An addendum
By C. E. WaLsH.
(Received 20th June 1934. Read 2nd November, 1934.)

A generalised lemma used in the second of two papers' enables
us, as was suggested there, to extend results of the first. Thus,
among others, we easily get the following:

Let t, be determined by the relation
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Condition (iv) will be satisfied if the series
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a theorem recently proved by Sunouchi follows, namely :
Let (1 +ap)ty =al ty_14+a% ty_o+ .... + @ty + Yy, where
lim y, = 0.
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