
SIP (2016), vol. 5, e18, page 1 of 20 © The Authors, 2016.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited.
The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/ATSIP.2016.18

original paper

Moving object detection in the H.264/AVC
compressed domain
marcus laumer1, peter amon2, andreas hutter2, and andré kaup1

This paper presents a moving object detection algorithm for H.264/AVC video streams that is applied in the compressed domain.
The method is able to extract and analyze several syntax elements from any H.264/AVC-compliant bit stream. The number
of analyzed syntax elements depends on the mode in which the method operates. The algorithm is able to perform either a
spatiotemporal analysis in a single step or a two-step analysis that starts with a spatial analysis of each frame, followed by
a temporal analysis of several subsequent frames. Thereby, in each mode either only (sub-)macroblock types and partition
modes or, additionally, quantization parameters are analyzed. The evaluation of these syntax elements enables the algorithm
to determine a “weight” for each 4 × 4 block of pixels that indicates the level of motion within this block. A final segmentation
after creating these weights segments each frame to foreground and background and hence indicates the positions and sizes of all
moving objects. Our experiments show that the algorithm is able to efficiently detect moving objects in the compressed domain
and that it is configurable to process a large number of parallel bit streams in real time.

Keywords: Compressed domain, H.264/AVC, Segmentation, Syntax elements, Object detection

Received 31 January 2016; Revised 26 September 2016

I . I NTRODUCT ION

A major challenge in video analytics is to efficiently detect
regions within video frames that contain objects of inter-
est. Such objects may have a large variety of properties.
They can be, e.g., big or small, rigid or nonrigid, and mov-
ing or stationary. In many cases, the objects of interest are
onlymoving objects, whichmakes them clearly distinguish-
able from the background. Applications in which moving
objects are to be detected are, for instance, access control
systems or traffic control systems. Or, more general, within
any application scenario to solve vision tasks.

Since moving objects are usually clearly separable
from the background, moving object detection meth-
ods often start with a foreground/background segmenta-
tion. Thereby, the regions that contain the foreground, or
rather the moving objects, are separated from the static or
only slightly moving background. Subsequent steps applied
to these extracted regions could, for instance, be object
recognition or tracking techniques. The algorithm pre-
sented in this paper performs a foreground/background
segmentation of video streams that have been encoded

1Multimedia Communications and Signal Processing, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
2Sensing and Industrial Imaging, Siemens Corporate Technology, Munich, Germany

Corresponding author:
Marcus Laumer
Email: marcus.laumer@fau.de

according to the H.264/AVC (Advanced Video Coding)
standard [1, 2].

This standard describes a compression scheme for
videos. The used scheme is either more or less relevant
for the analysis algorithm, depending on the approach the
algorithm follows. There are two approaches for creating a
video analysis method, as diagramed in Fig. 1.

The traditional approach for analyzing videos is to ini-
tially decode the received stream to gain access to each
single pixel within a video frame. These raw pixel data have
to be stored in a frame buffer to be able to access it dur-
ing the pixel domain analysis. A corresponding processing
chain is depicted in Fig. 1(a). In this approach, the used
compression scheme is less important for the actual anal-
ysis. The encoded video frames are completely decoded
after the transmission over the network and only raw data
are analyzed according to, e.g., luminance, color, or texture
information.

Amore recent approach is to eliminate the computation-
ally costly step of decoding and to just parse the syntax of
the compression scheme instead. This obviously requires
to be aware of the used scheme and to adapt the analysis
algorithm to be able to evaluate the related syntax ele-
ments. Since in this approach the compressed bit stream
is directly analyzed, its representatives operate in the so-
called compressed domain. As can be seen in Fig. 1(b), the
video decoder and the frame buffer have been replaced
by a syntax parser, which only performs simple parsing
operations and omits complex decoding steps like motion

1https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

mailto:marcus.laumer@fau.de
https://doi.org/10.1017/ATSIP.2016.18

2 marcus laumer et al.

(a)

(b)

Fig. 1. Two video analysis approaches for different domains. Working in the compressed domain enables analysis algorithms to replace the video decoder and the
frame buffer by a simple syntax parser. (a) Pixel domain video analysis. (b) Compressed domain video analysis.

compensation. This permits compressed domain analysis
methods to be less complex and to perform very fast.
Additionally, the whole system benefits from less complex
compressed domain algorithms, compared with their pixel
domain counterparts.

H.264/AVC is still widely used in many application
like those in the target domains of our algorithm. The
most obvious domain is thereby visual surveillance but the
algorithm can be deployed in any domain in which a large
number of parallel streams should be efficiently and quickly
analyzed. Generally, the purpose of a compressed domain
analysis is to be able to make a fast decision for each stream
whether further analysis steps should be triggered.

Our algorithm is designed to efficiently detect regions
within video frames that contain moving objects. Thereto,
it extracts and parses several H.264/AVC syntax elements.
Namely these elements are (sub-)macroblock types, (sub-)
macroblock partition modes, and quantization parameters
(QPs). Furthermore, the algorithm can operate in differ-
ent modes. Either a single-step spatiotemporal analysis or
a two-step analysis that is starting with a spatial analysis
of each frame, followed by a temporal analysis of several
frames.

The remainder of this paper is organized as follows.
Section II presents recently published compressed domain
detection algorithms and the demarcation between them
and our algorithm. The subsequent Section III introduces
structures and syntax elements defined by the H.264/AVC
standard, before Section IV describes how these elements
are used by our moving object detection algorithm and
its different operating modes. Section V shows some of
our experimental results and comparisons with other algo-
rithms for several video sequences. Finally, we conclude
this paper with a summary and ideas for the future in
Section VI.

I I . RELATED WORK

Compressed domain analysis methods all have in common
that they parse and analyze syntax elements of a specific
compression scheme. Depending on the scheme and the
task to be completed, different syntax elements are eval-
uated. So, there exist several compressed domain analysis
algorithms that provide a variety of solutions for solving dif-
ferent problems. Some of these algorithms are presented in
this section.

Probably the most basic method of analyzing com-
pressed video bit streams is to perform an analysis without
any decoding or parsing of syntax elements at all. This
obviously just enables very basic problems to be solved
since only very few information about the video content is
available. A sample task that can be handled by such meth-
ods is global change detection, which means detecting any
change within an otherwise mainly static scene.

In our previous work in [3] we presented an algorithm
that is able to detect changes in video streams that are trans-
mitted by using the Real-timeTransport Protocol (RTP) [4].
Thereto, we just extract RTP timestamps for assigning pack-
ets to video frames and RTP packet sizes. According to the
number of packets per frame and their sizes we calculate
different indicators that show whether a frame contains a
content change. This does not require any decoding but only
simple byte-reading operations.

Schöberl et al. [5] introduced a change detection
algorithm for images compressed with JPEG 2000 [6]. In
contrast to H.264/AVC, JPEG 2000 has not been designed
to jointly encode several frames of a video sequence but to
compress still images by using a discrete wavelet transform.
However, the Motion JPEG 2000 [7] extension defines a
container format for storing several JPEG 2000-compliant
images of a sequence. Schöberl et al. calculate the local data
rate of any pixel of an image without performing the reverse
wavelet transform and thus without decoding image data.
Comparing these local data rates of two images enables their
algorithm to detect regions with changing content.

As soon as a compressed video stream is parsed and cer-
tain syntax elements become accessible, more sophisticated
problems can be solved in the compressed domain. For
instance, scene change detection [8], object tracking [9, 10],
or even face detection [11]. However, in many scenarios the
most important task is to be able to distinguish between
foreground and background. Thereby, foreground is usually
defined as regions with content of interest and inmost cases
the interest is on regions with moving content. That is the
reason why moving object detection is an important task in
many video applications, specifically in visual surveillance
scenarios.

Maybe the most obvious and basic approach for detect-
ing moving objects in the compressed domain has again
been described byKapotas and Skodras in [12]. They extract
the motion vectors from a H.264/AVC-compressed video
stream and calculate an adaptive threshold per frame to
determine foreground and background blocks. Thereby, the

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 3

threshold is simply set to the average length of all avail-
able motion vectors of the current frame. Blocks with a
corresponding motion vector whose length is above this
threshold are considered as foreground, all other blocks are
labeled as background. The foreground/background masks
of three consecutive frames are then merged to get the final
mask for the current frame. Although it can be assumed
that this approach will only work for a limited set of video
sequences, it shows that compressed domain video analysis
has usually a very low complexity and is therefore able to
perform very fast.

Like Schöberl et al., Poppe et al. [13] presented an
algorithm that is based on analyzing the amount of data
in bits. Their algorithm performs moving object detection
on H.264/AVC video streams by evaluating the data size
that has been required to represent a single macroblock
within the stream. Thereto, they determine the maximum
size of backgroundmacroblocks in an initial training phase.
Eachmacroblock whose size exceeds this determined size is
regarded as a foreground block. A post-processing step fur-
ther checks the remaining background blocks and decides
whether they should however be labeled foreground. In a
final step, the robustness of the foreground labels is double-
checked with the aid of macroblocks of the two directly
neighboring frames.

While Poppe et al. are modeling the background by tak-
ing the data size, Vacavant et al. [14] applied and evaluated
several common background modeling techniques. They
reported that backgroundmodeling by usingGaussianMix-
ture Models (GMM) achieves the highest detection rates.
Beside the background modeling process they perform the
same spatial and temporal filtering steps as described by
Poppe et al. in [13].

In [15], Verstockt et al. introduced a moving object
detection algorithm suitable for multi-view camera
scenarios. Their compressed domain algorithm is able to
locate moving objects on a ground plane by evaluating the
video content of several cameras that are capturing the same
scene. However, this method is still comparable with other
algorithms since the first step is to detect the objects in each
view separately. Thereto, they extract and analyze the par-
tition sizes of macroblocks. This results in binary images
that indicate the fore- and background of each frame. Fur-
ther spatial and temporal filtering processes, applied on
foregroundmacroblocks, then consider neighboring blocks
and frames, respectively, to make this segmentation more
robust.

Another method for detecting objects in the compressed
domain is to find their edges and boundaries. Tom and
Babu [16] described a method that evaluates the gradients
of the QPs on macroblock level. All macroblocks whose
QP exceeds a threshold are regarded as containing object
edges. Temporal accumulation of the results of several
frames then permits to label boundary and internal mac-
roblocks as such. The boundaries are further processed on
sub-macroblock level to increase their accuracy. Thereto,
blocks within the boundaries are analyzed with respect to
their sizes in bits. Once the boundaries are determined, the
regions that contain moving objects are extracted.

Sabirin and Kim introduced a method that evaluates
the motion data created by an H.264/AVC encoder, or
rather the motion vectors, and the residual data to detect
and track moving objects in [17]. They assume that it is
likely that moving objects either have non-zeromotion vec-
tors and/or non-zero residuals. Hence, they select all 4 × 4
blocks fulfilling this assumption and construct graphs out
of them, in which the blocks are the nodes and the neigh-
borhood relations are the edges. One graph is created per
frame and the moving object candidates form the sub-
graphs within the global graph. These spatial graphs are
then used to construct spatiotemporal graphs that describe
the graph relations of five consecutive frames. By further
processing the spatiotemporal graphs they identify and even
track – by matching sub-graphs of consecutive frames –
moving objects. Although the authors present good detec-
tion results, the method appears relatively complex because
of several graph-based processing steps. They state that half
of the processing time is required to construct the graphs,
which obviously even further increases with the number of
moving objects. Due to the fact that the motion vectors do
not always represent realmotion, a graphpruning process to
eliminate false detections is required, which also increases
the complexity and hence the processing time.

We previously worked on compressed domain moving
object detection as well. In [18], we presented a frame-
based algorithm that analyzes slice and macroblock types
for determining the fore- and background of a single frame.
Thereto, we extract all macroblock types of all slices of a
frame and group similar types to several categories. These
categories thereby roughly indicate the assumed probability
of the corresponding macroblocks contain moving objects,
which is expressed by a certain weight assigned to each cat-
egory. The actual algorithm processes each macroblock by
considering the weight of the current macroblock itself and
of its 24 neighbors. As a result, we get one map per frame
that indicates the probability for moving objects on mac-
roblock level. After applying a threshold to these maps and
an optional box filtering process, we obtain binary images
that show the fore- and background.

As already mentioned, compressed domain analysis
algorithms are usually intended for being used as pre-
processing step tomake a pre-selection for subsequent algo-
rithms. Therefore, we presented a person detection frame-
work [19] whose initial step is the just described algorithm.
The binary images are used to initialize search regions
for the Implicit ShapeModel (ISM), which detects objects in
the pixel domain for which it was previously trained offline.
Concatenating these two algorithms permits a significant
reduction in processing time without decreasing the detec-
tion rates, because of the ISM is not required to search
within the whole frame but only in the pre-selected region.

An algorithm that also combines pixel and compressed
domain analysis has been published by Käs et al. in [20].
It is intended for being used in traffic surveillance scenar-
ios, in which mainly two opposing directions for moving
objects are present: the two driving directions of roads.
Their algorithm uses an additional compressed domain
analysis to aid the pixel domain processing steps, which

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

4 marcus laumer et al.

enables a significant reduction of the complexity. In an
initial training phase, the algorithm performs compressed
domain and pixel domain analysis at the same time.
Thereby, each I frame is analyzed in the pixel domain by
a GMM algorithm, which results in a background model
that is further updated by analyzing each incoming I frame.
Within the compressed domain training part, the motion
vectors of P and/or B frames are analyzed to determine the
main directions of the vehicles. Furthermore, the resulting
motion vector field is used to perform Global Motion Esti-
mation (GME), which enables to detect camera motion due
to pans or zooms. The GME process is also used to roughly
detect moving objects after the training phase, since the
outliers of the GME usually indicate moving objects. But,
during the detection phase, mainly I frames are analyzed in
the pixel domain to identify moving vehicles by considering
the generated background model. The compressed domain
results from the GME process are used to track the vehicles
in P and B frames, i.e., between two I frames.

In [21], we recently presented some enhancements for
our frame-based object detection algorithm. All the above
described methods have in common that they either do not
consider temporal dependencies of consecutive frames or
only in a post-processing step after the actual segmenta-
tion. The enhanced algorithm in [21] overcomes this early
decision problem, inwhich precious information is lost pre-
maturely, by moving the decision process whether a block
belongs to the fore- or background to the very end of the
processing chain. Similar to its frame-based counterpart,
the first step of this algorithm is to categorize blocks with
similar properties. Thereby, the macroblock types, the mac-
roblock partition modes, the sub-macroblock types, and
the sub-macroblock partition modes that are available in
the H.264/AVC Baseline profile (BP) are evaluated and get
assigned weights that indicate the probability of containing
moving objects. A general rule is the smaller the partitions
the higher is this probability and thus the weight. The next
steps perform spatial and temporal processing of neighbor-
ing blocks. Since themethoddescribed in this paper is based
on the algorithm presented in [21], the detailed description
of the spatial and temporal weighting processes is given in
Section IV.C. The final step in which the adaptive threshold
is applied is explained in Section IV.D.

In addition to the algorithm in [21] in this paper we
present a single-step mode that calculates the final weights
directly by considering three dimensions, an extension that
enables processing of H.264/AVC streams that have been
compressed according to the High profile (HP), and exper-
imental results for an extended test set.

I I I . STRUCTURE AND SYNTAX
OF H .264/AVC

The international standard H.264/AVC [1, 2] describes the
syntax and its semantics and the decoding process of a
video compression scheme. It has been jointly developed
by the Moving Picture Experts Group (MPEG), which is

subordinated to the International Organization for Stan-
dardization/International Electrotechnical Commission
(ISO/IEC), and the Video Coding Experts Group (VCEG),
which belongs to the standardization sector of the Interna-
tional TelecommunicationUnion (ITU-T). The first version
of H.264/AVC has been published in 2003 and although its
successor standard High Efficiency Video Coding (HEVC)
[22, 23] has been completed in 2013, H.264/AVC is still
maintained, extended and also widely used in many appli-
cations. This section gives a brief overview of the structures
and syntax of H.264/AVC, mainly of the syntax elements
that are analyzed in our algorithm. A complete description
can be found in the standardization documents [1, 2] or in
the overview paper fromWiegand et al. [24].

A) Partitioning into blocks
H.264/AVC belongs to the category of block-based hybrid
video compression schemes. That means that a coded pic-
ture, as it is called in the standard, is not encoded in a whole
but split into smaller structures that are then encoded sepa-
rately. Please note that since we do not consider interlacing,
we will use the terms coded picture and frame interchange-
ably. The structures defined by the standard are illustrated
in Fig. 2.

Each frame of a video sequence is divided into so-called
macroblocks that have a size of 16 × 16 pixels. Thereby, the
macroblocks are disjoint and arranged in a grid, as can be
seen in the upper part of Fig. 2. Furthermore, H.264/AVC
defines so-called slices, which are formed by grouping sev-
eral macroblocks. Slices are also disjoint, i.e., a certain mac-
roblock only belongs to exactly one slice. In the example
in Fig. 2, the three slices consist of macroblocks that are
connected.

The lower part of Fig. 2 shows how macroblocks are
divided into sub-macroblocks and how the blocks can be
partitioned for motion compensation, which is used for
inter-frame prediction. A macroblock can either not be
further divided or be partitioned into two 16 × 8 blocks,
two 8 × 16 blocks, or four 8 × 8 blocks. In the case par-
titioning to 8 × 8 blocks is selected, these smaller blocks
are called sub-macroblocks, which can then also be further
partitioned according to the same patterns defined for mac-
roblocks. As a result, the smallest available blocks have a size
of 4 × 4 pixels.

Each macroblock gets assigned a macroblock type that
corresponds to the selected partitioning mode. This type
is directly extractable from a compressed bit stream, the
corresponding syntax element is called mb_type. In the
case a macroblock is split into sub-macroblocks, additional
syntax elements are added to the bit stream. The element
sub_mb_type represents the sub-macroblock type and
indicates, similar to mb_type, how this block has been
partitioned and predicted.

B) Intra- and inter-frame prediction
As already mentioned, blocks are predicted and only the
residual is encoded. There are several methods and modes

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 5

Fig. 2. Structures defined by the H.264/AVC standard. A frame consists of disjoint macroblocks that have a size of 16 × 16 pixels. Several macroblocks can be
grouped to disjoint slices. A macroblock can be divided into four sub-macroblocks with a size of 8 × 8 pixels. Macroblocks and sub-macroblocks can be partitioned
into rectangles or squares for motion compensation.

for the prediction process and not all modes are per-
mitted at any constellation. Similar to mb_type and
sub_mb_type, such a type element also exists for slices.
The syntax element slice_type defines which mac-
roblock types are permitted within the current slice. Please
note that SI and SP slices are not considered here, because
they are very rarely used in practice.

If slice_type indicates a so-called I slice, only intra-
frame predicted macroblocks, or rather Imacroblocks, are
allowed.Imacroblocks are thereby either directly predicted
or split into 4 × 4 blocks for predicting these partitions sep-
arately. The two slice typesP andB indicate that inter-frame
predicted, or rather P and B macroblocks, are also per-
mitted, in addition to the aforementioned I macroblocks.
Furthermore, these slice types permit the encoder to split
macroblocks into sub-macroblocks. So, it is possible that a
P macroblock has up to 16 motion vectors, in the case all
sub-macroblocks have been partitioned into 4 × 4 blocks.
The concept for B macroblocks is similar to that for P
macroblocks. The only difference is that these blocks are
bidirectionally predicted. Bidirectional prediction further
allows another 16 motion vectors per macroblock. Hence,
Bmacroblocks may have up to 32 motion vectors.

The created motion vectors for inter-frame predicted
blocks have to be transmitted to the decoder, together
with the corresponding frame indices. The frame indices
for each block are directly available within the bit stream.
Depending on the used list of reference frames, which are
called list 0 and list 1, the related syntax elements
are ref_idx_l0 and ref_idx_l1, respectively. The
motion vectors are not directly included in the bit stream,
they are also predicted first. Thereby, the predictor creation

is based on already determinedneighboringmotion vectors.
The difference between the actual motion vector and the
predictor is then included in the bit stream. The cor-
responding syntax elements are mvd_l0 and mvd_l1,
depending on the used list of reference frames.

C) Transform and quantization
The residuals resulting from intra- or inter-frame predic-
tion are not transferred directly but further processed first.
Initially, the residuals are transformed to the frequency
domain by a separable integer transform, which has been
designedwith similar properties as thewell-knownDiscrete
Cosine Transform (DCT). The following, important step is
the quantization of the transform coefficients. Thereby, a
linear quantizer is applied that is controlled by a so-called
QP. It can take values from 0 to 51, at which an increas-
ing value yields to increasing quantization step sizes, i.e.,
a stronger quantization.

The transform and hence the quantization is applied
to 4 × 4 blocks, but the QP is not necessarily the same
for all blocks. H.264/AVC defines some metadata struc-
tures that are valid for several components. For instance,
the Picture Parameter Set (PPS) sets common parame-
ters for several frames. One of these parameters is the
initial QP value, which is indicated by the syntax ele-
ment pic_init_qp_minus26. This QP value is used to
quantize all blocks, unless further adaptation is signaled in
the bit stream.

For adapting the initial QP value, H.264/AVC defines
two additional syntax elements. The first element is
slice_qp_delta, which is included in every slice

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

6 marcus laumer et al.

header. If this element is unequal to 0, at this stage, the
adapted QP value is valid for all blocks within this slice.
However, the finally used QP value can be further changed
on macroblock level. The syntax element mb_qp_delta,
if included in the bit stream, is used to change the QP value
for all blocks within this macroblock.

I V . MOV ING OBJECT DETECT ION

A) Coordinates and vectors
Before we describe the actual algorithm and its modes, we
need to define how to address certain blocks. Thereto, we
first define a Cartesian coordinate system, whose point of
origin lies at the upper left corner of the first frame of the
sequence, in display order. To be more precise, the point of
origin is equal to the coordinates of the first 4 × 4 block of
the first frame, which also means that the basis for the sys-
tem is in 4 × 4 block precision.Within one frame, blocks are
first counted from left to right, and then the rows of blocks
are counted from top to bottom.

To address a single block, we either use two-dimensional
(2D) or three-dimensional (3D) vectors, depending on the
mode in which the algorithm is operating. When using 3D
vectors, they are defined by

x3D := (k, x1, x2) ∈ N
3,

where N includes 0. Thereby, k indicates the current frame
and hence the temporal direction. As already mentioned,
k = 0 means the first frame of a sequence in display order.
The coordinates x1 and x2 indicate the block positionwithin
the image plane of frame k. For instance, vector (k, 0, 0)
describes the position of the first 4 × 4 block in frame k.

The 2D case defines similar vectors for the image planes.
The difference is that the first coordinate k is separated from
the vector and used beside it. Hence, the frames are still
addressed with k but the vector x is now defined by a 2D
vector as

x2D := (x1, x2) ∈ N
2.

Beside the vectors x2D and x3D, which indicate absolute
positions, we need to define displacement vectors. They
are basically defined analogously, but their coordinates can
take negative values aswell. As a consequence, displacement
vectors are defined by

y2D := (y1, y2) ∈ Z
2

and
y3D := (j , y1, y2) ∈ Z

3.

Furthermore, arithmetic operations on displacement vec-
tors are required to establish the algorithm. Thereto, the 2D
and 3D Euclidean norms are defined as usual by∥∥y2D

∥∥ :=
√

y1
2 + y2

2

and ∥∥y3D
∥∥ :=

√
j 2 + y1

2 + y2
2,

respectively.

B) Initial block weighting
The first step in our moving object detection algorithm
is assigning a specific weight to each 4 × 4 block of an
incoming frame. These weights reflect the assumed prob-
ability of motion within such a block. For determining the
weight that should be assigned to a certain block, we ana-
lyze the type of the macroblock to which this block belongs
to and the used partition mode in case of a P or B mac-
roblock. The reason for this procedure is that the encoder
already had to analyze the actual image content to be able
to select the most efficient block types and modes. Hence, it
is possible to estimate the amount of motion within a block
when evaluating the corresponding macroblock type and
partition mode.

Since H.264/AVC defines 32 different macroblock types
and additionally four sub-macroblock types for the BP and
even 58 macroblock and 17 sub-macroblock types for the
HP, we group similar types in certain categories at first.
Thereby, the categories differ in prediction modes and par-
tition sizes of the contained blocks. An overview of the
defined categories is given in Table 1. This table also states
the defined initial weightswinit for each category. They have
been chosen to express the assumed probability of motion
for the specific category. In general, the weight increases
with the assumed probability of motion.

All weights depend on a base weightwbase, which defines
the weight for the categories with lowest assumed motion.
Those are the categories P_SKIP and B_SKIP, i.e., P or
B macroblocks that have assigned the special macroblock
type SKIP. SKIP mode means that beside the indication
for the mode no further information is transmitted for
such an inter-frame predicted block, i.e., no residual, no
motion vector, and no reference frame index. Instead, the
predictor of the block is directly used to reconstruct its
content.

Furthermore, the assumption for inter-frame predicted
macroblocks is that the finer the partitioning is the higher
should be the assumed probability of motion. Hence, the
weight for not further divided macroblocks (16 × 16) is
two times the base weight, up to six times the base weight
for 4 × 4 blocks, as can be seen in Table 1. Blocks within
intra-frame predicted macroblocks, which are indicated by
I_ALL in Table 1, get always assigned themaximumweight

Table 1. Categories and initial weights winit defined according to block
types and partition modes of H.264/AVC. All weights depend on a base

weight wbase.

Category winit Category winit

P_SKIP wbase B_SKIP wbase

P_16 × 16 2 · wbase B_16 × 16 2 · wbase

P_16 × 8 3 · wbase B_16 × 8 3 · wbase

P_8 × 16 3 · wbase B_8 × 16 3 · wbase

P_8 × 8 4 · wbase B_8 × 8 4 · wbase

P_8 × 4 5 · wbase B_8 × 4 5 · wbase

P_4 × 8 5 · wbase B_4 × 8 5 · wbase

P_4 × 4 6 · wbase B_4 × 4 6 · wbase

I_ALL 6 · wbase

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 7

of six times the base weight. The reason is that the encoder
usually only selectsImacroblockswhen the block could not
predicted with less costly modes, which is valid for blocks
containing content that has no counterpart in neighboring
frames. This means that this content usually appears the
first time in the scene or that an occluded region is visi-
ble again. In both cases, this region is to be considered as
moving.

It is obvious that this categorization is only valid for P
and B slices, since I slices only consist of I macroblocks.
Hence, our algorithm just processes inter-frame predicted
slices andI slices or frames are interpolated from the results
of neighboring frames.

After performing the initial block weighting for a frame,
we obtain a map that roughly indicates the probability
of containing moving objects for each 4 × 4 block. Since
these maps do not yet enable the extraction of clearly sep-
arable regions with moving objects, further processing is
required. Hence, the initial weight maps are the input for
the algorithm described in the next section.

C) Spatial, temporal, and spatiotemporal
weighting
The main part of our algorithm is another weighting step
that processes the initial weightmaps that have been created
as described in the previous section. Thereby, the algorithm
is able to operate in two different modes, which can be
selected by the user.

In the first mode, a predefined number of frames, includ-
ing the current frame, is processed in three dimensions in
a single step. Thereto, the 3D vectors described in the pre-
vious section are used to address single 4 × 4 blocks. Since
neighboring blocks in the spatial and temporal direction are
analyzed at the same time, this method can be seen as a
spatiotemporal weighting process.

The secondmode separates the temporal weighting from
the spatial weighting. That means that in a first step incom-
ing frames are spatially processed by weighting the initial
weights of the blocks, which are addressed by using the 2D
vectors introduced in the previous section. The results of
a selected set of frames are then temporally processed by
another weighting operation. The benefit of this separation
is that a couple of calculations can be omitted and that yields
to a significant gain in processing speed.

The two modes are described in detail in the following
subsections.

Single-step mode
The single-step mode of our algorithm analyzes several
4 × 4 blocks of several frames in one equation. To calcu-
late the final weight of a block that indicates the proba-
bility of motion within this block, we analyze the initial
weights of a certain number of neighboring blocks within
the same frame and the same number of blocks in neighbor-
ing frames. So, the final weightw(x3D) of a block at position

x3D is calculated by

w
(
x3D

) = winit
(
x3D

) + 1

d1
·

∑
y3D∈M3D

winit
(
x3D + y3D

)
∥∥y3D

∥∥ ,

(1)

where d1 > 0 is a positive constant and set M3D is defined
by

M3D :=
{

y3D | (
y3D �= (0, 0, 0)

) ∧ (2)

(−np ≤ j ≤ ns
) ∧ (3)((y1

a

)2
+

(y2

b

)2
≤ 1

)}
, (4)

where a, b > 0 and np, ns ∈ N are constant values.
The first summand in (1) represents the initial weight

of the current block itself, which hence directly influences
the final weight. The second term in (1) is a sum of ini-
tial weights of spatially and temporally neighboring blocks
that are again weighted with their Euclidean distance to the
current block. The influence of this distance can addition-
ally be adapted by parameter d1. In general, it is essential
that the smaller the distance of the neighboring block to
the current block is, the higher is the influence of its initial
weight.

The number and positions of the blocks that are consid-
ered during the calculation are defined by the set M3D. Since
the current block itself is already considered by the first
term in (1), the displacement vector y3D may not be equal
to (0, 0, 0), as indicated by (2). The constant values np and
ns in (3) stand for the number of considered preceding and
subsequent frames to the current frame, respectively. That
means that only blocks whose position’s first coordinate j
lies within the range of indicated frames are considered.
Thereby, j ≡ 0 is valid and indicates the frame the current
block belongs to.

The last condition for set M3D in (4) defines a region sur-
rounding the current block. According to this definition,
the region is 2D with an elliptic shape, whose size is given
by the constant values a and b. The center of this ellipse is
the current block and all neighboring blocks whose center
point lies within this ellipse are considered during the cal-
culation. This is not only valid for the current frame but
for all neighboring frames as well. For those, the ellipse is
virtuallymoved to the co-located positionwithin the neigh-
boring frame, i.e., the center point of the ellipse lies on the
block with the same Cartesian coordinates x1 and x2 as for
the current block.

Geometrically interpreted the whole region across all
considered frames looks like a hose with elliptic profile.
This is illustrated in Fig. 3. The current block at a position
(k, x1, x2) for which the final weight should be calculated is
marked in dark gray. In this example, np = 1 and ns = 1,
so that three frames are evaluated in total: k − 1, k, and
k + 1. The blocks marked in light gray result from the size
and shape of the ellipse, whose semi-axes have been set to

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

8 marcus laumer et al.

Fig. 3. Illustration of the weighting process. The current block is marked in dark gray and all blocks considered during the calculation are marked in light gray.
Numbers within blocks indicate initial weights winit. Constant values: np = ns = 1, a = 3.5, b = 2.5, and wbase = 1.

a = 3.5 and b = 2.5 in this example. The ellipse is virtu-
ally displaced from frame k to the neighboring frames to
determine the blocks to be considered. During the actual
calculation all initial weights winit of considered blocks,
which are indicated by the numbers in Fig. 3, are weighted
by their Euclidean distance to the current block.

Two-step mode
The two-stepmode is actually very similar to the single-step
mode. The only but important difference is that the initial
weights are not weighted according to their Euclidean dis-
tance in a 3D space but the weighting process takes place in
two separate steps. The first step is to calculate an interme-
diate sum of initial weights for all considered blocks in each
involved frame. The considered blocks are thereby all blocks
within the defined ellipse, which is still virtually displaced to
neighboring frames, but now the sums are determined for
each frame separately. This means for the example in Fig. 3
that the three ellipse are individually processed at first.

This sum of initial weights wsum
(
k, x2D

)
of a block at

position x2D within frame k is mathematically defined by

wsum
(
k, x2D

) = winit
(
k, x2D

)

+ 1

d1
·

∑
y2D∈M2D

winit
(
k, x2D + y2D

)
∥∥y2D

∥∥ ,
(5)

where d1 > 0 is a positive constant. The set M2D is defined
by

M2D :=
{

y2D | (
y2D �= (0, 0)

) ∧ (6)

((y1

a

)2
+

(y2

b

)2
≤ 1

)}
, (7)

where a > 0 and b > 0 are positive constants.
In the two-step mode, the initial weights are hence

weighted with the 2D Euclidean distance from the corre-
sponding block to the current block. Thereby, the influence
of the distance can be adjusted by the parameter d1. The

set M2D is defined analogously to set M3D, though the
conditions for the temporal direction have been removed.

The second step involves the temporal direction in the
calculation. Thereto, the final weight w(k, x2D) of a block at
position x2D within frame k is calculated by

w
(
k, x2D

) = wsum
(
k, x2D

)

+ 1

d2
·

ns∑
j=−np

j �=0

wsum
(
k + j , x2D

)
| j | , (8)

where d2 > 0 and np, ns ∈ N are positive constants.
The number of neighboring frames is again given accord-

ing to the parameters np and ns. This time the sums of initial
weights are summed up and thereby the value is weighted by
the distance | j | between the corresponding frame and the
current frame. The parameter d2 can be used to adjust the
influence of this distance.

Themain benefit of the separation of the spatial and tem-
poral weighting process is that several calculations can be
omitted. For instance, the sums of initial weights are pre-
calculated and can be reused. The single-stepmode requires
to calculate the weights for each Euclidean distance in each
iteration separately. On the other hand, the distance of a
block to the current block is determined less accurately
than in single-step mode. These pros and cons will also be
reflected in the results presented in Section V.

D) Post-processing and segmentation
After creating the final weight maps according to either the
single-step or the two-step mode, we additionally apply a
2D discrete N × N Gaussian filter. Thereby, we adopt the
filter from our previous work described in [21]. The width
N of this filter depends on the standard deviation σ > 0 as
follows:

N = 2 ·
⌈

6 · σ + 1

2

⌉
− 1, (9)

where �·� indicates the ceiling function.

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 9

It is possible in some cases that there are high differences
between the final weights of neighboring blocks and this
could result in a patchy segmentation after the final thresh-
olding process. The purpose of the filtering is to smoothen
the maps before the actual segmentation.

The only hard decision within our algorithm is the
final thresholding process to obtain the segmented binary
images. A block at position x2D within frame k is labeled
foreground if the following equation becomes true, other-
wise the block belongs to the background:

w
(
k, x2D

) ≥ t
(
k, x2D

)
(10)

with

t
(
k, x2D

) = c1 · tbase − c2 · QP�

(
k, x2D

)
, (11)

where c1 ≥ 1 and c2 ≥ 0 are constant values.
For the 3D case w(x3D) is analogously defined by

w
(
x3D

) ≥ t
(
x3D

)
(12)

with

t
(
x3D

) = c1 · tbase − c2 · QP�

(
x3D

)
. (13)

In both cases, the base threshold tbase is defined by

tbase = (
π · a · b · (

np + ns + 1
)) · wbase. (14)

Thereby, tbase represents the minimum threshold valid for
ellipses in which all blocks have initial weights ofwbase. This
base threshold can be adjusted by the parameter c1.

The second term in (11) and (13) depends on the QP of
the corresponding block. In fact, QP� represents the delta
between the slice QP and the QP of the corresponding
block. Thatmeans in caseswere theQPhas been adjusted on
macroblock level, the threshold for these blocks is adjusted,
too. As a result of the final thresholding process, each frame
is segmented to foreground and background with an accu-
racy of 4 × 4 pixels.

V . EXPER IMENTAL RESULTS

A) Performance measures
Before the results of the algorithm can be measured, it is
necessary to define a meaningful measurement system. To
be comparable and by the reason of using measures every-
one is familiar with, the performance of our algorithm is
measured by using precision, recall, F score, and receiver
operating characteristic (ROC) curves. For the sake of conve-
nience, the measures are briefly described in the following.
A more detailed description and a good discussion of the
relationship between precision and recall and ROC curves
can be found in [25].

Precision and recall compare true positives (TP) with
false positives (FP) or false negatives (FN), respectively. So,

precision Pr is defined by

Pr = TP
TP + FP

, (15)

and recall Re is defined by

Re = TP
TP + FN

. (16)

That roughly means for detecting an object that recall indi-
cates how much of the object could be detected and that
precision indicates how accurate this detection thereby was.

The F score is related or more precisely based on pre-
cision and recall. It has been introduced to get a single
measure for the performance of an algorithm that can be
compared easier. The general F score Fβ is defined by

Fβ = (
1 + β2

) · Pr · Re
β2 · Pr + Re

, (17)

where β > 0 is a factor for weighting either recall higher
than precision or vice versa. Since our compressed domain
algorithm is intended for being used as a pre-processing
step, high recall values are more important than a good pre-
cision. Therefore, we provide the F2 score that weights recall
higher than precision.

Finally, we use ROC curves for determining the opti-
mum parameters. A ROC diagram plots the true positive
rate (TPR) against the false positive rate (FPR) of a system
at varying settings. The TPR is thereby equally defined as
recall by

TPR = TP
TP + FN

. (18)

The FPR is defined by

FPR = FP
FP + TN

, (19)

where TN indicates true negatives.
How true/false positives/negatives are counted is a mat-

ter of definition. In our case, we simply count pixels by
comparing them to manually labeled ground truth in pixel
accuracy. This, however, is not advantageous for measuring
the performance of our algorithm, since the resulting binary
images are in 4 × 4 pixel accuracy. Comparing these results
to ground truth in pixel accuracy will always show a lower
precision than comparing them to ground truth that has
4 × 4 pixel accuracy as well. But to provide a fair compari-
son with other algorithms, all measures are always based on
pixel accuracy in this work.

B) Test setup
We used two different datasets for our experimental tests.
The first dataset is the Multi-camera Pedestrian Videos
dataset, which has been created by the CVLAB from the
EPFL [26] and we therefore denote as CVLAB dataset.
It contains different scenarios in which the scenes have
been captured with several cameras. Since our algorithm

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

10 marcus laumer et al.

is intended for being used in single-view scenarios, we cre-
ated pixel-wise ground truth for six independent sequences
from this dataset: campus4-c0, campus7-c1, laboratory4p-
c0, laboratory6p-c1, terrace1-c0, and terrace2-c1. Thereby, the
ground truth is available for every tenth frame of the first
1000 frames, respectively.

The second dataset is the Pedestrian Detection Dataset
from changedetection.net [27], which we denote as CDNET
dataset. It is a subset of their Dataset2014 dataset and con-
tains ten different sequences: backdoor, busStation, copyMa-
chine, cubicle, office, pedestrians, peopleInShade, PETS2006,
skating, and sofa. They provide manually labeled pixel-wise
ground truth for each sequence. However, they define tem-
poral regions of interest (ROI) for the sequences, i.e., the
ground truth is only available for a subset of frames, respec-
tively. Furthermore, for sequence backdoor there is addi-
tionally defined a spatial ROI, i.e., only pedestrians inside
of this ROI should be detected. The spatial and temporal
ROI are also considered in our evaluation.

All test sequences have been encoded with FFmpeg 2.7.4
(libavcodec 56.41.100) [28] by using the included libx264 [29]
library. Thereby, mainly default parameters have been used,
except for the following parameters:

– Profile: Baseline (BP), High (HP)
– Level: 4.0
– Group of Pictures (GOP) size: 50
– Quantization Parameter (QP): 15, 20, 25, 30, 35

As a result, all 16 test sequences have been encoded with ten
different configurations and therefore our test set contains
160 sequences.

C) Parameter optimization
As described in Section IV, our algorithm has several
adjustable parameters. For finding optimized parameters
for the given scenarios, we adopt the procedure described in
our previous work in [21]. There we used the c0 sequences
from the CVLAB dataset and created 1944 test cases for
each sequence. Only one parameter changed from test case
to test case, which therefore covered all possible parameter
combinations. The optimized parameters, as resulted from
this analysis, have been the following:wbase = 1.0, d1 = 1.0,
d2 = 1.0, a = 2.5, b = 2.5, np = 2, ns = 2, σ = 1.0, c1 =
1.0, and c2 = 1.0.

In this work, we repeat a part of this analysis. Thereby,
we are changing the values of three parameters: σ ∈
{off, 1.0, 2.0}, c1 ∈ {1.0, 1.5, 2.0}, and c2 ∈ {0.0, 1.0, 2.0}. All
other parameters are fixed and set to the values mentioned
above. As a difference to the previous procedure, we test all
CVLAB sequences, including both profiles and all QP val-
ues, respectively. Furthermore, we test the single-step and
the two-step modes. This results in 27 test cases for each
sequence-profile-QP-mode combination and hence in 540
test cases for a single sequence.

Figure 4 shows ROC curves for some of the results of this
analysis. Since each curve is composed of only 27 supporting
points, they appear not very smooth. However, the figures

show that our algorithm is able to achieve a high TPR while
keeping the FPR low. The upper diagrams 4(a) and 4(b)
show ROC curves of all CVLAB sequences tested with
single-step and two-step mode, respectively. For the sake
of clarity, only the results of the sequences encoded with
QP = 30 are shown. It can be seen that high TPR are
achieved for all sequences. The only exception is sequence
campus4-c0, in which several persons stop moving for sev-
eral frames. Since these persons are then labeled as back-
ground, the TPR/recall drops for these frames. The lower
diagrams 4(c) and 4(d) depict the results for sequence
campus7-c1, including all encoder configurations. What
stands out is that the algorithm basically works for every
configuration, only low QP values let the FPR increase.
This observation is discussed in the next subsection in
detail.

The main result of this analysis is that the previously
determined parameter values are already a good choice.
Just the standard deviation of the Gaussian filter should be
changed to σ = 2.0 to obtain the optimum performance.
For the sake of completeness, all possible parameter values
are again depicted in Table 2. The finally selected parameter
values are bold-faced.

D) Results and discussion
Overview
For the determination of the detection performance of our
algorithm, we rely on the measures precision, recall, and F2

score, as already mentioned above. Figures 5 and 6 show
all three measures against the respective QP of the current
configuration, for CVLAB and CDNET sequences, respec-
tively. Furthermore, Tables 3 and 4 summarize the results
for sequences encoded with QP = 30, as an example.

The tables additionally provide the results of two
pixel-domain object detection algorithms for comparison.
Implementations of these two algorithms have been made
publicly available by OpenCV 2.4.11 [30] and are there-
fore used for comparing our algorithm with the state of
the art. Both OpenCV algorithms apply background sub-
traction methods and rely thereby on modeling the back-
ground by using a technique that is called Mixture of Gaus-
sians (MOG). The methods have been proposed by Kaew-
TraKulPong and Bowden [31] and by Zivkovic [32] and are
called MOG and MOG2 within OpenCV, respectively. We
applied both in default configuration; however, the object
shadows detected by MOG2 are labeled background in the
binary output images.

Figures 5 and 6 again show that our algorithm is able to
achieve a high recall. Furthermore, they depict that the per-
formance is highly depending on the stream properties or,
more precisely, on the selected QP. LowQP values cause the
algorithm to label almost the whole frame as foreground,
which indeed results in a recall near 1.0, but the precision
drops to almost 0.0. The reason for this is that setting small
QP values permits the encoder to spend a large number of
bits for each encoded block. As a result, the encoder mainly
selectsmacroblock types with small block partitions or even

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 11

(a) (b)

(c) (d)

Fig. 4. ROC curves of CVLAB test sequences. (BP: Baseline profile; HP: High profile; QP: quantization parameter). (a) CVLAB, single-step mode, QP 30. (b)
CVLAB, two-step mode, QP 30. (c) campus7-c1, single-step mode. (d) campus7-c1, two-step mode.

Table 2. Adjustable parameters and their possible values.
Finally selected values are bold-faced. Source: [21].

Parameter description Parameter Values

Base block weight wbase 1.0
Euclidean distance weight d1 1.0, 1.5
Frame distance weight d2 1.0, 1.5
Hor. half-axis of ellipse a 1.5, 2.0, 2.5
Ver. half-axis of ellipse b 1.5, 2.0, 2.5
No. of preceding frames np 0, 1, 2
No. of subsequent frames ns 0, 1, 2
Standard deviation of Gaussian filter σ off, 1.0, 2.0
Threshold weight c1 1.0, 1.5, 2.0
Threshold weight c2 0.0, 1.0, 2.0

I macroblocks. Macroblocks in SKIP mode become very
rare, which is crucial for our algorithm.

An increasing QP does not only mean an increasing
quantization step size, but also that the encoder tries to
select low-cost block types wherever applicable. As a conse-
quence, the chosen block types and partition modes reveal
more information about the content and therefore promote
our algorithm. Having regard to the F2 scores, Figs. 5 and
6 show that QP = 30 seems to be a good choice with an
appropriate trade-off between precision and recall.

Figures 5 and 6, and Tables 3 and 4 as well, additionally
allow a comparison between the BP and the HP. For most

sequences, using BP orHP does notmake a huge difference.
However, using theHPalmost always achieves a slightly bet-
ter performance. This effect increases for noisy sequences
like laboratory4p-c0 and laboratory6p-c1. Table 3 shows that
the precision could be increased from 0.36 to 0.57 or 0.24
to 0.45, respectively. This can be explained by the use of B
macroblocks that are more suitable to represent temporal
dependencies between frames.

Although using the single-step mode of our algorithm
instead of the two-step mode slightly increases the pre-
cision as well, this effect is not significant. The reason
for this increase is the weighting of, mainly the temporal,
neighboring blocks. Since this weighting is performed in a
single step and therefore more accurate than in its counter-
part, the influence of neighboring blocks is also represented
more precisely. Themain difference between the single-step
and the two-step mode is the processing speed, which is
described in Section V.E.

CVLAB sequences
It is obvious that the algorithm’s performance depends on
the actual video content. Figure 5 shows that the results of
some CVLAB sequences differ from the others. Although
the precision increases with increasing QP, the advance in
precision is less significant for sequences laboratory4p-c0
and laboratory6p-c1. These sequences are noisier than the

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

12 marcus laumer et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Precision, recall, and F2 score against QP for CVLAB test sequences. (BP: Baseline profile; HP: High profile; QP: quantization parameter). (a) Precision,
single-step mode. (b) Precision, two-step mode. (c) Recall, single-step mode. (d) Recall, two-step mode. (e) F2 score, single-step mode. (f) F2 score, two-step mode.

others and this directly influences the precision negatively.
Another example is sequence campus4-c0. The achieved
recall for this sequence is significantly lower than for the
other sequences. The reason for this is that our algorithm
has some difficulties with objects that stop moving. In this
case, it is likely that the encoder selects block types that are
closer to those of background blocks. So, these blocks would
be labeled background although they contain an object. In
sequence campus4-c0 three persons are moving around and
then one after the other stops, which results in dropping
recall values for affected frames.

Figure 7 shows examples of the results of the tested algo-
rithms for sequence campus7-c1. Both the single-step mode
and the two-stepmode are able to detect themoving person
adequately. This results in a recall of 0.92 or even 0.95 for the
whole sequence, if encoded with the HP, respectively. Fur-
thermore, our algorithm is able to achieve a high precision
by keeping FP low. They mainly only occur near the head
or the feet of the person, which is clearly visible in Figs. 7(b)
or 7(c), respectively. Hence, the achieved precision for this
sequence is 0.74 in single-step mode and 0.71 in two-step
mode.

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 13

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Precision, recall, and F2 score against QP for CDNET test sequences. (BP: Baseline profile; HP: High profile; QP: quantization parameter). (a) Precision,
single-step mode. (b) Precision, two-step mode. (c) Recall, single-step mode. (d) Recall, two-step mode. (e) F2 score, single-step mode. (f) F2 score, two-step mode.

The MOG algorithm seems to have some problems with
such sequences. While the precision is always close to or
even 1.0, the algorithm is not able to achieve high recall val-
ues. This means not only that the background is very well
detected, but also that several parts of themoving objects are
labeled as background as well. This can be for instance seen
in Fig. 7(d). Only a small region in the middle of the person
is detected as foreground. One reason is that the back-
ground model could not be updated adequately or rather
not accurately enough. The pants as well as the pullover

of the person have similar color to the background in this
image. Hence, the algorithm also labels those foreground
parts as background.

The behavior of the MOG2 algorithm is more or less the
other way round. Having regard to Fig. 7(e), the person is
accurately detected, although there are some missing parts
at the legs for the same reason, but the algorithm falsely
detects several parts of the background as foreground. As
a consequence, the precision drops, in this case only 0.19
could be achieved for the whole sequence.

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

14 marcus laumer et al.

Table 3. Summary of detection results for CVLAB test sequences encoded with QP = 30. Shown are the results of our algorithm in single- and
two-step modes, respectively, and the results of the OpenCV [30] algorithms MOG and MOG2. The first column also indicates the frame size and the

number of frames of the respective sequence.

Single-step mode Two-step mode MOG [31] MOG2 [32]
Sequence

(size, number) Profile Pr Re F2 FPS Pr Re F2 FPS Pr Re F2 FPS Pr Re F2 FPS

campus4-c0 BP 0.62 0.68 0.66 43 0.57 0.70 0.67 151 0.99 0.25 0.30 202 0.60 0.74 0.71 120
(352 × 288, 1010) HP 0.64 0.58 0.60 35 0.59 0.65 0.63 123 0.99 0.25 0.30 193 0.58 0.73 0.70 124

campus7-c1 BP 0.72 0.97 0.91 43 0.71 0.98 0.91 155 0.89 0.62 0.66 206 0.21 0.78 0.51 111
(352 × 288, 1010) HP 0.74 0.92 0.88 35 0.71 0.95 0.89 126 0.84 0.62 0.66 205 0.19 0.78 0.48 110

laboratory4p-c0 BP 0.36 0.94 0.71 42 0.32 0.96 0.69 134 1.0 0.48 0.53 196 0.42 0.87 0.72 104
(352 × 288, 1010) HP 0.57 0.90 0.81 39 0.53 0.93 0.81 122 1.0 0.47 0.53 188 0.44 0.87 0.73 102

laboratory6p-c1 BP 0.24 0.96 0.60 41 0.19 0.98 0.54 129 0.98 0.41 0.46 192 0.34 0.83 0.65 98
(352 × 288, 1010) HP 0.45 0.89 0.74 39 0.35 0.93 0.70 121 0.99 0.41 0.46 190 0.38 0.82 0.67 96

terrace1-c0 BP 0.53 0.90 0.79 43 0.51 0.92 0.79 146 0.99 0.37 0.42 194 0.11 0.69 0.33 100
(352 × 288, 1010) HP 0.57 0.81 0.75 35 0.55 0.87 0.78 122 0.99 0.37 0.42 193 0.10 0.68 0.31 97

terrace2-c1 BP 0.55 0.89 0.79 43 0.53 0.90 0.79 146 1.0 0.67 0.72 203 0.26 0.89 0.60 106
(352 × 288, 1010) HP 0.56 0.85 0.77 37 0.54 0.88 0.78 124 1.0 0.67 0.72 193 0.24 0.88 0.58 102

BP, Baseline profile; HP, High profile; Pr, precision; Re, recall; F2, F2 score; FPS, frames per second.

Table 4. Summary of detection results for CDNET test sequences encoded with QP = 30. Shown are the results of our algorithm in single- and
two-step modes, respectively, and the results of the OpenCV [30] algorithms MOG and MOG2. The first column also indicates the frame size and the

number of frames of the respective sequence.

Single-step mode Two-step mode MOG [31] MOG2 [32]
Sequence

(size, number) Profile Pr Re F2 FPS Pr Re F2 FPS Pr Re F2 FPS Pr Re F2 FPS

backdoor BP 0.68 0.99 0.91 57 0.65 0.99 0.90 196 0.30 0.77 0.58 232 0.08 0.91 0.29 123
(320 × 240, 2000) HP 0.71 0.99 0.92 48 0.65 1.0 0.90 163 0.30 0.77 0.58 247 0.08 0.91 0.29 122

busStation BP 0.69 0.73 0.72 50 0.66 0.75 0.73 173 0.75 0.35 0.39 216 0.19 0.73 0.47 117
(360 × 240, 1250) HP 0.73 0.60 0.62 41 0.69 0.63 0.64 143 0.75 0.35 0.39 213 0.18 0.73 0.46 116

copyMachine BP 0.48 0.46 0.47 13 0.45 0.50 0.49 43 0.92 0.57 0.61 56 0.51 0.86 0.76 32
(720 × 480, 3400) HP 0.57 0.43 0.45 10 0.54 0.46 0.48 36 0.92 0.57 0.61 54 0.51 0.86 0.76 32

cubicle BP 0.53 0.94 0.82 52 0.48 0.95 0.79 185 0.24 0.62 0.47 225 0.05 0.89 0.20 111
(352x240, 7400) HP 0.61 0.86 0.79 43 0.53 0.88 0.77 151 0.24 0.62 0.47 219 0.05 0.89 0.19 111

office BP 0.72 0.57 0.60 50 0.70 0.60 0.61 173 1.0 0.52 0.57 217 0.14 0.93 0.44 112
(360 × 240, 2050) HP 0.75 0.47 0.51 40 0.72 0.50 0.53 142 1.0 0.52 0.58 209 0.14 0.93 0.44 115

pedestrians BP 0.34 0.98 0.71 49 0.29 0.98 0.67 172 0.88 0.52 0.57 221 0.15 0.72 0.40 135
(360 × 240, 1099) HP 0.36 0.95 0.71 40 0.31 0.96 0.67 142 0.90 0.52 0.57 211 0.15 0.71 0.41 133

peopleInShade BP 0.76 0.81 0.80 44 0.72 0.83 0.80 153 0.96 0.71 0.75 195 0.42 0.90 0.74 99
(380 × 244, 1199) HP 0.74 0.80 0.79 37 0.72 0.82 0.80 130 0.97 0.70 0.75 200 0.42 0.90 0.73 97

PETS2006 BP 0.59 0.71 0.68 11 0.56 0.74 0.69 37 0.99 0.28 0.33 47 0.51 0.79 0.71 32
(720 × 576, 1200) HP 0.61 0.61 0.61 9 0.59 0.65 0.63 30 0.99 0.28 0.33 47 0.52 0.79 0.72 31

skating BP 0.10 1.0 0.34 20 0.09 1.0 0.34 61 0.28 0.75 0.56 94 0.15 0.82 0.44 48
(540 × 360, 3900) HP 0.10 1.0 0.35 20 0.09 1.0 0.34 58 0.28 0.75 0.56 91 0.15 0.82 0.43 49

sofa BP 0.71 0.39 0.43 57 0.69 0.40 0.44 204 0.99 0.31 0.36 237 0.75 0.61 0.64 160
(320 × 240, 2750) HP 0.73 0.36 0.40 47 0.71 0.37 0.41 165 0.99 0.31 0.36 237 0.77 0.61 0.64 146

BP, baseline profile; HP, High profile; Pr, precision; Re, recall; F2, F2 score; FPS, frames per second.

(a) (b) (c) (d) (e)

Fig. 7. Sample segmentation of frame 135 of sequence campus7-c1, encoded with HP and QP = 30. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels:
FP). (a) Original. (b) Single-step mode. (c) Two-step mode. (d) MOG [31]. (e) MOG2 [32]

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 15

CDNET sequences
The precision and recall values for CDNET sequences
have a higher variance compared with those of CVLAB
sequences, as can be seen in Fig. 6. The reason is that
these sequences significantly differ in content, mainly in
the size and speed of the moving objects. Furthermore,
some sequences are more challenging because of diffi-
cult scenarios, like for instance standing/stopping or sit-
ting persons (busStation, copyMachine, office, PETS2006,
sofa) or abandoned baggage (PETS2006, sofa), which is
labeled foreground in the ground truth but obviously not
moving and therefore undetectable. Other challenging sce-
narios that are also included in this dataset are changing
camera focus or brightness (copyMachine, peopleInShade),
prominent shadows (pedestrians, peopleInShade), and bad
weather conditions like snow (skating). Some of those
challenging conditions are discussed in the subsequent
section.

The sequence backdoor is a good example for sequences
from the visual surveillance domain, for which our
algorithm is intended for. The scene has a mainly static
background and is crossed by moving objects, as can be
seen in Fig. 8(a). Furthermore, a spatial ROI is defined, i.e.,
only the content inside of a certain region is important and
everything outside of this region is ignored, which is also
frequently used in visual surveillance scenarios. As can be
seen in Fig. 6 and also in Table 4, the numerical results for
sequence backdoor are very good.

Visual examples for this sequence for all tested segmen-
tation algorithms are depicted in Fig. 8. Our algorithm is
able to detect the persons almost completely, so the respec-
tive recall is 1.0 for the two-step mode and 0.99 for the
single-step mode. Since FP only occur around the objects
themselves, which is mainly because of the lower accuracy
of 4 × 4 pixels or larger, the achieved precision is satisfying
as well.When using the two-stepmode, the precision is 0.65
and the single-step mode even reaches 0.71.

As before, it seems that MOG and MOG2 have some
difficulties in updating their background model at this
sequence. While in this example FP almost not occur when
using MOG, several parts of the persons are not detected
but falsely labeled background. For instance, the pullover
of the woman on the right has a color close to the color
of the wall in the background. The result is that the pat-
tern of the fence becomes visible in the segmented image,
because the pullover is easily distinguishable from the black
fence but not from the lighter wall.

The recall achieved by MOG2 is much higher than by
MOG, so the persons are detectedwell. The precision on the
other hand is only 0.08 for sequence backdoor. A reason for
this can be seen in Fig. 8(e), in which the lighter parts of the
ground, i.e., regions without shadows, are falsely detected as
foreground. This increases the FP and hence decreases the
precision.

Challenging conditions
As already mentioned, the CDNET dataset contains sev-
eral sequences with challenging conditions. Generally, the
most analysis algorithms are challenged by a changing cam-
era focus, automatically adapted brightness, fast moving
objects, prominent object shadows, and bad weather con-
ditions. Such scenarios are also included in the CDNET
dataset.

Figure 9 shows three sample images from CDNET
sequences with their corresponding segmentation of our
algorithm in two-step mode. Thereby, Fig. 9(a) illustrates
that prominent shadows will be detected by the algorithm
as well. This is obvious because the shadows are moving in
conjunction with the object itself and it is not possible to
distinguish between the object and the shadow at this stage.
The creators of the ground truth of the CDNET sequences
hence also labeled prominent shadows as foreground in
most of the sequences, as can be seen in the lower image
of Fig. 9(a).

This is different in Fig. 9(b). The shadow of the cyclist
is indeed again detected but it is not labeled as foreground
in the ground truth this time. Hence, this region (below the
person on the right) is marked red in the lower image of
Fig. 9(b). Another observation at this result image is that a
relatively large region behind the cyclist in wrongly detected
by the algorithm. This occurs when objects are moving very
fast compared with the frame rate. In this case, the dis-
placement of the object’s position is significant between two
consecutive frames. And this results in FP behind the object
because of the temporal analysis of several frames.

Finally, a worst case scenario is depicted in Fig. 9(c). As
can bee seen, the number of FP is very high in this case.
The reason for this is the heavy snowfall in front of the
camera. However, these false detections mainly only occur
in regions in which the contrast between the white snow
and the darker background is high. The lower parts of the
persons are generally detected satisfactorily.

In addition to the challenging scenarios mentioned
above, Fig. 10 shows a scenario with stopping objects,

(a) (b) (c) (d) (e)

Fig. 8. Sample segmentation of frame 1858 of sequence backdoor, encoded with HP and QP = 30. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels:
FP). (a) Original. (b) Single-step mode. (c) Two-step mode. (d) MOG [31]. (e) MOG2 [32].

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

16 marcus laumer et al.

(a) (b) (c)

Fig. 9. Sample segmentation of some sequenceswith challenging conditions, encodedwithHPandQP = 30. The upper row shows the original frames, the lower row
the results from our algorithm in two-step mode. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels: FP). (a) peopleInShade, frame 296. (b) pedestrians,
frame 474. (c) skating, frame 902.

(a) (b) (c) (d) (e)

Fig. 10. Sample segmentation of frames 411, 522, 902, 1050, and 1126 of sequence PETS2006, encoded with HP and QP = 30. The upper row shows the original
frames, the lower row the results from our algorithm in two-step mode. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels: FP). (a) Frame 411. (b) Frame
522. (c) Frame 902. (d) Frame 1050. (e) Frame 1126.

including an abandoned bag, which is also challenging for
our algorithm, since it is intended to detect moving regions
within a video sequence. The first segmentation result in
Fig. 10(a) shows that all persons are detected as intended
due to the fact that they are moving. In the next image in
Fig. 10(b), the person in the center of the scene stopped
moving, which results in only a partial detection. Some
frames later (cf. Fig. 10(c)), the person drops its backpack,
which is again detected because the person is moving by
doing so. Figure 10(d) again shows that both, the person
and the backpack, are not detected by the algorithm when
none of them is moving. In this case, in which the per-
sons stands still for several frames, it is obvious that the
encoder selected the SKIP mode for encoding the cor-
responding macroblocks. Finally, it can be seen in Fig.
10(e) that the person is detected again when it starts mov-
ing again. Since the backpack is left behind, it is still not
detectable.

All those examples show, even in challenging scenarios,
moving objects are detected as intended by our algorithm.
In some scenarios, applying themethod results in increased
FP and hence a decreased precision on pixel level. But in
terms of detecting objects, no object is missed, which is
themost important task for compressed domain algorithms
that are used to preselect certain regions for further analysis.
An exception are stopping objects, which are not detectable
anymore due to the characteristics of our algorithm. But
since such objects will definitely have been detected in the
moment they entered the scene, they can also be considered
as not missed. Additional segmentation results can also be
found in Figs. 11–14.

E) Processing speed
Compressed domain algorithms are known to be less com-
plex than their pixel domain counterparts, mainly for two

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 17

(a) (b) (c) (d) (e)

Fig. 11. Sample segmentation of frame 935 of sequence laboratory4p-c0, encoded with HP and QP = 30. (Black pixels: TN, green pixels: TP, white pixels: FN, red
pixels: FP). (a) Original. (b) Single-step mode. (c) Two-step mode. (d) MOG [31]. (e) MOG2 [32].

(a) (b) (c) (d) (e)

Fig. 12. Sample segmentation of frame 615 of sequence terrace1-c0, encoded with HP and QP = 30. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels:
FP). (a) Original. (b) Single-step mode. (c) Two-step mode. (d) MOG [31]. (e) MOG2 [32].

(a) (b) (c) (d) (e)

Fig. 13. Sample segmentation of frame 2463 of sequence cubicle, encoded with HP and QP = 30. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels:
FP). (a) Original, (b) Single-step mode (c) Two-step mode (d) MOG [31] (e) MOG2 [32].

(a) (b) (c) (d) (e)

Fig. 14. Sample segmentation of frame 1051 of sequence busStation, encoded with HP andQP = 30. (Black pixels: TN, green pixels: TP, white pixels: FN, red pixels:
FP). (a) Original. (b) Single-step mode. (c) Two-step mode. (d) MOG [31]. (e) MOG2 [32].

reasons. First, the costly step of decoding is replaced by sim-
ple syntax parsing operations and, second, the algorithms
themselves are low-complex because they usually do not
have to process all pixels. However, it is not always an easy
task to directly compare different algorithms with regard
to their processing speeds, especially in cases where these
algorithms have been implemented supremely different.

In our implementation, we incorporated the reference
implementation of the H.264/AVC standard, the JM soft-
ware (JM-18.6) [33], for parsing the required syntax ele-
ments. Since the purpose of this software is not to be
implemented highly optimized, it can be assumed that the
decoder used by OpenCV, which is part of FFmpeg, per-
formsmuch faster. Furthermore, our test implementation of
the actual algorithm is also not optimized. So, in some cases,

the software loops up to ten times over all 4 × 4 blocks
of a single frame, including initializations and conversions
between container formats. TheOpenCV implementations,
on the other hand, are usually highly optimized towards a
low complexity.

Nevertheless, we measured the execution times of all
tested algorithms, because we think it is important to pro-
vide this information. Tables 3 and 4 provide the processing
speeds, in terms of frames per second, for the stated test
sequences. Thereby, the time that has been required for
parsing the syntax elements as well as the time for the
actual algorithmhas beenmeasured for our algorithm. Cor-
respondingly, the processing time for MOG and MOG2
includes the decoding and the analysis time. Furthermore,
the given values are average values determined by executing

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

18 marcus laumer et al.

each test ten times. The reason for averaging several results
is that the processing speeds of MOG andMOG2 are highly
fluctuating – the speed of our algorithm is almost not vary-
ing when performing the same test several times – and an
average is more significant for the comparison. The tests
have been performed on a relatively old desktop computer:
Intel Core 2 Duo E8400 CPU@ 3.0GHz, 8GBDDR2 RAM,
Windows 10 Pro 64-Bit. Because of the dual-core architec-
ture, two tests have been performed in parallel.

It can be seen that the algorithm in two-step mode oper-
ates much faster than in single-step mode. For instance,
the two-step mode is able to analyze about 133 frames per
second in average for CVLAB sequences, while the single-
step mode only achieves about 40. The reasons for this
are the omitted calculations in two-step mode, as already
explained in Section IV. Furthermore, it is obvious that the
processing speed directly depends on the frame size, since
a larger frame size means more blocks to be processed. So,
for instance, only 37 frames of sequence PETS2006 could be
processed per second.

Although the MOG algorithm is a pixel domain
algorithm, it performs very fast. And because of themissing
optimizations in our algorithm, it even operates faster than
our compressed domain algorithm. The drawback is that
our algorithm achieves better detection results for almost
all our test sequences. Compared to the MOG2 algorithm,
the proposed algorithm in two-step mode always runs just
as fast or faster, even without optimizations.

As already mentioned, our algorithm uses the JM soft-
ware [33] for the syntax parsing. Parsing the 1010 frames
of a single CVLAB sequence that has been encoded with
QP = 30 and the HP takes about 3 seconds. Performing our
two-step analysis algorithm then takes another 5.2 seconds.
This results in about 123 frames per second, as also stated
in Table 3. So, above 36 of the overall processing time is
required by the JM software to parse the syntax elements.
This could be significantly decreased by incorporating a
more efficient decoder, or rather parser. The implemen-
tation of the actual algorithm is also not optimized but
is able to process 1010 frames of a CVLAB sequence in
about 5.2 seconds, which results in about 194 frames per
second. This could be increased as well by optimizing the
test implementation. And even parallel processing is imag-
inable, for instance, the initial block weighting process for
several frames could be performed in parallel, which would
increase the processable number of frames even further.

V I . CONCLUS IONS

In this paper, we presented a moving object detection
algorithm that operates in the compressed domain. It is
based on the extraction and analysis of H.264/AVC syn-
tax elements, mainly the macroblock and sub-macroblock
types. Each type gets assigned a specific weight and a proper
combination of the weights indicates regions within a video
frame in which moving objects are present. The intro-
duced algorithm has been developed for H.264/AVC but

may generally be applied to any video stream that has been
compressed according to a block-based hybrid video cod-
ing scheme using inter-frame prediction. The basis of the
method is to exploit the results of the inter-frame predic-
tion process and hence the algorithm is not applicable to
streams that have been compressed with still image cod-
ing schemes or codecs configured to apply intra-frame
prediction only.

The presented algorithm is able to work in two different
modes, a single-stepmode and a two-stepmode. The single-
step mode analyzes several frames and weights neighbor-
ing blocks by using a 3D space. The two-step mode also
exploits temporal dependencies between frames but ana-
lyzes each frame separately in an initial step. In order to
avoid losing precious information at a premature state, both
modes avoid early thresholding operations by shifting the
only binary decision to the very end. Experimental results
could demonstrate that the method is able to reliably detect
regions with moving objects in case of using reasonable
configurations for the intended target domain. Thereby, the
single-step mode achieves a slightly better detection per-
formance than the two-step mode. However, a drawback of
the spatiotemporal analysis of the single-step mode is that
it significantly runs slower than the two-step mode, which
separates the spatial from the temporal analysis step. As a
consequence, it appears that the two-step mode should be
preferred inmost cases. It provides higher recall values than
its single-step counterpart and performs significantly faster.
Only when an increased precision is a requirement and/or
the processing speed is less important, the single-step mode
should be taken into consideration. However, since com-
pressed domain analysis algorithms are usually intended
for being used for taking a fast decision whether additional
analysis steps should be triggered, such scenarios should not
occur frequently.

Currently, we focus on additionally analyzing motion
vectors to increase the precision. Furthermore, we will work
on a method that is able to detect stopping objects as well.
We are currently also extending the concept to be able to
process video streams that have been encoded according
to the HEVC standard. Finally, we will try to optimize our
implementation in terms of processing speed.

REFERENCES

[1] MPEG, ISO/IEC 14496-10:2014: Coding of audio-visual objects – Part
10: Advanced video coding, ISO/IEC Standard, September 2014.

[2] VCEG, ITU-TH.264: Advanced video coding for generic audiovisual
services, ITU-T Recommendation, February 2014.

[3] Laumer, M.; Amon, P.; Hutter, A.; Kaup, A.: A compressed domain
change detection algorithm for RTP streams in video surveillance
applications, in Proc. Int. Workshop on Multimedia Signal Processing
(MMSP), October 2011, 1–6.

[4] Schulzrinne, H.; Casner, S.; Frederick, R.; Jacobson, V.: RTP: A Trans-
port Protocol for real-time applications, IETF RFC 3550, July 2003.

[5] Schöberl, M.; Bruns, V.; Fößel, S.; Bloss, H.; Kaup, A.: Change detec-
tion in JPEG 2000 compressed video. IET Electron. Lett., 46 (6)
(2010), 409–411.

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

moving object detection in h.264 compressed domain 19

[6] JPEG, ISO/IEC 15444-1:2004: JPEG 2000 Image Coding System
– Part 1: Core Coding System, ISO/IEC Standard, September
2004.

[7] JPEG, ISO/IEC 15444-3:2007: JPEG 2000 Image Coding System –
Part 3: Motion JPEG 2000, ISO/IEC Standard, May 2007.

[8] Jie, F.; Aiai, H.; Yaowu, C.: A novel scene change detection algorithm
for H.264/AVC bitstreams, in Proc. Pacific-Asia Workshop on Com-
putational Intelligence and Industrial Application (PACIIA), vol. 1,
December 2008, 712–716.

[9] Khatoonabadi, S.H.; Bajić, I.V.: Video object tracking in the com-
pressed domain using spatio-temporal Markov random fields. IEEE
Trans. Image Process. (TIP), 22 (1) (2013), 300–313.

[10] Maekawa, E.; Goto, S.: Examination of a tracking and detection
method using compressed domain information, in Proc. Picture Cod-
ing Symp. (PCS), December 2013, 141–144.

[11] Fonseca, P.; Nesvadba, J.: Face detection in the compressed domain,
in Proc. Int. Conf. on Image Processing (ICIP), vol. 3, October 2004,
2015–2018.

[12] Kapotas, S.K.; Skodras, A.N.: Moving object detection in the H.264
compressed domain, in Proc. Int. Conf. on Imaging Systems and
Techniques (IST), July 2010, 325–328.

[13] Poppe, C.; De Bruyne, S.; Paridaens, T.; Lambert, P.: Van deWalle, R.:
Moving object detection in the H.264/AVC compressed domain for
video surveillance applications. J. Vis. Commun. Image Represent.
(JVCIR), 20 (6) (2009), 428–437.

[14] Vacavant, A.; Robinault, L.; Miguet, S.; Poppe, C.; Van de Walle R.:
Adaptive background subtraction in H.264/AVC bitstreams based on
macroblock sizes, in Proc. Int. Conf. on Computer Vision Theory and
Application (VISAPP), March 2011, 51–58.

[15] Verstockt, S.; De Bruyne, S.; Poppe, C.; Lambert, P.; Van de Walle,
R.:Multi-view object localization inH.264/AVCcompressed domain,
in Proc. Int. Conf. on Advanced Video and Signal Based Surveillance
(AVSS), September 2009, 370–374.

[16] Tom, M.; Babu, R.V.: Fast moving-object detection in H.264/AVC
compressed domain for video surveillance, in Proc. Natl. Conf. on
Computer Vision, Pattern Recognition, Image Processing and Graphics
(NCVPRIPG), December 2013, 1–4.

[17] Sabirin, H.; Kim, M.: Moving object detection and tracking using a
spatio-temporal graph in H.264/AVC bitstreams for video surveil-
lance. IEEE Trans. Multimed. (TMM), 14 (3) (2012), 657–668.

[18] Laumer, M.; Amon, P.; Hutter, A.; Kaup, A.: Compressed domain
moving object detection based on H.264/AVC macroblock types,
in Proc. Int. Conf. on Computer Vision Theory and Applications
(VISAPP), vol. 1, February 2013, 219–228.

[19] Wojaczek, P.; Laumer,M.; Amon, P.; Hutter, A.; Kaup, A.: Hybrid per-
son detection and tracking in H.264/AVC video streams, in Proc. Int.
Conf. on Computer Vision Theory and Applications (VISAPP), vol. 1,
March 2015, 478–485.

[20] Käs, C.; Brulin, M.; Nicolas, H.; Maillet, C.: Compressed domain
aided analysis of traffic surveillance videos, in Proc. Int. Conf. on
Distributed Smart Cameras (ICDSC), August 2009, 1–8.

[21] Laumer, M.; Amon, P.; Hutter, A.; Kaup, A.: Compressed domain
moving object detection by spatio-temporal analysis of H.264/AVC
syntax elements, in Proc. Picture Coding Symp. (PCS), May 2015,
282–286.

[22] MPEG, ISO/IEC 23008-2:2015: High efficiency coding and media
delivery in heterogeneous environments – Part 2: High Efficiency
Video Coding, ISO/IEC Standard, May 2015.

[23] VCEG, ITU-T H.265: High efficiency video coding. ITU-T Recom-
mendation, April 2015.

[24] Wiegand, T.; Sullivan, G.J.; Bjøntegaard, G.; Luthra, A.: Overview of
the H.264/AVC video coding standard. IEEE Trans. Circuits Syst.
Video Technol. (TCSVT), 13 (7) (2003), 560–576.

[25] Davis, J.; Goadrich,M.: The relationship between precision-recall and
ROC curves, in Proc. Int. Conf. on Machine Learning (ICML), June
2006, 233–240.

[26] Berclaz, J.; Fleuret, F.; Türetken, E., Fua, P.: Multiple object tracking
usingK-shortest paths optimization, IEEETrans. PatternAnal.Mach.
Intell., 33 (9) (2011), 1806–1819, (http://cvlab.epfl.ch/data/pom).

[27] Wang, Y.; Jodoin, P.-M.; Porikli, F.; Konrad, J.; Benezeth, Y.; Ishwar,
P.: CDnet 2014: an expanded change detection benchmark dataset, in
Proc. Conf. on Computer Vision and Pattern Recognition Workshops
(CVPRW), June 2014, 393–400, (http://changedetection.net).

[28] FFmpeg: https://www.ffmpeg.org.

[29] x264: http://www.videolan.org/developers/x264.html.

[30] Bradski, G.: OpenCV, Dr. Dobb’s Journal of Software Tools, 2000
(http://opencv.org).

[31] KaewTraKulPong, P.; Bowden, R.: An improved adaptive background
mixture model for real-time tracking with shadow detection, in Proc.
European Workshop on Advanced Video Based Surveillance Systems
(AVBS), September 2001, 1–5 (OpenCVMOG).

[32] Zivkovic, Z.: Improved adaptive Gaussian mixture model for back-
ground subtraction, in Proc. Int. Conf. on Pattern Recognition (ICPR),
vol. 2, August 2004, 28–31 (OpenCVMOG2).

[33] JM Software: http://iphome.hhi.de/suehring/tml.

Marcus Laumer received his diploma (Dipl.-Ing.) degree
in Information and Communication Technology from
the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU), Germany, in 2009, where he specialized in trans-
mission technology andmobile communication. Since 2009
he has been working toward the Dr.-Ing. degree at the
Chair of Multimedia Communications and Signal Pro-
cessing at FAU. His research includes compressed domain
video analysis and future Internet technologies and is sup-
ported by Siemens Corporate Technology, Munich, Ger-
many. In these areas, he published several papers and
was actively involved in the European research project
FIWARE.

Peter Amon received his diploma (Dipl.-Ing.) degree in
Electrical Engineering from Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Germany, in 2001,
where he specialized in communications and signal pro-
cessing. In 2001, he joined Siemens Corporate Technol-
ogy, Munich, Germany, where he is currently working
as a Senior Research Scientist in the Sensing and Indus-
trial Imaging Department. His research interests include
video coding and transmission, image/video processing
and analytics, and future Internet technologies. In these
areas, he published several conference and journal papers.
Since 2003, he actively contributes to the standardization
at ISO/IEC MPEG, where he worked on scalable video
coding and the respective storage format as well as High
Efficiency Video Coding (HEVC). He has been actively
involved (e.g., as work package leader) in several European
research projects. He also serves as reviewer and member

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

http://cvlab.epfl.ch/data/pom
http://changedetection.net
https://www.ffmpeg.org
http://www.videolan.org/developers/x264.html
http://opencv.org
http://iphome.hhi.de/suehring/tml
https://doi.org/10.1017/ATSIP.2016.18

20 marcus laumer et al.

of the technical program committee for several conferences
and journals in his field.

Andreas Hutter (M’95) received his diploma and Dr.-
Ing. degrees in Communications Engineering from the
Technische Universität München (TUM) in 1993 and 1999,
respectively. From 1993 to 1999 he worked as a research
assistant at the Institute for Integrated Circuits at TUM
where he researched on algorithms for video coding and on
the implementation of multimedia systems for mobile ter-
minals. He joined Siemens Corporate Technology, Munich,
Germany, in 1999, where he is currently leading a research
group in the Sensing and Industrial Imaging Department.
He was an active member of MPEG from 1995 to 2006
where he contributed to the MPEG-4, the MPEG-7 and the
MPEG-21 standards and acted as HoD (Head of Delega-
tion) of the German National Body at MPEG. His research
interests include image and video coding, transmission and
visualization as well as video analytics.

André Kaup (M’96–SM’99–F’13) received the Dipl.-Ing.
and Dr.-Ing. degrees in Electrical Engineering from
Rheinisch-Westfälische Technische Hochschule (RWTH)
Aachen University, Aachen, Germany, in 1989 and 1995,
respectively. He was with the Institute for Communica-
tion Engineering, RWTH Aachen University, from 1989
to 1995. He joined the Networks and Multimedia Com-
munications Department, Siemens Corporate Technology,
Munich, Germany, in 1995 and became the Head of the
Mobile Applications and Services Group in 1999. Since 2001

he has been a Full Professor and the Head of the Chair of
Multimedia Communications and Signal Processing, Uni-
versity of Erlangen-Nuremberg, Erlangen, Germany. From
1997 to 2001 he was the Head of the German MPEG del-
egation. From 2005 to 2007 he was a Vice Speaker of
the DFG Collaborative Research Center 603. Since 2015
he serves as Head of the Department of Electrical Engi-
neering and Vice Dean of the Faculty of Engineering.
He has authored more than 300 journal and conference
papers and has over 50 patents granted and patent appli-
cations published. His research interests include image
and video signal processing and coding, and multimedia
communication.

Dr. Kaup is a member of the IEEE Multimedia Signal Pro-
cessing Technical Committee, a member of the Scientific
Advisory Board of the German VDE/ITG, and a Fellow of
the IEEE. He serves as an Associate Editor for IEEE Trans-
actions on Circuits and Systems for Video Technology and
was a Guest Editor for IEEE Journal of Selected Topics
in Signal Processing. From 1998 to 2001 he served as an
Adjunct Professor with the Technical University ofMunich,
Munich. He was a Siemens Inventor of the Year 1998 and
received the 1999 ITG Award. He has received several best
paper awards, including the Paul DanCristea Special Award
from the International Conference on Systems, Signals, and
Image Processing in 2013. His group won the Grand Video
Compression Challenge at the Picture Coding Symposium
2013 and he received the teaching award of the Faculty of
Engineering in 2015.

https://doi.org/10.1017/ATSIP.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.18

	I Introduction
	II Related Work
	III Structure and Syntax of H.264/AVC
	A Partitioning into blocks
	B Intra- and inter-frame prediction
	C Transform and quantization

	IV Moving Object Detection
	A Coordinates and vectors
	B Initial block weighting
	C Spatial, temporal, and spatiotemporal weighting
	Single-step mode
	Two-step mode

	D Post-processing and segmentation

	V Experimental Results
	A Performance measures
	B Test setup
	C Parameter optimization
	D Results and discussion
	Overview
	CVLAB sequences
	CDNET sequences
	Challenging conditions

	E Processing speed

	VI Conclusions

