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STABILITY OF GLACIERS AND ICE SHEETS AGAINST 
FLOW PER TURBATIONS 

By DAVID E. THOMPSON 

(Planetology Section, Jet Propulsion Laboratory, Pasadena, California 91103, U.S.A.) 

ABSTRACT. A stability equation is derived for a model glacier of initially uniform thickness and of infinite 
extent transverse to the primary flow flowing without slip down an inclined plane. A stress-dependent power
law viscosity is wholly incorporated into the equations of motion. Stability of the glacier is tested against 
long-wavelength surface perturbations. Results for this initial formulation indicate that the glacier is stable 
against infinitesimal amplitude surface perturbations, although for certain variations of model parameters, 
the decay-rate of the disturbance becomes very slow, approaching neutral stability. Results are presented 
in terms of decay-rate magnitudes over a large range of perturbation wavelengths for many model glaciers 
in which bed slope, ice thickness, and ice rheology parameters are varied. For all models, the maximum decay
rate of the perturbation occurs at disturbance wavelengths of roughly three to six times the glacier thickness. 
Infinite-wavelength perturbations are found to be only neutrally stable. Long-wavelength perturbations 
propagate at a faster rate down-glacier than do the intermediate- or shorter-wavelength ones which tend to 
remain fixed on the glacier surface and ride down-glacier with the primary flow as they decay. 

R ESUME. Stabilite des glaciers et des indlandsis au regard de perturbations de l'ecoulement. On a etabli une equation 
de stabilite pour un modele de glacier d'epaisseur initiale uniforme, coulant sans glissement au sol sur un 
plan incline et d'etendue infinie dans le sens transversal a l'ecoulement principal. U ne viscosite regie par une 
loi-puissance en fonction de la contrainte est entierement incorporee dans I'equation du mouvement. On a 
etudie la stabilite du glacier en cas de perturbation de surface a large periodicite. Les resultats de cette 
premiere formulation indiquent que le glacier est stable pour des perturbations de surface d'amplitude 
infinitesimale, bien que, pour certaines variations des parametres du modele, la vitesse d'extinction de la 
perturbation devienne tres faible, approchant d'une stabilite neutre. On presente les resultats obtenus pour 
les ordres de grandeur de la vitesse d'extinction pour une large gamme de periodicite pour de nombreux 
types de glaciers ou les pentes du lit, les epaisseurs de glace et les parametres rheologiques pour la glace sont 
varies. Dans tous les modeles, la plus grande vitesse d'extinction de la perturbation pour des longueurs 
d'onde de la perturbation d'environ six a trois fois l'epaisseur du glacier. Des variations de longueur d'onde 
infinie sont seulement de stabilite neutre. Les perturbations a grande longueur d'onde se propagent plus 
vite vers I'aval que celles de longueur d'onde intermediaire ou courte qui tendent a rester fixees sur le glacier 
et se surimposer a l'aval de l'ecoulement principal du glacier tout en diminuant d'amplitude. 

ZUSAMMENFASSUNG. Stabilitiit von Gletschern und Eisschilden gegen Fliessstorungen. Fur einen Modellgletscher 
von ursprunglich konstanter Dicke, der oh ne Gleiten uber eine geneigte Ebene fliesst und senkrecht zur 
Hauptfliessrichtung unbegrenzte Ausdehnung besitzt, wird eine Stabilitatsgleichung hergeleitet. Eine 
spannungsabhangige Viskositat nach einem Potenzgesetz ist durchwegs in die Bewegungsgleichungen 
eingeftihrt. Die Stabilitat des Gletschers gegen langwellige Storungen an der Oberflache wird gepruft. Die 
Ergebnisse fur diese Ausgangsformulierung zeigen, dass der Gletscher gegen Oberflachensti.irungen mit 
infinitesinaler Amplitude stabil ist, obwohl fur gewisse Anderungen der Modellparameter die Abklingrate der 
Storung sehr langsam wird und sich neutraler Stabilitat nahert. Die Ergebnisse werden in der Form von 
Werten der Abklingrate uber einen grossen Bereich von Storungswellenlangen und fur viele Modellgletscher 
mit unterschiedlichen Bettneigungen, Eisdicken und rheologischen Parametern vorgelegt. Bei alien Modellen 
tritt die maximale Abklingrate der Storung bei Wellenlangen auf, die etwa das drei- bis sechsfache der 
Gletscherdicke betragen. Storungen mit unbegrenzter Wellenlange ergeben sich als nur neutral stabil. 
Langwellige Storungen pflanzen sich gletscherabwarts schneller fort als mittellang- od er kurzwellige, die 
dahin tendieren, auf der Gletscheroberflache ortsfest zu bleiben und mit dem Hauptfluss gletscherabwarts zu 
wandern, wahrend sie abklingen. 

INTRODUCTION 

Accelerations and momentum transport in glaciers are very slight compared to the 
dominant viscous or quasi-plastic forces, yet several lines of evidence suggest that glaciers may 
exhibit inherent instability to certain flow conditions and could develop secondary flow 
patterns superimposed on the primary flow state. Glacier surges, radically-skewed basal or 
near-basal ice fabrics (Kamb and Shreve, 1963), englacial longitudinal ice fluting near 
glacier beds (Lawson, 1976), and longitudinal grooving in glacial terrain (Flint, [Cl 97 1]; 
Shaw and Freschauf, 1973) may all be related to possible glacier flow instabilities or secondary 
flow patterns which are initiated and maintained in the ice. Because the inertial forces which 
are ordinarily responsible for fluid instabilities must be very small, any natural flow instability 
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in glaciers must be due to the non-linearity in the flow law and must arise from a change in 
the stress state or thermal profile which alters the viscosity profile in such a way as to render 
the situation unstable. 

The following analysis explores the application of rigorous fluid instability analysis to 
glacier flow dynamics incorporating a fully stress-dependent rheology appropriate to glaciers. 
Insight into both analytic techniques and into the use of instability analysis for glaciers is 
gained by first considering the simplest instability model, the behavior of long-wavelength 
surface perturbations superimposed on a simple two-dimensional glacier flowing down an 
inclined plane. This two-dimensional problem is not necessarily meant to explain any of the 
possible instability-related behavior observed in glaciers; rather it is designed to produce 
analytic and physical guidelines for further more complicated or more realistic problems. 

A surface perturbation is understood under the assumptions of linear instability analysis, 
as an infinitesimal amplitude disturbance in the surface profile of the glacier which not only 
alters the ice thickness but perturbs the velocity field of the glacier as well. The origin of such 
a disturbance on a real glacier is difficult to define in that glaciers are probably only sensitive 
to finite-amplitude changes in thickness, and linearized analysis does not require a perturba
tion origin other than infinitesimal random fluctuations; the analysis can only deal with the 
tendency of the fluid (glacier) towards instability and not with the actual unstable flow itself. 
The response of glaciers to long-term variations in accumulation predicts the growth and 
propagation of kinematic waves through the glacier by which adjustment to the new flow state 
or redistribution of the new mass balance is achieved (extensive development by Nye, Ig60, 
Ig61, Ig63[a], Ig63[b], Ig65[a], Ig65[b] ). The kinematic wave is not a wave in the sense 
of momentum or energy transport, but is rather a "location" or "point" of constant flow or 
thickness traveling unchanged down the glacier at some speed different from that of the ice 
flow velocity. The passing of one or many of these thickness waves would not constitute a 
flow perturbation on the glacier unless the glacier were to interact with the waves in such a 
way that the basic flow state would be modified or selected properties of the flow would be 
enhanced. A possible interaction of this sort might occur if the kinematic waves happened to 
coincide spatially with successive regions of extending and compressing flow in the glacier, 
originating from a wavy bedrock profile, so that the passing of the thickness changes enhanced 
the alternating longitudinal strain-rate already established. 

A major factor affecting ice flow is ignored in this analysis: It is assumed that the viscosity 
is insensitive to any variation of temperature in an ice sheet or glacier. For many glaciers, this 
approximation is reasonable in that temperate glaciers have a temperature distribution which 
is essentially uniform. Ice sheets obviously differ. However, two pertinent justifications can be 
made to support this simplification. First, studying the stress-dependent rheology in detail 
whilst ignoring thermal variations completely isolates the effect of material non-linearity, 
and results can be tied directly to interaction between perturbed flow strain-rates and changes 
in the effective viscosity. Secondly, only ice sheets or subpolar glaciers would be significantly 
affected by commensurate perturbations in their temperature di~tribution. Because the cold er 
surface ice is more viscous than warmer basal ice, flow perturbations imposed at the surface of 
ice sheets sense ice which is more viscous than those perturbations imposed on the surface of 
temperate glaciers. Therefore, stability calculations which exclude thermal variations in the 
ice or which model a uniform thermal distribution allow analysis under the most- favorable 
conditions for the growth of surface perturbations. Were this analysis to concentrate on basal 
perturbations, then it would be far more significant to consider warming of the ice with depth 
and increased strain-rates, or to consider slip of the ice along the base of the glacier where 
strain-rates are highest. The analysis presented here is unrealistic in some sense, but it has the 
advantage of a more simplified formulation of the stability problem, that is, of a direct analytic 
analog with the stability of viscous fluids flowing down inclined planes (see, for example, 
Yih, [Clg55], 1963, Ig65, 1967; Benjamin, 1957; Craik and Smith, Ig68), and of isolation 
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of the effect of particular physical processes. The results help to delineate which of the more 
physically realistic problems hold the greatest potential for increasing our insight into glacier 
flow dynamics. 

FORMULATION OF THE STABILITY PROBLEM 

If we are to study the stability of any fluid upon which a small amplitude disturbance 
has been imposed, we must define the fluid in terms of its equations of motion which express 
the conservation of momentum and mass. Consider a glacier in the coordinate system given 
in Figure I, flowing without basal slip down a smooth plane slope inclined at angle f3 to the 
horizontal. Edge effects from the glacier margins are ignored. The equations of motion for a 
fluid of variable viscosity in this coordinate system are 

p(Ut + uux+VUy) -px+pg sin ,B+2fLxUx+fLy(Uy+Vx) +fL(Uxx+Uyy) , } 

- py + pg cos ,B+fLx(Uy+Vx) + 2fLyVy+ fL(Vxx+Vyy), 

Fig. I. Coordinate system for a glacier of infinite extent perpendicular to the (x,y) plane. The glacier flows down a smooth 
slope at angle f3 to the horizontal. Cartesian coordinates and velocity components are marked, x-direction positive down-slope 
and along the upper surface,y-direction positive downward. A schematic primary flow profile u (y) over depth d is drawn also. 

where U and v are the velocity components in the x and y directions, p(x,y) represents the 
hydrostatic pressure, fL (X,y) is the dynamic viscosity of the fluid, p is the fluid density, and the 
subscripts denote partial differentiation with respect to the subscripted variables. The inertial 
terms on the left-hand side of Equations (I) are retained in the analysis because the inertial 
forces arising from the small perturbations in the flow for which growth or decay is tested, 
may easily be close in magnitude to the small viscous forces resisting the flow on the scale of 
the disturbance. This situation is unique to the perturbation and is not satisfied for the 
primary-state flow of the glacier. The glacier is assumed to be of uniform density and incom
pressible, so conservation of mass requires that 

Ux+Vy = o. 

The viscosity fL is a function of stress, and hence of strain-rate, for glaciers, and this term 
introduces the material nonclinearity into the equations of motion (I). The form of the 
viscosity arises from the appropriate constitutive relation for ice. Ice under stresses of tenths 
to several bars has been observed to respond according to a power-law constitutive relation 
both in the laboratory (Glen, 1955, p. 528-32; Barnes and others, 1971, p. 133; Weertman, 
1973, p. 325-26) and during bore-hole deformations on glaciers (summarized by Meier, 
1960, p. 42-45, and more recently by Weertman, 1973, p. 325-26). In general, the strain-rate 
Etj is found to be proportional to the stress deviator at/ raised to a power n. (The subscripts 
here indicate directions not partial differentials.) I assume here that the flow law for ice 
can be represented by 

(3) 
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where e is the effective strain-rate (Nye, 1957, p. 116), defined from 2e2 = EjjEjj, and A is a 
parameter which usually varies with temperature but which will be considered uniform in this 
analysis. The term e is a small constant having the units of strain-rate. It is introduced to 
maintain a finite viscosity at low stresses, and it maintains a more uniform viscosity when 
flow strain-rates are very small. The strain-rate dependent viscosity corresponding to the 
flow law (Equation (3)) is 

A 
/k = - {e+H2(UX2+Vy 2) + (Uy+vx)2]1}(I-n)/n. 

2 

In this simple two-dimensional stability problem, the only primary flow component is u(y) 
and thus in Equation (4) the only non-vanishing strain-rate component of the primary flow is 
Exy = culcy. But, because the shear stress must vanish at the free surfacey = 0, EXY vanishes 
there. Thus, introduction of the constant € prevents the viscosity of the main flow from 
asymptotically approaching infinity near the surface, which would preclude either growth or 
decay of any infinitesimal surface perturbation. Equations (I), (2), and (4) are the basic 
equations determining the glacier motion. 

The constants A, €, and n in Equations (3) and (4) have been determined from stress
strain-rate data presented by Meier (1960, p. 43, fig. 40). Numerical values used in the present 
study which give an exact fit to Meier's own closest-approximation fit to the data are A = 1.62 
bar a I / n, € = 1.14 X 10-2 a-I, and n = 4.5. The data synthesized by Meier include ice 
deformation-rates from glaciers, bore-hole closure, and laboratory experiments. A flow law 
of the form given in Equation (3) containing both a Newtonian viscous (grain-boundary 
creep) and a steady-state power-law (dislocation creep) component represents the collected 
data well. The small constant e in Equation (3) is determined from the slower strain-rate 
data, and, because of large scatter at low stresses, its numerical value is determined only 
within about 50%. 

It is convenient, in developing a stability equation, to work with dimensionless quantities 
so that the actual magnitude of various terms can be more easily analyzed. In the more 
classical theory, a dimensionless parameter for the Newtonian viscous problem (the Reynolds 
number) arises explicitly in the dimensionless equations of motion, this parameter provides a 
measure of the flow conditions necessary for the onset of instability. Characteristic parameters 
by which these equations are made dimensionless all arise from combinations of the surface 
velocity V, the initial glacier thickness d, and the density p. All strain-rates are retained in the 
equations of motion and the viscosity because even though the primary flow is only represented 
by u(y), the imposed perturbations may induce other strain-rates in the flow. 

A harmonic perturbation of infinitesimal amplitude is introduced into the dimensionless 
equations of motion, and is imposed at the free surface of the glacier through the boundary 
conditions. Each component of the velocity field and the pressure field is then represented by 
a primary term, which describes the general unperturbed state of the glacier, plus a small 
periodic disturbance: 

u = u(y)+ii(x,y, t) , v = v(x,y, t), p = p(y) + p (x,y, t) . 

A very simple primary-flow state u(y) has been selected, with y now normalized to vary 
betweeny = 0 at the surface to y = 1 at the bed. The exact form of ii (x,y, t) is determined 
from the equations of motion as discussed in the following section. The viscosity distribution 
fluctuates according to the flow disturbance and is incorporated in the non-linear terms in the 
equations of motion. A stream function if; (x,y, t) is introduced, in terms of which the perturba
tion may be represented as 

_ cif; 
u-- cy' (6) 
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and incompressibility is automatically satisfied. If the normal displacement of the free surface 
due to the perturbation is denoted by 

y = '1/ (x, t) = 8 exp {icc (x-ct)}, 

then the stream function tf and the pressure fluctuation p assume the forms 

{.p,P} = {<pCy), 7T(y)} '1/(x, t). (8) 

In Equation (7), 8 is the maximum amplitude of the displacement, small compared to the 
total depth d, and cc is the dimensionless wavenumber 27Td/ A of the perturbation. For large 
perturbation wavelengths, cc will be small and hence O'1/ /ox will also be small. The factor 
c = Cr+ic! is a complex measure of the time scale of the disturbance. The real part Cr is a 
measure of the speed at which the disturbance propagates in the x direction; the imaginary 
part Cl is a measure of the growth or decay of the disturbance with time. The perturbation 
amplitude will grow or decay according to whether ccc! is positive or negative. The function 
<p (y) describes the form of the disturbance with depth, and it is this function which is sought 
from the stability analysis. 

The purpose of the small-amplitude perturbation method is to delineate those primary
state flow conditions for which an infinitesimal-amplitude perturbation grows. In the analysis, 
the pertinent equations of motion are linear as far as the small disturbance terms are con
cerned. All the quadratic or higher-order terms which might suppress or interact with the 
disturbance at finite amplitudes are ignored. Thus, the theory cannot adequately describe 
any continuing growth and eventual secondary-flow pattern which might arise from a 
particular perturbation. 

To develop the linearized stability equation, the definitions of Equations (5) are substituted 
into the dimensionless equations of motion, and all terms which pertain to the primary-flow 
state exclusively are separated out. These equations are solved for the primary-flow terms 
u(y) and p(y ). All terms involving quadratic or higher products of u and if are dropped, 
leaving, after much algebra, the following linearized equations: 

_ __ __ [ (4rir-l+r (r- I) ir- zluyl) _ _ _ 
Ut+uux+VUy+px = (Re)-' - 4 Uyy (Uy + vx) + 

+;: ir-'luy I (Uyy+VXy) +ir(uxx+uyy)] 

and 

ift+uifx+Py = (Re)-' [ -Tir-IUyyVy+; Er- I IUyl (uxy+ifxx) + Er (ifxx + Vyy) ] , 

(9) 

where T = (I -n) In. The term i r is the dimensionless viscosity associated with the primary 
flow, 

(10) 

which arises from linearization of Equations ( I), assuming Equation (4) . The absolute-value 
sign is introduced to the strain-rate uy because, during the linearization of factors raised to the 
negative fractional powers T, the positive rth root of Uy must be selected to prevent multiple 
solutions of the main flow equation at the surface and to preclude formation, in the analysis, 
of a layer of infinite viscosity at the depth where du/dy = - 2". The term (Re) represents the 
effective Reynolds number for this analysis: (Re) == pdI+rVI-r/A. 

The equations separated from Equations (9) which pertain exclusively to the primary-flow 
state are 

-,-(R---,-e)=sl_'n--,-(3 _ (-r+!. -r-II- I) -- Frz - € 2 € Uy Uy y (II a) 
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_ COS f3 
py = (Fr )2' (I I b) 

where (Fr ) = V(gd) - 1 is the Froude number. Equation ( I la) must be solved numerically for 
the primary-flow solution u(y ) and the strain-rate Uy(Y), and this procedure is discussed in the 
following section. Equation ( lIb) is the dimensionless hydrostatic-pressure equation. 

Equations (9) can be written in terms of the eigenfunction cp (y ) by substitution of Equations 
(6), (7), and (8) and by carrying out the necessary differentiations. The pressure fluctuation 
7T(y) is eliminated between the resulting equations so that one fourth-order linear differential 
equation arises for the eigenfunction cp . This equation is the stability equation to be solved 
for cp and for the eigenvalue c, introduced in Equation (7), 

icx (Re) [(u-c)( cpIl-cx2cp) -uIIcp] = J; (y)cpIV -2if3(y)uIlcpIII+ 

[
r(r- I) ] + -4 f4(y) (UIl)2_if3(Y)UIII -2cx:f2(Y) cpII-Js (y)uIIcx2cp' + 

[
r(r-I) ] 

+ -4-f4 (Y) (cxuII) 2-if3 (y) cx2uIII+ cx'i, (y) cp, 

where primes and superscripted roman numerals denote primary and successive differentia
tions by y, and where the coefficientsJ(y) are functions of e(y), defined as 

(r-2) f,.(y) = er- 2(y) - -2- er- 3(y) lul I, 

r(r- I) 
Js(Y) = -- er- 2(y ) lull. 

2 

This equation must be solved in conjunction with the boundary conditions derived in a 
following section (p. 434). It reduces to the Orr-Sommerfeld equation (see, for example, 
Lin, 1966, p. 28; Betchov and Criminale, 1967, p. 74), 

icx (Re)[(u-c)(cpII_ cx2cp) -uIlcp] = cplV -2cx2cpIl+cx4cp, (14) 

for the stability of N ewtonian viscous flow when n = I and r = o. 

THE BASIC-STATE FLOW SOLUTIONS AND THE VISCOSITY PROFILE 

Equation ( IIa) represents a description of the primary-state glacier flow upon which 
surface perturbations are imposed. One integration of this equation, using ul (o) = 0, 

provides an analytic form of the primary strain-rate profile, 

(Re) sin Q 

(Fr )2 t' y = -ul(€+tlull)r. (IS) 

This equation is solved numerically by Newton's iteration method (Hamming, 1973, p. 68-72) 
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to find the root ill at each depthy. The tabulated function ill (y) is then numerically integrated 
from zero at the bed to the surface using Simpson's rule (Hamming, 1973, p. 10) in order to 
yield a tabulated solution for the primary flow il (y ). Once ill is known, the coefficients ilII 
and ilIII appearing in the stability Equation (12) can be found algebraically from Equation 
(IIa) and its derivative. To find the root ill of Equation ( IS), a particular model glacier 
must be selected and the constant (Re) sin f3 1(Fr)2 determined. For this analysis, a mean 
thickness of 400 m and a bed slope of three degrees have been selected as representative of 
many valley glaciers. The surface velocity which occurs in both the Reynolds and Froude 
numbers is initially selected to be V = 285 m a - I. This value corresponds to that derived from 
the simplified velocity solution for a glacier by Nye (1957, p. 123, equation (33) ) in which the 
model values of d = 400 m, f3 = 3°, and n = 4.5 have been used. However, upon integration 
of the tabulated function ill, a new surface velocity arises which requires a correction to (Re) 
and (Fr ). Thus, a second iteration occurs in the solution of ill whereby convergence to a 
mutually-consistent (Re), (Fr )" and surface velocity V is required. For the model selected 
here, these self-consistent values are 

(Re)=I.13 x ro-I2, (Fr)2=2.41 X I0- I4, and V=306.5ma-l. (16) 

The strain-rate ill derived here is always more negative than that derived from the simpler 
power-law relation used by Nye (1957, p. 116) . This makes sense physically since the addition 
of a small constant E in the flow law (Equation (3)) decreases the effective viscosity (Equation 
(4)) for any power n greater than unity. Thus, for a given stress, the total rate of deformation 
is greater by the ratio (1 + [E le] ) I - n /n in this analysis, and the glacier flows faster. Figure 2a 
is a comparison of the primary flow solution il and the flow profile derived by Nye from his 
equation (33), illustrating the faster flow for the solution derived here. The differen~e 
between the present il and that of Nye is greatest near the surface where the effect of main
taining a finite viscosity is most pronounced. Although the ii (y ) calculated here does not 
differ substantially from the power-law approximation, this profile is consistent with the 
stability analysis because it is derived directly from that analysis, and its derivatives determine 
the coefficients in the stability problem. 
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(b) 
Fig. 2. Conditions of the primary flow. 

a (left ). Comparison of flow profiles u(y ) and UNYE (y) using Nye (1957, p. 123, equation (33» . 
b (right ). The primary viscosity profile (I bar a = 3.156x 1013 P ). 
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The viscosity profile for the primary flow is also derived from the strain rate ul . Because 
ul is the only primary-flow strain-rate, the viscosity (Equation (4)) reduces to 

A 
p.(y) = - (€+tlul\) r. 

2 

Figure 2b is a plot of this viscosity profile in units of bar-years ( I bar year = 3.156 X 10'2 Pa s) . 
For a non-linear material such as ice, any change in the stress field produces a change in the 
strain-rate which alters this viscosity profile, and the flow conditions of the glacier in conse
quence. This coupling of stresses or strain-rates to the effective viscosity (evident in Equations 
(3) and (4» is the main distinction between non-linear and linear viscous fluids. Equation 
(17) only represents the primary, undisturbed viscosity profile. 

THE BOUNDARY CONDITIONS 

The stability equation (12) is to be solved in conjunction with the boundary conditions 
which describe no slip at the bed and vanishing shear and normal stress at the surface. For 
the glacier to remain fixed to the bed, u( I ) and v( I) must vanish, or 

"'1(1) = 0, 

"' ( I) = o. 

In this analysis, the surface of the glacier is perturbed by an amplitude of y = TJ (x, t) as 
defined in Equation (7) , thus, the boundary conditions at the surface must be applied at 
y = 7]. However, because the perturbed surface profile represents exactly the perturbation 
in the stream function .p for linear stability analysis, the small stream-function terms .pzz, 
.pyy, .pZy, and so on, evaluated at y = 0, are of order 7] and are the same order of magnitude 
as the main flow terms ul, ulI, and so on, evaluated aty = 7]. The stream-function terms .pxx 
and so on, evaluated at y = TJ are second-order corrections to the form of the perturbed 
surface and are ignored in the linear theory. The equivalence of the stream function to the 
perturbed surface profile is expressed by a dimensionless }cinematic condition at the un
perturbed surfacey = 0, thus 

or 

_ D7] a a } v = Dt = at 7] (x, t )+"' ( I) ax 7] (x,t ), 

"'(0) = C-l, 

The remammg surface continuity conditions reflect the order-of-magnitude relation 
between main flow terms evaluated at y = 7] and di&turba nce terms evaluated at y = o. 
The vanishing of the shear stress crXy' at Y = 7] requires the strain-rate Exy to vanish, or 

Uy (o)+Vx(o)+uy(TJ ) = o. 

The expansion ofuy in a Taylor series about the pointy = 7] and the use ofuy(o) = 0 yields 
to order 7], 

For the normal stress C1yy' to vanish at y = 7] requires that 

- P(7] )-7T(O) TJ+cryy' (7] ) = 0 , 

where 7T(0) TJ represents p(x, y, t ) evaluated at y = o. The dimensionless normal stress 
deviator C1yy' can be found by rendering dimensionless and then linearizing Equation (3). 
The pressure termp(TJ ) can be expanded in a Taylor series identical to that for Uy (TJ) above, 
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and if we use the fact that 12 (0) = 1,121(0) = 0, and €(o) = E, and incorporate Equation (21) 
where appropriate, the normal stress condition becomes: 

[rx (Re) cos f3 -irEY- I (UII(0))2] + [rx (Re)(c- I)+3irx2EY] rpl(o)-i€YrpIII (O) = o. 
(Fr )2 

A relation between (Re) and (Fr )2 allows the eigenvalue c to be solved in terms of only the 
wave number ex and the Reynolds number. The normal-stress boundary condition is slightly 
simplified, but the resulting simplification in analysis is substantial. 

SOLUTION OF THE STABILITY PROBLEM 

A second, parallel stability problem has been developed and solved analytically for the 
stability of fluids of exponentially stratified, but fixed, viscosity (Thompson, unpublished). 
In that analysis, the effective viscosity of the glacier in its unperturbed state (Equation (17)) 
is approximated by a fixed exponential profile. Identical perturbations are imposed, but the 
viscosity is not allowed to respond to changes in strain-rate. Hence, this problem isolates the 
effect of inertial forces arising from the perturbation. The results prove that the transition 
between stable to unstable flow would occur near Reynolds numbers of order unity compared 
to the values of 10-13 to 10-10 which are typical of glacier flow. Thus, potential flow insta
bilities in glaciers cannot simply be analogous to the well-known instabilities of viscous thin
film flow. Any flow instability in glaciers must arise from the interaction of the material 
non-linearity with the perturbed flow conditions of the glacier. This result helps to simplify 
greatly the analysis for solution of the stability eql!ation (12). Instability will not arise from 
inertial terms, and so the inertial terms in the stability equation and the normal-stress 
boundary condition (Equation (22)) can be ignored without significantly altering the principal 
physics by setting (Re) to zero. Notice, however, that the ratio (Re)/(Fr )2 cannot be ignored 
because the magnitude of (Fr ) 2 keeps this term of the order of unity. The advantage of this 
simplification is that the coefficients of rp and its derivatives are now entirely real. Equation 
(12) is identical for both the real and imaginary parts of rp, and the boundary conditions 
separate so that Cr and Cl may be determined independently. 

After solution for the eigenvalue cr, which represents the growth or decay of the perturba
tion with time, and for the eigenfunction rp (y), which describes the form of the perturbation 
with depth during growth or decay, the stability analysis is complete. The details of the 
solution can become tedious, and so only a brief presentation of this analysis is given here. 

The reduced form of Equation (12) is solved numerically as a fourth-order ordinary 
differential equation with real but highly variable coefficients. A solution which is a linear 
combination of four dependent eigenfunctions can be assumed as 

4 

rp (y) = 2: kjrpj. 
j = I 

Once integration has determined the exact form of the four rp1, application of the boundary 
conditions determines the coefficients kj, and a full solution for rp (y) is obtained. The eigen
values Cl and Cr are obtained from rp (y ), and the stability criterion is developed. 

Some of the complementary functions rp1 exhibit tremendous growth during integration 
as compared to other rpj (this is because of the actual numerical values of the coefficients in the 
stability equation). Analytically, the rpj still remain linearly independent so that Equation 
(23) represents a solution to the stability equation. However, the growing rpj tend to dominate 
the total solution rp (y), and the four initially independent and orthogonal complementary 
functions appear to be linearly dependent so that Equation (23) is not a valid numerical 
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solution. It is necessary, in order to avoid this problem, to re-orthogonalize the solution 
vectors at intermediate steps in the integration. This problem is succinctly discussed by 
Bellman and Kalaba (1965, p. 93- 103). It appears that the divergent growth of the eigen
functions 4>1 is common in higher-order equations with widely varying coefficients, and hence 
may be common in other forms of stability analysis in which the stability equation and boun
dary conditions incorporate a non-linear rheology which is appropriate to glacier flow. 

DISCUSSION OF RESULTS 

The method of analysis outlined above differs from an analytic approach in that the 
resulting eigenvalue Cl is not an explicit function of IX and Re and does not yield an analytic 
stability criterion. Rather, for a specific model glacier represented by a Reynolds number 
and a bed slope, and for specific values of the coefficients of the differential equation incor
porating a particular wavenumber IX, a unique value results for both Cr and Ci. Hence, by 
varying IX, (Re), and {3, separate value of Cr and Cl arise so that the functions Cr (IX, (Re)) and 
Cl (IX, (Re)) can be mapped out in (IX, (Re)) space for a given bed slope {3. 

An infinite number of appropriate combinations of thickness, surface velocities, and 
viscosities correspond to any particular Reynolds number. However, in the interests of 
assigning a particular Reynolds number to a particular glacier model and thereby relating 
results to measurable field parameters, it is convenient to consider selected Reynolds numbers 
which are consistent with the model. In the derivation of the main flow and primary strain
rate profiles, a particular model thickness and surface slope were selected, a value of the 
constant E in the flow law (3) was chosen, and consistent surface-velocity, viscosity, and 
Reynolds-number values were derived; these are free parameters. Thus, it is appropriate to 
vary the glacier thickness and material parameter E within physically reasonable tolerances 
and thereby derive several values for the Reynolds number which span all possible glacier 
models. A change in the bed slope changes the final primary-flow configuration, and since 
the Reynolds number depends on the derived surface velocity, it will implicitly vary with 
slope as well. These selected Reynolds numbers, tied to particular model parameters d, V, E, 

and {3, can then be identified with particular Cr and Cl values at given wavenumbers IX, because 
these same model parameters and IX are implicit in the coefficients of the differential equation 
from which Cr and Cl are derived. 

It may be argued that it would be valuable to explore values of Reynolds number which 
do not represent physically real glaciers in an effort to map out a wider region in (IX, (Re)) and 
thus further examine the stability properties of the fluid; this is possible. However, due to the 
iterative manner in which the model Reynolds number is derived, the exact values of d, V, E, 

and (3 which correspond to that number must be known in order to derive accurately the 
appropriate coefficients of the stability equation. Inertial terms have been ignored in the 
analysis, and the glacier is constrained to remain fixed to the bed, so a value for (Re) greater 
than about 10-10 corresponds either to very steep slopes, thicknesses of 800 m or more, 
velocity profiles which vary from several tens of kilometers per year at the surface to zero at 
the bed, or combinations of the above. Hence, because assumptions which are appropriate to 
glaciers have already been incorporated in this analysis, the validity of extending the parameter 
variations much beyond the limits of appropriate-glacier models becomes questionable. 

The parameter E, however, is unique in that it relates directly to the rheological state of the 
glacier. It is worthwhile extending E beyond the range indicated by Meier's (1960) compila
tion of data because none of the glaciers compiled by him have ever surged or shown unstable 
behavior. If instability arises from interaction of the flow with the material non-linearity, it 
would be valuable to attempt to link the instability to particular flow parameters which might 
then be measured on glaciers which are known to surge. However, altering E changes the 
Reynolds number only very slightly: for d = 400 m and {3 = 3°, a range of 10-6 :;:;;: E :;:;;: 101 
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corresponds to Reynolds number range of about 10-12 to IO- IO• As E ~ 0 the Reynolds 
number is bounded below by that value appropriate for the Nye power law, about 10-12 for 
d = 400 m, f3 = 3°, and V = 285 m /year. Further, for E = 10-6, the effective surface viscosity 
is about 3.8 X 105 bar years (1.2 X 10 18 Pa s) compared to the 26 bar years (8.2 X 10 13 Pa s) 
for the original model, so this high viscosity bound might be expected to correspond to stable 
flows. As E increases, it eventually dominates the strain-rate term in the viscosity, and the 
viscosity still decreases with depth but becomes more uniform in profile. For E = 10, the 
surface viscosity is only 0.135 bar years (4.3 X lOll Pa s) and is only 0.07 bar years (2.2 X lOll 

Pa s) at the bed. This more uniform viscosity profile is also stable. 
Over the entire range of Reynolds numbers appropriate to glaciers, Ci is negative and hence 

the flow is stable. The infinite wavelength perturbations (IX = 0) are neutrally stable 
(acI = 0). Infinite wavelength perturbations are interpreted as uniform small-amplitude 
thickness changes, so that the a = 0 case is distinguishable from the unperturbed glacier. 
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d - 6OOm R_5.89xlO-11 

a 

~ - 3" 
~ . ,.14x10-2 

10 

Fig. 3. Decay-rate magnitude versus perturbation wavenumber for models of constant slope ~ = f and material parameter 
• = l. 14 X 10- 2 a-I but with variations in thickness d. 

Figures 3, 4, and 5 provide a readily understandable representation of the magnitude of 
the decay-rate laci I of the perturbation at wave numbers between zero and ten for various 
model glaciers. In Figure 3, both the slope f3 and the parameter E are held constant at the 
original model values, and the variation in (Re) arises from varying the glacier thickness d, each 
curve begin so labelled. Figure 4 is similar, but this time the slope is varied while d and E 

remain fixed. Finally, in Figure 5, the material parameter E is varied. In each diagram, the 
curve for (Re) = 1. 13 X 10- 12 represents the original model glacier. The peaks of each curve 
represent the wavenumbers at which perturbations will decay most rapidly for the particular 
model glacier. In general, curves further from the lacIi = 0 axis are those models which are 
more stable against disturbances. 

The value of Cl itself varies with (Re) in a predictable way. In general, an increase in depth 
or slope is destabilizing as indicated in Figures 3 and 4 where the decay-rate magnitude 
decreases for increasing d or f3 and thus (Re) . Increasing E (Fig. 5) decreases the viscosity and 
increases (Re), and the overall change to a more uniform profile for large E, pointed out above, 
is a tendency towards stability. Note, however, that as E decreases, it is the smaller Reynolds 
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number models (i.e. the slower flow models) which approach neutral stability (vanishing 
decay-rate) in opposition to the effect of decreasing thickness or slope. This does not necessarily 
mean that perturbations will become unstable as E -r 0 because, as E vanishes, the surface 
viscosity becomes infinite and prevents growth of perturb at ions there. The transition regime, 
however, warrants exploration. 
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Fig. 1. Decay-rate magnitude versus perturbation wlwenumber Jor models oJ constant thickness d = 100 m and material 
parameter E = 1. I1 X IO- 2 a-I but with variations in slope ~ . 
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Fig. 5. Decay-rate magnitude versus perturbation wavenumber Jor models if constant thickness d = 100 m and slope f3 = 3° 
but with variations in material parameter E, related to the viscosiry. 
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The vanatlOn of Cl with wavenumber is similar for all glacier models in the range 
10- 15 ~ (Re) ~ 10-10, it is zero at ex = 0, most negative near ex = 1 , and then decreases in 
magnitude as ex increases. The particular rate of change of Cl with increasing ex determines 
the shape of the decay-rate curves in Figures 3, 4, and 5. The original model 
((Re) = 1.13 X 10- 12) appears to have fluctuations in decay-rate between ex = I and ex = 4, 
and for the f3 = 5° model (Fig. 4) and the € = 10-3 model (Fig. 5) the decay-rate fluctuates 
at moderate and large ex. These variations are not understood; they are believed to be real, 
and it may be that a similar structure occurs in other intermediate models but is not apparent 
in the limiting curves on each diagram either for reasons of sampling size in ex or because the 
fluctuations themselves die out in the limiting cases. More detailed analysis is required to 
assign the exact causes. 

The values of phase velocity Cr (not presented here) represent the rate, with respect to a 
particular surface velocity, at which the disturbance propagates along the surface as it decays. 
For each model, the small-size perturbations (large ex) tend to ride passively with the glacier 
and decay (cr ~ V), whilst the longer wavelength perturbations propagate faster, up to 3 V 
or more in some cases. In Figures 3 and 4, the range in (Re) of 10- 15 to IQ-IO corresponds 
roughly to surface velocities of 10 m /year to a few tens of kilometers per year. In Figure 5, 
the large range in € (small range in (Re)) only corresponds to surface velocities of from 287 to 
421 m/year. In general, Cr is larger for large-wavelength disturbances which decay more 
quickly, except that the waves which propagate fastest are those in the ex = 0 limit (A infinite) 
where the decay-rate vanishes and the flow is neutrally stable. The maximum decay-rate 
occurs between ex = I and ex = 3, hence, small perturbations decay faster up to a particular 
size for each model, and beyond that maximum, larger and larger perturbations decay more 
slowly again. It should be noted that peak stability does not necessarily mean that, under 
different flow conditions, these same wave numbers would always represent the most stable 
perturbation wavelengths, it may be that certain glacier models are more sensitive in general 
to wavelength perturbations in the ex = I to 3 (A = 6d to 2d) range (whether the flow might be 
stable or unstable) , or that the sensitivity of the glacier to disturbances depends critically on 
the flow field which is being modeled. 

The values of Cr for the model € = IQ-6 are almost always one (cr ~ V). As E is decreased 
from 10-3 to 10-6, the Cr values converge to one over a very small variation in (Re) . These 
results reflect the fact that as E -+ 0 the viscosity tends to infinity at the surface, and the 
disturbances propagate with the glaciers, any variation in the surface profile remains at a 
fixed location on the glacier surface and moves only with the down-stream flow. 

The fact that the flow is stable over the whole range of € is not conclusive proof that in
stabilities arising from material non-linearity cannot occur in glaciers. Figure 5 does indicate 
that the best chance for instability under alternate-flow conditions should occur when E is small 
enough that the rate of damping of perturbations is slow, but not so small that the surface 
viscosity approaches infinity. However, this simplified analysis does not predict any instability. 
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D ISCUSS IO N 

K. HUTTER: Not having obtained any instabilities with the linear analysis, do you anticipate 
any in a more complex treatment such as a non-linear large-amplitude description? 

D. E. THOMPSON: Yes, although only if more realistic physics is incorporated in the analysis. 
The linear theory can at best only show a tendency towards instability, whereas finite
amplitude analysis describes the evolution of particular disturbances. A finite-amplitude 
disturbance is both easier to grasp physically considering the complex rheology and basal 
characteristics of glaciers, and more realistic in that only finite-scale perturbations are sensed 
by a glacier. 

G. H . HOLDSWORTH: Your Figure 2b indicated the variation of viscosity with depth in the 
model. Where did this variation come from? Can the curve be described by some simple 
analytical function? 
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THOMPSON: The viscosity-depth relation arises directly from a solution of the primary-flow 
equations for the strain-rate profile. This strain-rate variation is then substituted into the 
defined viscosity relation. Thus, this viscosity variation represents the initial primary 
viscosity upon which fluctuations are imposed through fluctuations in the strain-rate. The 
exact functional relation is given in the text. 

A. S. J ONES: Since Figure 5 implies a destabilization of ice flow as E -+ 0, does the limit give 
neutral stability? 

THOMPSON: No. In fact both limits of variation in E are probably stable. For large E the 
viscosity profile becomes strongly Newtonian and uniform, which is stabilizing; for small E, 

the viscosity is essentially that of a Nye power law, and the infinite surface viscosity is stable 
against surface fluctuations. 
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