}(T_{\overline{X}}) \geq l(T_{\overline{X}})$ and $l(T_{\overline{X}}) = l(S_{\overline{X}})$, we have $l(S_{\overline{X}}) + \operatorname{rank}(T_{\overline{X}}) \geq l(L^{G_{\overline{X}}})$. Therefore it follows from Proposition 2.4 that:

 $G_X=\{1\}$ or Z/2 if $S_X=U\oplus E_8\oplus D_4$, $U\oplus D_8\oplus D_4$, $U\oplus E_8\oplus A_1^4$, $U\oplus E_7\oplus A_1^3$, $U\oplus E_7\oplus A_1^3$, $U\oplus D_4\oplus A_1^6$, $U\oplus D_4\oplus A_1^5$, $U\oplus E_8\oplus A_1^3$, $U\oplus E_7\oplus A_1^3$, $U(2)\oplus D_4\oplus D_4$, $U\oplus D_6\oplus A_1^3$, $U\oplus A_1^7$, $U\oplus D_4\oplus A_1^4$, $U\oplus A_1^8$ or $U(2)\oplus A_1^7$ and $G_X=\{1\}$ if S_X is otherwise. Moreover, if $G_X=Z/2$ and $S_X=U\oplus E_8\oplus A_1^3$, $U\oplus E_7\oplus A_1^3$, $U\oplus D_8\oplus A_1^3$, $U\oplus A_1^7$ or $U\oplus D_4\oplus A_1^4$, then $A_{L^G_X}=A_{T\oplus T_X^+}$ and hence $L_{X}^{G_X}=T_X\oplus T_X^+$. This is a contradiction because $L_{X}^{G_X}$ is a 2-elementary lattice with $\delta_{L^{G_X}}=0$ and, on the other hand, T_X is a 2-elementary lattice with $\delta_{T_X}=1$. Also, if $S_X=U\oplus E_8\oplus D_4$ and $G_X=Z/2$, then $l(L^{G_X})=l(T_X)+l(T_X^+)$ and hence $L^{G_X}=T_X\oplus T_X^+$. Hence T_X^+ is a 2-elementary lattice with T_X^+ and T_X^+ and T_X^+ is a 2-elementary lattice with T_X^+ and $T_$

Hence $G_X = \{1\}$ if $S_X = U \oplus E_6 \oplus D_4$, $U \oplus E_8 \oplus A_1^3$, $U \oplus E_7 \oplus A_1^3$, $U \oplus D_6 \oplus A_1^3$, $U \oplus D_4 \oplus A_1^4$ or $U \oplus A_1^7$.

In the following we shall see that $G_X = \mathbb{Z}/2$ if $S_X = \mathbb{U} \oplus D_8 \oplus D_4$, $U \oplus E_8 \oplus A_1^4$, $U \oplus E_7 \oplus A_1^4$, $U \oplus D_6 \oplus A_1^4$, $U \oplus D_4 \oplus A_1^6$, $U \oplus D_4 \oplus A_1^5$, $U(2) \oplus D_4 \oplus D_4$, $U \oplus A_1^8$ or $U(2) \oplus A_1^7$.

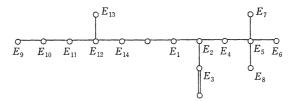
(5.2) $S_X = U \oplus D_8 \oplus D_4$. Note that there exists an elliptic pencil with a section whose reducible singular fibres are of type I_0^* and of type I_4^* (Lemma 3.1). Hence we have the following dual graph of smooth rational curves on X:



where E_1 is a section of this pencil and others are components of singular fibres. Let us consider the elliptic pencil $|\mathcal{A}| = |2E_1 + 4E_2 + 6E_3 + 3E_4 + 5E_5 + 4E_6 + 3E_7 + 2E_8 + E_9|$. Then E_{10} , E_{11} , E_{12} and E_{13} are components of a singular fibre F of this pencil $|\mathcal{A}|$. By Proposition 3.2, F is of type I_0^* and hence there exists a smooth rational curve E_{14} with $E_{10} + E_{11} + E_{12} + E_{14} + 2E_{13} \in |\mathcal{A}|$. Since E is a 2-section of $|\mathcal{A}|$, $E \cdot E_{14} = 2$. Then the elliptic pencil $|E_{14} + E|$ has two sections E_{13} , E_8 and these two sections define a symplectic automorphism. Therefore $G_X \simeq \mathbb{Z}/2$.

(5.3) $S_X = U \oplus E_8 \oplus A_1^4$. First we remark that $U \oplus E_8 \oplus A_1^4$ is isomor-

phic to $U \oplus E_7 \oplus D_4 \oplus A_1$ (Proposition 1.1). Therefore there exists an elliptic pencil with a section which has three reducible singular fibres of type III*, I_0^* and I_2 (Lemma 3.1). Hence we have the following dual graph of smooth rational curves on X:



where E_2 is a section of this pencil and others are components of singular fibres. Consider the elliptic pencil $|\mathcal{A}| = |E_1 + E_3 + E_6 + E_7 + 2(E_2 + E_4 E_5)|$. Then E_j , $9 \le j \le 14$, are contained in some singular fibre F fo $|\mathcal{A}|$. It follows from Proposition 3.2 that F is of type I_2^* . Hence there exists a smooth rational curve E with $E + E_9 + E_{13} + E_{14} + 2(E_{10} + E_{11} + E_{12}) \in |\mathcal{A}|$. Since E_8 is a 2-section of $|\mathcal{A}|$, $E \cdot E_8 = 2$. Then the elliptic pencil $|E + E_8|$ has two sections E_5 and E_{10} which define a symplectic automorphism of order 2. Therefore we have $G_X \simeq \mathbb{Z}/2$.

(5.4) $S_X = U \oplus E_7 \oplus A_1^4$. First note that $U \oplus E_7 \oplus A_1^4 \simeq U \oplus D_6 \oplus D_4 \oplus A_1$ (Proposition 1.1). Since there exists an elliptic pencil with a section which has three reducible singular fibres of type I_2^* , I_0^* and I_2 (Lemma 3.1), we have the following dual graph:

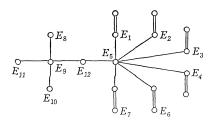
where E_5 is a section of this pencil and others are components of singular fibres. Consider the elliptic pencil $|\varDelta|=|E_1+E_2+E_6+E_7+2(E_3+E_4+E_5)|$. Then E_j , $8\leq j\leq 12$, are components of singular fibres of $|\varDelta|$. Since K is a section of $|\varDelta|$ and $K\cdot E_8=K\cdot E_9=1$, E_8 is not a component of a singular fibre containing E_9 . It now follows from Proposition 3.2 that the reducible singular fibres of $|\varDelta|$ are of type I_2^* , I_0^* and I_2 . Hence there exists a smooth rational curve E with $E+E_9+E_{11}+E_{12}+2E_{10}\in |\varDelta|$. Since F is a 2-section of $|\varDelta|$, $E\cdot F=2$. The elliptic pencil |E+F| has two sections E_3 and E_{10} , and hence $G_X\simeq Z/2$.

(5.5) $S_X = U \oplus D_6 \oplus A_1^4$. First note that $U \oplus D_6 \oplus A_1^4 \simeq U \oplus D_4 \oplus D_4 \oplus A_1^2$ (Proposition 1.1). Since there exists an elliptic pencil with a section which has 4 reducible singular fibres of type I_0^* , I_0^* , I_2 and I_2 (Lemma 3.1), we have the following dual graph:

$$E_{4} \qquad E_{5} \qquad E_{2} \qquad \vdots$$

where E_5 is a section of this pencil and others are components of singular fibres. Then the elliptic pencil $|E_1 + E_2 + E_3 + E_4 + 2E_5|$ has two sections. Hence $G_X \simeq \mathbb{Z}/2$.

(5.6) $S_x = U \oplus D_4 \oplus A_1^6$. Since there exists an elliptic pencil with a section which has one singular fibre of type I_0^* and 6 singular fibres of type I_2 (Lemma 3.1), we have the following dual graph of smooth rational curves:



where E_5 is a section of this pencil and others are components of singular fibres. Consider the elliptic pencil $|\varDelta|=|E_1+E_2+E_3+E_4+2E_5|$. Then E_j , $6 \le j \le 11$, are components of singular fibres of $|\varDelta|$. By Proposition 3.2, the following two cases occur: (α) $|\varDelta|$ has reducible singular fibres of type I_0^* , I_0^* , I_0^* , I_2 and I_2 ; (β) $|\varDelta|$ has two reducible singular fibres of type I_2^* and I_0^* . In case (α) , we may assume that there exists a smooth rational curve E with $E+E_6 \in |\varDelta|$. Since E_{12} is a 2-section of $|\varDelta|$, we have $E \cdot E_{12} = 2$. Then the elliptic pencil $|E+E_{12}|$ has two sections E_5 and E_9 , and hence $G_X \simeq Z/2$. In case (β) , we may assume that there exists a smooth rational curve E with $E_6 + E_7 + E_8 + E_{11} + 2E_9 + 2E_{10} + 2F \in |\varDelta|$. Then the elliptic pencil $|E_8 + E_{10} + E_{11} + E_{12} + 2E_9|$ has two sections E_5 and E_7 , and hence $E_8 \simeq Z/2$.

- (5.7) $S_x = U \oplus D_4 \oplus A_1^5$. In this case, the same argument as in (5.6) shows $G_x \simeq \mathbb{Z}/2$.
- (5.8) $S_x = U(2) \oplus D_4 \oplus D_4$. First we claim that S_x is isomorphic to $U \oplus K$, where K is a negative definite lattice of rank 8. Let $\{e, f\}$ be a basis of U(2) and $\{e_j\}$, $\{f_j\}$ the two copies of a basis of D_4 as in the following dual graphs:

Put $\delta = e + f + e_1 + f_1$. Then $\delta^2 = 0$ and $\langle \delta, e_4 \rangle = 1$. Hence δ and e_4 generate a sublattice of S_X isomorphic to U. So we have $S_X \simeq U \oplus K$. Therefore there exists an elliptic pencil $|\mathcal{L}|$ with a section (Lemma 3.1). It follows from Proposition 3.2, (ii) that K has a sublattice K' of finite index which is generated by some components of singular fibres of $|\mathcal{L}|$. Since K is a 2-elementary lattice with rank K = 8, det $K = 2^6$ and $\delta_K = 0$, we can see that $K \neq K'$. Hence the group of section of $|\mathcal{L}|$ is not trivial (Proposition 3.2, (iii)). Therefore $G_X \simeq \mathbb{Z}/2$.

(5.9) $S_X = U \oplus A_1^8$, $U(2) \oplus A_1^7$. In these cases, to prove $G_X \simeq \mathbb{Z}/2$, we give a lattice theoretic construction of a symplectic automorphism.

In case $S_x = U \oplus A_s^s$, consider a sublattice $\langle 2 \rangle \oplus \langle -2 \rangle \oplus A_s^s$ of S_x . Since a 2-elementary lattices S is determined by $\operatorname{rank}(S_x)$, l(S) and the parity of S, this sublattice is isomorphic to $\langle 2 \rangle \oplus \langle -2 \rangle \oplus E_s(2)$ (Proposition 1.1). By this isomorphism, we consider $\langle 2 \rangle \oplus \langle -2 \rangle \oplus E_s(2)$ as a sublattice of S_x . Let ι be an involution of $\langle 2 \rangle \oplus \langle -2 \rangle \oplus E_s(2)$ such that $\iota | \langle 2 \rangle \oplus \langle -2 \rangle = 1$ and $\iota | E_s(2) = -1$. Since $\langle 2 \rangle \oplus \langle -2 \rangle$ and $E_s(2)$ are 2-elementary, ι extends to an involution ι' of S_x . By construction, ι' acts on the discriminant group A_{S_x} as identity. Hence ι' extends to an involution $\bar{\iota}$ of L_x with $\bar{\iota} | T_x = 1$. $\bar{\iota}$ preserves a period of X and the Kähler cone because $E_s(2)$ contains no (-2)-elements. Hence by the global Torelli theorem [11], ι is represented by a symplectic automorphism of order 2.

In case $S_x = U(2) \oplus A_1^7$, we define two involutions σ and g of L_x as follows: let $\{\alpha_i, \beta_i\}$ be a copy of a basis of U $(1 \le i \le 3)$ and let $\{e_j\}$, $\{f_j\}$ be copies of a basis of E_8 $(1 \le j \le 8)$. Then $\{\alpha_i, \beta_i, e_j, f_j | 1 \le i \le 3, 1 \le j \le 8\}$ is a basis of $L_x = U \oplus U \oplus U \oplus U \oplus E_8 \oplus E_8$. Put $g \mid U \oplus U \oplus U \oplus U = 1$ and

 $g(e_j)=f_j,\ 1\leq j\leq 8,\ \sigma(\alpha_1)=\beta_1,\ \sigma(\alpha_i)=-\alpha_i,\ \sigma(\beta_i)=-\beta_i,\ 2\leq i\leq 3,\ {\rm and}\ \sigma(e_j)=-f_j,\ 1\leq j\leq 8.$ Then $L^{\langle\sigma\rangle}$ is isomorphic to $\langle 2\rangle\oplus E_8(2)\simeq U(2)\oplus A_1^r$ which is generated by $\{\alpha_1+\beta_1,\ e_j-f_j|j=1,\cdots,8\}.$ On the other hand $L^{\langle g\rangle}$ is isomorphic to $U\oplus U\oplus U\oplus E_8(2)$ which is generated by $\{\alpha_i,\ \beta_i,\ e_j+f_j|i=1,2,3,\ j=1,\cdots,8\}.$ How we consider $L_X^{\langle g\rangle}$ as a Picard lattices S_X . Then we can easily see that g preserves the Kähler cone of X and a period of X. Hence by the global Torelli theorem [11], g is represented by a symplectic automorphism. Thus we have $G_X\simeq Z/2$.

References

- [1] Kodaira, K., On compact analytic surfaces II, Ann. Math., 77 (1963), 563-626.III, Ann. Math., 78 (1963), 1-40.
- [2] Kondō, S., Enriques surfaces with finite automorphism groups, Japanese J. Math. (New Series), 12, (1986), 191-282.
- [3] —, On algebraic K3 surfaces with finite automorphism groups, Proc. Japan Acad., 62, Ser. A, No. 9 (1986), 353-355.
- [4] —, On automorphisms of algebraic K3 surfaces which acts trivially on Picard groups, Proc. Japan Acad., 62, Ser. A, No. 9 (1986), 356-359.
- [5] Mukai, S., Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. math., 94 (1988), 183-221.
- [6] Nikulin, V. V., Finite automorphism groups of Kähler surfaces of type K3, Proc. Moscow Math. Soc., 38 (1979), 75-137.
- [7] —, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., 14 (1980), 103-167.
- [8] —, On the quotient groups of the automorphism groups of hyperbolic forms by the subgroups generated by 2-reflections, J. Soviet Math., 22 (1983), 1401-1476.
- [9] —, On a description of the automorphism groups of Enriques surfaces, Soviet Math. Dokl., 30 (1984), 282-285.
- [10] —, Surfaces of type K3 with a finite automorphism group and a Picard group of rank three, Proc. Steklov Institute of Math. Issue, 3 (1985), 131-155.
- [11] Piatetskii-Shapiro, I., Shafarevich, I. R., A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., 35 (1971), 530-572.
- [12] Shioda, T., On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59.
- [13] Vinberg, E. B., On groups of unit elements of certain quadratic forms, Math. USSR Sbornik, 16 (1972), 17-35.
- [14] —, Some arithmetic discrete groups in Lobachevskii spaces, in "Discrete subgroups of Lie groups and applications to Moduli", Tata-Oxford (1975), 323-348.

Department of Mathematical Sciences Tokyo Denki University Hatoyama-machi, Hiki-gun, Saitama-ken, 350-03 Japan