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Abstract. In the presentpaper we analyse the motion of a massless particle during the capture process 
in an exterior mean-motion resonance under the effects of an external dissipative force. In particular, 
we study the orbital evolution from its initial approach to the commensurability up to the final nesting 
place in the periodic orbit around the equilibrium solution. 

1. Introduction 

In a recent work (Beauge et al., 1998; hereafter BLJ98) we presented a new model 
for the averaged equations of motion of the capture problem, based on a Lie per
turbation method (Kamel, 1969) truncated to second order. The application of this 
model to the case of Stokes drag allowed us to determine the equilibrium solutions 
of the system (i.e. corotation centers) with a significant increase in precision with 
respect to previous works. 

However, when these results are compared with numerical simulations of the 
exact equations, we find that the real motion of the particles is not restricted 
to the equilibrium value but, due to the effects of the short-period terms, will 
define a periodic orbit around the fixed point. We call such orbit a limit cycle 
(Poincare, 1885), and its period is simply the synodic period of the resonance. 
Fortunately, these cycles may also be reproduced with the second-order model. 
By means of the inverse transformation to the non-averaged variables we can find 
approximate analytical expressions for the periodic orbits which, when compared 
to the numerical simulations, show a very good agreement. Consequently, we 
currently have a fairly good idea of the final resting place of the trapped particles. 
The next step is to study the road that takes them there from the initial entrance to 
the resonance region. In other words, the motion of the body in the vicinity of the 
limit cycle itself. 

This question has received a boost in interest from a recent work by Gomes 
and Mothe-Diniz (1998). In this paper, the authors performed several studies, via 
numerical simulations, of the evolution of two different particles (of radii r) trapped 
in the same corotation point. They found that, under a wide range of the initial 
conditions, the relative distance between both bodies diminished exponentially to 
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values of the order of machine precision in times of the order of 104 years. Their 
relative velocity also decreased to extremely low values (~ 10 - 1 0 m/s at Ax ~ 2r), 
which means that these particles experience more a "smooth approach" than an 
actual collision. These results are of considerable importance to those cosmogonic 
theories in which resonance trapping is present. Not only do they ensure the actual 
attraction of different bodies, but they also indicate that any collision will result in 
accretion. This could help explain how particles of very small size could accrete, 
even when the mutual gravity is virtually non-existent. 

So stated, we wonder whether it would be possible to use our second-order model, 
together with the expressions for the limit cycles, to obtain approximate analytical 
solution of the complete non-averaged system during the capture process itself. 
This is the question we wish to address in this communication. 

The manuscript is organized in the following manner: Section 2 presents the prob
lem and reproduces the main results of the second-order theory, together with the 
expressions for the periodic orbits. Section 3 discusses the linearization of the sys
tem around the fixed point and the general solution of the eigensystem. Results and 
comparisons are presented in Section 4 and conclusions close the paper in Section 
5. 

2. The Second-Order Model 

2.1. STATEMENT OF THE PROBLEM 

As usual, let us suppose the planar elliptic restricted three-body problem in the 
vicinity of an exterior (p + q)/p mean-motion resonance. The external dissipative 
force will be modeled by a Stokes drag with a = 0.995 (Adachi et al., 1976). 
Let C denote the drag coefficient which has units of unity over time. The set of 
resonant variables is chosen to be (L, e, <r, o\, a-i), where L = y/JIa and the angular 
variables are defined through 

qa = (p + q)Xi -pX-qw 

qax = -(p + q)M/p + \ (1) 

0-2 = M/P-

Here // is the gravitational constant, a and e denote the semimajor axis and ec
centricity of the body, A stands for the mean longitude and w the longitude of 
perihelion. Similar quantities, with subindex 1, hold for the perturbing planet of 
mass mi. 

Defining the position vector of tfiis non-canonical set as a; = (L, e, a, a\,G-i), 
the system of differential equations governing the motion of the particle can be 
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succinctly written as 

7jT= E (fS)) + mxfl
0))LheiiE^I^cr+i^+i^ (2) 

*li»2.«3.**.»J 

where ft = /0 (*i) marks the two-body gravitational contribution and /f ' = 
/ ! (ii,h, h, U, 25) groups the complete perturbing forces (per unit of rai), in
cluding the dissipative part. Here we have used the notation Ee = exp 0. We must 
note that all the ft ' and /} ' coefficients are constant throughout the phase space 
(see BLJ98 for further details). 

2.2. THE AVERAGED SYSTEM 

We search for a transformation of variables W(y; m\, C): x —>• y to new variables 
y = (2/1 > 2/2) V3,1/4) 2/5) = (L,e, a, d\, 62) such that the new equations of motion 
do not depend explicitly on the transformed synodic angle y$; 

zM. - V ^ A. . . . TilJlJpV^ihv+Uvi) / o \ 
, — 2^i '^l«l.«2i«3iUX' c £ / . yj) 

»li»2i»3>*4 

Expanding the transformation function W in a power series of the perturbing mass 
mi, we can explicitly write the relationship between both sets of variables as: 

x = y + mlW1(y; C) + -mx
2W%{y; C)+... (4) 

where the new Wi(y; C) are independent of the planetary mass. "Via the Lie trans
form method (Kamel, 1969; Henrard, 1970) we find that the constant coefficients 
of (3) can be approximated by 

A„«,i„u = / f + ™i fkl) + \mxC /0
(2) + . . . (5) 

(k) (k) 

where the new/o — ft \ i2i i are obtained through the averaging process itself 
(Triangle rule). The fixed points of system (3) automatically yield the corotation 
centers of the averaged system. Denoting these values as yc = yc{m\, C), we have 
that yc = 0. 
Next, to obtain the limit cycles around yc, we must perform the inverse transforma
tion. Retaining only the lowest-order terms, the periodic orbit in the old variables 
can be written as 

x ~ yc + mxWx{yc; C) = yc + J2wWf^**) (6) 
i 

where the u^ = u^\yc; m\,C) coefficients are also given by the averaging 
process. 
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3. Linearization around the Fixed Point 

3.1. THE EIGENSYSTEM 

The usual way to study the evolution of the system in the vicinity of the periodic 
orbit is through Floquet theory. In this, we linearize the equations of motion around 
the periodic orbit itself, determine the monodromy matrix, and search for the 
eigenvalues of the resulting system at fixed times. However, the steps taken in the 
averaging process described in the previous section allow us to take a simpler road. 

Since the averaging process relates the limit cycle in x with the fixed point in y, we 
can directly study the linear system around the corotation center. The solution of the 
eigensystem (in y) can then be transformed to the old variables directly by means 
of equations (6). Thus, we avoid the complications of the linearization around a 
periodic solution and can work directly on the fixed point (see Hale, 1969). This is 
the aim of the present section. 

Let us define £ = y - yc and write the linearized system of (3) as £ = B£. From 
(3) the expression for the Jacobian matrix is trivial, since all the coefficients A are 
constant and the derivatives can be performed explicitly. Thus, we can write 

B= J2 A,n,;3,uVV2£^(°3<7c+ua ic ) (7) 
»'li«2,*3i«* 

where A' denote the new coefficients after the differentiation. 

Knowing B, we can construct the characteristic equation and solve for the eigen
values A; and the eigenvectors ipi. Then, the general solution will be given by: 

4 

y = yc + J2Ki^EX,t- (8) 
i=i 

The complex constants K{ are determined as solutions of the linear system ipK = 
2/o - Vc< where V> is the matrix of eigenvectors components and yo mark the initial 
conditions. 

3.2. THE COMPLETE SOLUTION 

It is now possible to introduce the solution (8) of the averaged system into the 
inverse transformation (6). In order to obtain an explicit expression, we approximate 

WiM-WiiyJ+l-^) (y-yc). (9) 
\ it / y—yc 

Writing the derivative of the transformation function (evaluated at the fixed point) 
as 

V Oy J y — yc • 
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Fig. 1. Temporal evolution of the semimajor axis during the capture of a particle in a 
corotational solution in the 2/3 resonance, (a) Evolution of the mean semimajor axis (i.e. 
2/i) according to equation (8). (b) Idem, but for the non-averaged semimajor axis (i.e. xO 
as obtained by equations (11). (c) Numerical simulation of the exact equations. 

and remembering expression (8) for (y — yc), we can finally obtain the solution of 
the complete system around the limit cycle as 

4 

x(t) =yc + J2 Ki<PiEXit + Y,ujWE^r~lj^t+no'> 
i i (11) 

where 1̂2 = Gi{y = Vc) and (T20 is the initial value of the synodic angle. 

4. Results 

Equation (11) finally gives the evolution of the system variables as a function 
of time. The value of ydmi^) is determined as zeros of (3) and the initial 

https://doi.org/10.1017/S0252921100072456 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072456


102 

-2E-6 

-4E-6 

Re(L_1) = Re(L_2) 

-6E-6 — 

3E-5 

-4E-5 

-8E-5 

-1E-4 

— 

— 

Re(L_3) 
I 

I 

— 

— 

— 

9E-5 3E-5 6E-5 
C 

9E-5 

D.OE+0 

3.0E-5 

Re(L 4) 
' I 

I I 1 

-

-

-4.5E-5 

-5.0E-5 

lm(L_1) = -lm(L_2) 
i 1 r 

-5.5E-5 
3E-5 6E-5 

C 
9E-5 3E-5 9E-5 

Fig. 2. Real and imaginary parts of the eigenvalues of the variational equations for the 2/3 
resonance, as a function of the drag coeffcient C. 

conditions enter through coefficients K. The next step is to compare this model 
with the numerical results. 
We begin with a direct comparison of x(t) with that obtained from numerical 
simulations. In Figure 1 we present the semimajor axis as a function of time for 
a body initially located at a — 7 U.A. On the top graph we show the behaviour 
of the mean variable, as determined by the averaged solution (8). We notice the 
damped oscillation and the final corotational value for large values of t. Since the 
eigenvalues Ai are such that S(Ai) = -9(A2), and A3 and A4 contain no imaginary 
parts (i.e. $s(\3) = $(A4) = 0), the frequency of oscillation is identical for all the 
orbital elements. The middle plot in Figure 1 now shows the temporal evolution 
of the osculating semimajor axis, as determined through (11). This can now be 
compared with the numerical results, seen in the bottom graph in Figure 1. The 
agreement between them is very good. 

Having tested the analytical solution, we can concentrate our study on the eigen-
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Fig. 3. (a). Logarithm of Ax as function of time. Thick lines show linear decrease according 
to Ai (small t) and A4 (large t). (b). Distribution of collision times Tco\ for 20 particles with 
different initial conditions. C = 3.02 x 10~5 in both cases. 

values and their relationship with the convergence rate of nearby orbits. Figure 
2 shows the variation of Aj as a function of the drag coefficient C for the 2/3 
resonance. As was mentioned in the previous paragraph, the first two values are 
complex conjugates and contain the only non-zero imaginary parts. Thus, any 
solution of the linearized system will display a damped oscillation with a single 
fundamental frequency in all coordinates. This frequency will be given by 9(Ai) 
which, in principle, has no relationship at all with the inverse of the synodic period. 
Hence, the final limit cycle will only become evident fori >> -l/3fJ(Aj). Second, 
we can see that A4 —• 0~ as C -*• C* ~ 3.2 x 10~5. This critical value of the 
drag coefficient marks the end of the corotational regime and the beginning of the 
libration zone. All capture with C < C* will thus evolve asymtotically to periodic 
motions in the averaged system, and not to point attractors. 
Next, we can focus on the orbital convergence itself, as described in Gomes and 
Mothe-Diniz (1998). Although exponential convergence of nearby orbits is ex
pected from the stability condition of the equilibrium solutions, the present model 
can give us additional information, such as the expected accretional timescale Tco\ 
for a given population of planetesimals and its dependence on the drag coefficient 
or with the initial conditions. Let us then suppose two particles of equal radius r 
(and thus equal drag coefficient C) and on initial conditions x(t = 0) and x'(t = 0) 
chosen such that both are captured in the same corotational solution. Then, from 
equations (8)-(l 1), and once we have eliminated all periodic modulations, we can 
estimate the vectorial difference between them as 

x(t) - x'(t) = Ax(t) ex Y,AiE X,t (12) 

where the coefficients A,- are function of the initial conditions of both particles. 
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Fig. 4. Real and imaginary parts of the eigenvalues of the variational equations for the 2/3 
resonance, as a function of the drag coefficient C. 

From this expression we can see that the convergence is proportional to four 
exponentials, each weighted by coefficients that depend on the initial conditions. 
Now, even though for small timescales the different terms may be of similar 
magnitude, for extremely large values of t the temporal evolution of Ax(t) will 
tend asymtotically to an exponential proportional to the smallest eigenvalue. In 
other words, Ax(t) oc E™"^ (see Fig. 3a). 

Thus it seems that, independently of the initial conditions, the convergence rate is 
given by the lowest eigenvalue of the system. However, this is valid for t —*• oo 
(which implies Aa; —• 0) but not necessarily true for finite values of t corresponding 
to a collision between both bodies (i.e. Aa; = 2r). If Tco\ is sufficiently small, the 
convergence rate will no longer be unique but function of the initial separations. In 
order to see this in more detail, we once again make use of equation (12). With it, 
we can simulate a variation of initial conditions via modifications of the numerical 
values of A,, and determine collision times in each case. 

This calculation was performed for 20 different sets of coefficients and the resulting 
distribution of Tco\ is shown in Figure 3b. In broken vertical lines we also show the 
theoretical times if only A4 (left line) and Ai (right line) where present. A3 is too 
large and can be ignored in the model. We can see that the real values lie between 
both limits and a certain tendency is noted towards faster accretion. Nevertheless, 
the dispersion is very significant, covering more than half an order of magnitude. 
From a cosmogonical point of view this result may be of importance, since it means 
that even though a swarm of equal-massed particles will in fact converge towards 
the same corotation point, there is no unique timescale for the accretion process. 
Notwithstanding this last fact, it is possible to determine a mean collision time 
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(Tcoi), defined as the average over the different A, (see (12)). Even though individual 
times may vary, this quantity can be thought as a characteristic timescale of the 
system for the given drag coefficient. The result of this calculation, as a function of 
C, is shown as a continuous line in Figure 4. Notice the steep increase in collision 
times for C close to the librational limit (Tcot at this point). For comparison with 
numerical results of the exact equations, for each value of C we took 20 different 
initial conditions and determined directly (Tco;). These were then plotted in full 
circles. We can see that the agreement with the analytical results is very good. 

Acknowledgements 

This work is part of collaboration initiated during C. Beauge's one month visit to 
Namur. The authors are grateful to the FUNDP for the partial financing of the stay. 
Additional support from CONICET, CONICOR and Secyt/UNC is also greatly 
appreciated. 

References 

Adachi, I., Hayashi, C , and Nakazawa, K.: 1976, Prog. Theor. Phys., 56,1756-1771. 
Beauge, C , Lemaitre, A. and Jancart, S.: 1998, Planet. Space Science, in press. 
Gomes, R. and Mothe-Diniz, T.: 1998, in preparation. 
Hale, J.K.: 1969), Ordinary Differential Equations, Wiley-Interscience, J. Wiley & Sons, New York. 
Henrard,J.: 1970, Celest. Mech., 3, 107-120. 
Kamel, A.A:. 1969, Celest. Mech., 1,190-199. 
Poincar6, H.: 1885, / . de Math, pures appl., ser. 4, 1, 167. Reprinted in Oeuvres de Henri Poincare, 

I, 90, Gauthier-Villars, Paris, (1928). 

https://doi.org/10.1017/S0252921100072456 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072456



