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Abstract

This paper discusses the application of genetic programming to the synthesis of compound two-dimensional kinematic
mechanisms, and benchmarks the results against one of the classical kinematic challenges of 19th century mechanical de-
sign. Considerations for selecting a representation for mechanism design are presented, and a number of human-competitive
inventions are shown.
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1. INTRODUCTION

Kinematics, the science of pure motion, is concerned with the
analysis and synthesis of mechanisms composed of con-
nected rigid elements. It deals with the relative geometric dis-
placements of points and links of a mechanism, without
regard to forces that generate those displacements or the
physical embodiment that realizes them.

The interest in kinematics has its origins in machines as old
as civilization (Ramelli, 1588), but it was largely invigorated
in the 18th century with the invention of the steam engine and
the beginnings of the industrial age (Ferguson, 1962). Ini-
tially, designs were produced and analyzed by practitioners
in an ad hoc manner, but the pressure for rigorous and sys-
tematic performance led, within a few generations, to the es-
tablishment of increasingly general methods for geometric
analysis and classification of mechanism types (Reuleaux,
1876). Many of these ideas form the basis of modern kine-
matic theory today.

Kinematic synthesis, however, is still largely a challenge.
The systematic synthesis of a mechanism for a given purpose
is a long-standing problem, and perhaps one of the earliest
general synthesis problems to be posed. Robert Willis, a pro-
fessor of natural and experimental philosophy at Cambridge,
wrote the following in his 1841 book The Principles of
Mechanisms (Willis, 1841):

[A rational approach to synthesis is needed] to obtain, by
direct and certain methods, all the forms and arrangements
that are applicable to the desired purpose. At present, ques-
tions of this kind can only be solved by that species of in-
tuition that which long familiarity with the subject usually
confers upon experienced persons, but which they are to-
tally unable to communicate to others. When the mind of
a mechanician is occupied with the contrivance of a ma-
chine, he must wait until, in the midst of his meditations,
some happy combination presents itself to his mind that
may answer his purpose.

More than a century later, a rational method for the synthe-
sis of mechanisms is still not clear. Despite great advances in
analysis of mechanisms and classification of elementary
components, founders of modern kinematic theory wrote
“While we may talk about kinematic synthesis, . . . we really
are talking about a hope for the future than a great reality of
the present” (Hartenberg Denavit, 1954). Analytical methods
do exist for some special cases of mechanisms (such as serial
articulated joints, or certain parallel mechanisms), but not for
the general case. Mathematical proofs of existence show that
mechanisms can be found to trace any algebraic curve, but
their construction is usually impractical. We may often be
content with a simpler approximate solution, but it is not clear
how to obtain such a solution. The question of rational syn-
thesis of mechanisms is today of increasing importance
with the quest for design automation; when seeking compu-
tational synthesis methods, no longer can we cloak the design
process with the term “creativity.”
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1.1. Prior work

There is a large body of recent work on topological optimiza-
tion of static and compliant structures (see Hassani Hinton,
1999; Olhoff Rozvany, 2001; Bendsoe Siegmund, 2002),
where a structure is optimized to obtain desired performance
across a number of criteria and tradeoffs such as deflection,
vibration, crashworthiness, and weight. These methods
usually work using a homogenization process, where an ini-
tially solid or fully connected structure is gradually eroded by
eliminating components or material until the stress levels
within the remaining structure approach uniformity (and
hence optimality). Evolutionary and homogenization
methods have also been applied to design of compliant
mechanisms (Fecker et al., 1997; Nishiwaki et al., 1998),
which are similar to static structures but are deliberately de-
signed for large deflections. These elimination-based
methods are inappropriate for kinematic synthesis, however,
because kinematic mechanisms function using only rigid
links, and therefore exploring fully connected or overcon-
strained topologies is futile. It is difficult to foresee how com-
plex mechanisms, containing a large variety of components
such as gears and actuators, could be constructed by an elim-
ination process starting at some “fully connected mechanism”
superset. It is therefore likely that a compositional approach
would be more generally applicable to kinematic design.

A number of recent works have used evolutionary compu-
tation techniques to automate mechanism design by composi-
tion, often in conjunction with designing a controller. The
mechanisms designed were usually serial or treelike (Sims,
1994; Komosinski Ulatowski, 1999; Bongard, 2002; Hornby
et al., 2003), although some of our prior work focused on de-
sign of compound mechanisms containing multiple, entan-
gled kinematic loops (Lipson & Pollack, 2000). Nevertheless,
the capabilities of kinematic synthesis automation and suitable
representations remain largely unexplored.

The goal of this paper is twofold: to explore some repre-
sentations for kinematic synthesis using genetic program-
ming (GP) and to benchmark the performance of these algo-
rithms against a well-established kinematic design problem
that has baffled some of the world’s greatest inventors for
nearly a century: the straight-line problem.

2. MECHANISM REPRESENTATIONS

A key question in preparation for an automated synthesis pro-
cess is that of representation: how would a kinematic mecha-
nism be encoded such that all possible mechanisms can be de-
scribed, and what variation operators would be used to
explore this space of mechanisms? A kinematic mechanism
can be represented as a graph, embedded in two or three di-
mensions. Edges of the graph represent links, and nodes of
the graph represent joints. There are a number of different
types of joints [e.g., prismatic or rotary in two-dimensional
(2-D), ball, prismatic, cylindrical, or screw, in three-dimen-
sional (3-D)], and a number of different types of links (with

different geometries and numbers of attachment points).
Here, we focus on planar mechanisms with free (pin) joints.
Table 1 shows how more complex mechanism types and
components can often be reduced to an equivalent simple
pin-joined mechanism.

A 2-D mechanism composed of straight links and free
joints is directly represented by a graph embedded in the
plane. Variation operators could modify this structure di-
rectly, but we prefer that these variation operators will be in-
variant with respect to the number of degrees of freedom
(DOF) of the mechanism.

2.1. Kinematic DOF

An important concept in the description of a kinematic
mechanism is its number of DOF. The overall number of in-
dependent parameters needed to fully specify the state of the
entire mechanism is defined as its number of DOF. Some of
the mechanisms’ nodes may be grounded, and therefore im-
mobile, whereas other nodes are free to move while being
constrained by links attaching them to other nodes. In the
graph representation described above, it is useful to think of
nodes as contributing to the total DOF, and of links as con-
straints that remove DOF.

The number of DOF of a mechanism can be calculated di-
rectly by considering the fact that each node in a planar
mechanism has 2 DOF of motion in the plane, and each
link eliminates one of these DOF by providing one constraint
on the distance between two nodes. The entire mechanism
also has 3 rigid-body DOF that can be eliminated by ground-
ing any one of the links. The total DOF of a grounded mecha-
nism with n nodes and m links is thus 2n–m–3. A grounded
four-bar linkage (Fig. 1a), for example, has exactly 1 DOF,
and its nodes will therefore trace curves. A five-bar mecha-
nism (Fig. 1b) has 2 DOF, and some of its nodes will trace
(fill) areas. There may be, however, mechanisms that are
overconstrained in some part and underconstrained in an-
other, leading to misleading total DOF count (Fig. 1c). Other
mechanisms may have geometrical singularities and degen-
eracies in their configurations that cause locking or unac-
counted free motions. It is therefore impossible to predict
the DOF that a general mechanism may have based solely
on topological counting arguments.

An evolutionary process for kinematic synthesis makes
progress by varying and selecting mechanisms. The variation
operators can modify the mechanism’s graph directly, or may
use an indirect encoding (genotype) from which the graph
(phenotype) is constructed. Luke and Spector (1996) survey
a number of different representations used to describe or
“grow” computational graphs, such as neural networks.
Some methods use context-free grammars, L-systems, and
parse trees operating on nodes and edges (e.g., Wilson,
1987; Kitano, 1990; Boers et al., 1993; Gruau, 1994).

Most of the existing representations for encoding graphs
generate highly connected topologies that are suitable for
computational networks, but which are less suitable for
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kinematic networks because they overconstrain the motion
and create deadlocked mechanisms. Using these representa-
tions, the likelihood of generating a mechanism with
exactly 1 DOF is vanishingly small. To allow an evolutionary
process to explore the space of 1 DOF mechanisms more
efficiently, a more suitable representation is required. This
representation must have a treelike architecture to be used
by standard GP.

A second consideration in the choice of representation is
that of evolvability. Many of the representations cited
above result in context-sensitive and order-sensitive de-
scription of a network. For example, the structure generated
by a branch in Gruau’s cellular encoding depends on
whether it is parsed before or after its sibling branch. If
that branch is transplanted by crossover into another tree
it may produce an entirely different structure. Such behav-

ior hampers the effectiveness of recombinative operators by
precluding the formation of modular components that are
discovered by the search in one place and then reused else-
where. A representation where the structure produced by a
branch of the tree is minimally affected by its context may
thus be more evolvable.

2.2. Top-down and bottom-up tree representations
of kinematic mechanisms

Tree-based representations can describe a set of operations to
construct a phenotype in a top-down or bottom-up manner.
A top-down representation starts with an initial structure
(an embryo) and specifies a sequence of operations that pro-
gressively modify it into its final form. Figure 2a shows a top-
down tree that specifies the construction of an electric circuit,

Table 1. Some higher level elements and their pin-joined equivalents

High-Level Element Type Target Structure Pin-Joined Equivalenta

Rigid components can be represented as a
triangular mesh

Intermediate connections can be represented
by adding auxiliary support structure

Welded joint can be represented by adding
a link across the joint.

Prismatic joints can be represented by any
straight line mechanism, such as Robert’s
linkage (shown here).

aAdded links shown dotted.

Fig. 1. The degrees of freedom (DOF) of a mechanism: (a) a four-bar mechanism has 1 DOF and some of its nodes trace curves, (b) a five-
bar mechanism has 2 DOF and some of its nodes can trace over an area, but (c) some structures are overlapping constraints or have degen-
eracies that lead to miscalculation of their number of DOF. This structure should be locked, but it is free.
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starting with an initial circuit and recursively replacing circuit
segments with serial and parallel arrangements of electrical
components (Koza, 1992). Each node of the tree is either
an operator that modifies the circuit and passes segments to
its child nodes, or a terminal electrical component. The spe-
cific parallel and serial operators cannot be used for construc-
tion of mechanisms as they will immediately create over- and
underconstrained kinematic chains. Because of the physics of
electric circuits, ordering of children under a parent does not
always matter. This tree is thus both order independent and
context independent. In a top-down tree, parent nodes must
be constructed before their children.

Figure 2b shows a bottom-up construction of a symbolic
expression. Here, terminal nodes represent constants or vari-
ables, and parent nodes represent mathematical operators. Be-
cause of the nature of mathematical expressions, parsing or-
der is important, and swapping order of some child nodes
would result in a mathematically different expression. The
terms are unchanged, however, by the content of their sib-
lings. This tree is thus order dependent but context indepen-
dent. In a bottom-up tree, child nodes must be constructed be-
fore their parents.

Two tree-based representations for describing kinematic
mechanisms are proposed here. Top-down construction of a
mechanism starts with an embryonic 1 DOF kinematic basis
such as the four-bar mechanism shown in Figure 3a. A tree of
operators then recursively modifies that mechanism by replacing
single links with assemblies of links with an equivalent DOF, so
that the total number of DOF remains unchanged. Two such
transformations are shown in Figure 3b: the D and T operators.

The D operator creates a new node and connects it to both
the endpoints of a given link, essentially creating a rigid tri-
angular component. The T operator replaces a given link
with two links that pass through a newly created node. The
new node is also connected to some other existing node.

In both operators, the position of the new node is specified
in coordinates local to link being modified. The T operator
specifies the external connecting node by providing coordi-
nates relative to link being modified; the closest available
node from the parent structure is used. This form of specifica-
tion helps assure the operators remain as context and order in-
dependent as possible. Figure 3c shows how a certain se-
quence of operators will transform a dyad into a triad.
Figure 3d shows how application of a tree of operators to
the embryonic mechanism, will transform it into an arbitrary
compound mechanism with exactly 1 DOF. Terminals of the
tree are the actual links of the mechanism.

Alternatively, bottom-up construction of a 1 DOF mecha-
nism begins at the leaves of the tree with atomic building
blocks and hierarchically assembles them into components.
The atomic building block is a dyad as shown in Figure 4a,
and has exactly 1 DOF when grounded. The composition op-
erator ensures that the total number of DOF is not changed
when two subcomponents are combined, and thus the total
product of the tree will also be a mechanism with exactly
1 DOF. When combining two components each of 1 DOF,
the resulting assembly will have 5 DOF (1 DOF from each,
plus 3 DOF released by ungrounding one of the components).
The total DOF is restored to 1 by eliminating 4 DOF through
the merging of two point pairs. An example of this process is
shown in Figure 4b. Note that points must be merged in a way
that avoids overlapping constraints, such as causing two links
to merge. The components may need to be scaled and orien-
ted for the merger to work. The ground link of the entire struc-
ture is specified at the root of the tree.

3. TEST CASE: THE STRAIGHT-LINE PROBLEM

In selecting a test problem to evaluate the performance of a
GP using the above representations, we sought a kinematic

Fig. 2. Top-down and bottom-up parse-tree constructions: (a) top-down construction of a circuit and (b) bottom-up construction of a
symbolic expression.
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synthesis challenge that is on par with human inventive ca-
pacity. There are numerous ingenious kinematic mechanisms
in many everyday products around us, from cars to DVD
players and electric toothbrushes (Moon, 2004). However,
nowhere was a single design challenge so clearly states and
persistent as the straight-line problem.

The straight-line problem seeks a kinematic mechanism
that traces a straight line without reference to an existing
straight line. It is easy to imagine a kinematic mechanism
that traces an exact circle, for example, without having a circle
prebuilt in to it: a simple link, constrained at one endpoint and
tracing at the other endpoint would create an exact circle.
Figure 5a shows such a device: a compass. Tracing an exact
straight line without reference to an existing straight line is,
however, much more difficult. It is a challenge that has occu-
pied inventors for nearly a century. One solution, known as
“The Peaucellier” (1873), is shown in Figure 5b.

The straight-line problem was of great practical importance
in the 18th and 19th centuries. The invention of the steam en-
gine marked a new era of technological advance, but its early
development was plagued with problems of reliability and ma-
chining accuracy, leading to both steam leakage around the pis-
ton heads and overwhelming friction. One of the big chal-
lenges was how to convert the reciprocating linear motion of
the double-acting (push–pull) piston into a continuous rotary
motion of a wheel. Although the use of a crank and a

connecting rod seems trivial today, it was by no means apparent
at the time, because machining accuracy was such that the pis-
ton head could not sustain side loads well and needed a straight
guide to keep it from wobbling and leaking steam. Conven-
tional designs at the time used the reciprocating motion to
pump water into a reservoir and turn a waterwheel, or used other
complex arrangements of gears and chains. James Watts’ first
patent (1782) used a rack and sector (Fig. 6a and b).

The real breakthrough in steam engine technology came
with the invention of a linkage system to guide the piston in
a straight line. In 1784, Watt wrote to his partner Boulton: “I
have got a glimpse of a method of causing the piston rod to
move up and down perpendicularly, by only fixing it to a piece
of iron upon the beam, without chains or perpendicular guides,
or untowardly frictions, arch-heads, or other pieces of clumsi-
ness . . . I think it a very probable thing to succeed” (Muirhead,
1854). The design is shown in Figure 6c. Years later, Watt told
his son: “Though I am not over anxious after fame, yet I am
more proud of the parallel motion than of any other mechanical
invention I have ever made” (Muirhead, 1854).

Since the initial inception of the straight-line mechanism,
many inventors engaged in improving and creating alterna-
tive designs. Figure 6d–i show a number of additional practi-
cal designs. The obsession with the straight-line mechanism
continued well beyond what its practical usefulness merited,
to become a mathematical puzzle in its own right. The

Fig. 3. Top-down construction of a 1 degree of freedom (DOF) mechanism: (a) an embryonic four-bar mechanism; (b) two operators that
change local topology but do not change the number of DOF; (c) operators applied in some sequence will create new mechanism, such as
transform a dyad into a triad; and (d) operators can be applied in a tree to transform the embryonic mechanism into an arbitrary mechanism
while retaining the original number of DOF.

Evolutionary synthesis of kinematic mechanisms 199

https://doi.org/10.1017/S0890060408000139 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000139


challenge continued even after the invention of the perfect
mechanism by Peaucellier in 1873, a century after Watt’s in-
itial invention. Numerous straight-line mechanisms were pro-
posed, as evident from the 39 different straight-line mecha-
nisms shown in the Voigt catalog (Voigt, 1907) of
educational models (Fig. 7a). Cornell University still owns
most of these models, which were acquired in 1882 and
used in the early engineering curricula; some are shown in
Figure 7b. As precision manufacturing improved, the need

for straight-line mechanisms diminished, and it is now lost
knowledge. Ferguson provides a vivid account of that era
(Ferguson, 1962).

3.1. Simulating and evaluating straight-line
mechanisms

The performance of a given mechanism was evaluated using
an in-house kinematic simulator (Lipson, 2004). This

Fig. 4. Bottom-up construction of a 1 degree of freedom (DOF) mechanism: (a) an atomic building block of a mechanism has 1 DOF when
grounded and (b) examples of composition of atomic and higher level building blocks. The composition operator eliminates two vertices,
thereby ensuring that the total number of DOF of the compound structure remains exactly one. (c) Composition operators can be applied
hierarchically in a tree to aggregate atomic building blocks into increasingly complex kinematic mechanisms, each with exactly 1 DOF.

Fig. 5. Mechanisms to trace exact curves. (a) Tracing an exact circle without reference to an existing circle is simple, but (b) tracing an exact
straight line without reference to an existing straight line is a challenge that has occupied inventors for nearly a century. The mechanism
shown is “The Peaucellier” (1876). All links are shown as crooked sticks to emphasize that the links themselves do not need to be straight;
they merely constrain the distance between two nodes.
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simulator approximates the rigid links with stiff elastic
springs, and propagates displacements throughout the struc-
ture using a relaxational process, gradually reducing elasticity
to approximate rigid behavior. The process iterates until the
structure reaches equilibrium; if equilibrium is not reached,
or if large residual (internal) forces remain, then the mecha-
nism is deemed to be overconstrained or underconstrained
in some way. Another way to check for invalid mechanisms
is by evaluating the same mechanism several times with
slightly perturbed starting conditions. An underconstrained
mechanism (with DOF . 1) will not necessarily trace the
same curve. It is interesting to note that the number of invalid

mechanisms quickly reduces because of selection. The percen-
tage of invalid (unsimulatable) mechanisms over evolutionary
time is given in the results.

To measure the extent to which a given mechanism traces a
straight line, the mechanism is actuated along its single DOF
by applying some small force to one of its ungrounded nodes,
selected arbitrarily. The trajectories of all nodes are recorded,
and then evaluated for straightness. Straightness is computed
as the aspect ratio of a tight bounding box of the trajectory.
The length over width of the bounding box provides a fitness
criterion that measures the maximum deviation from a
straight line, as seen in Figure 8.

Fig. 6. Some key straight-line mechanisms: (a) Watt’s original rack and sector solution in 1782 (Muirhead, 1854), (b) Watt improvement in
1784, (c) Watt’s first straight-line linkage mechanism (Muirhead, 1854), (d) Robert’s linkage in 1841, (e) Chebyshev’s linkage in 1867, (f)
Peaucellier’s linkage in 1873, (g) Silverster–Kempe’s linkage in 1877, (h) Chebyshev’s combination in 1867, (i) Chebyshev–Evans com-
bination, 1907. From Kempe (1877).
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Fig. 7. The plethora of straight-line mechanisms: (a) Voight’s listing of 39 straight-line mechanisms out of a catalog of teaching models
(Voigt, 1907), (b) most of these models were acquired by Cornell University in 1882 and used in the early teaching curriculum. These
models are now on display at the museum of kinematics, with videos available online (Saylor et al., 2008). [A color version of this
figure can be viewed online at journals.cambridge.org/aie]

Fig. 8. Evaluation of an evolved straight-line mechanism: the mechanism is actuated at an arbitrary handle and the aspect ratios of
bounding boxes of node trajectories are measured. One node of the evolved machine on the left traces a curve that is linear to 1:5300
accuracy. The machine uses the principle of Willis (1841), as seen in Figure 6d. The evolved mechanism on the right traces a curve
that is linear to 1:28,340 accuracy. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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Fig. 9. Reductions of mechanisms: complex mechanisms can be reduced to simpler mechanisms with equivalent curve traces by iterative
application of two transformations: (a) elimination of excess dyads and (b) swapping of diagonals within rigid subcomponents. Mecha-
nisms (a) and (c) are thus equivalent in the curve that the lower node traces.

Fig. 10. Two typical runs: (a) each dot represents an evaluated individual and (b) the percentage of unsimulatable machines is dramatically
reduced because of selection.
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Comparison of mechanisms can be difficult, as apparently
different machines may be functionally equivalent. Complex
mechanisms can be reduced to simpler mechanisms with
equivalent curve traces by iterative transformations (Fig. 9):
eliminations of excess dyads, and swapping of diagonals
within rigid subcomponents. This transformation was applied
automatically only to the best of run individuals, although re-
ductions could be applied also during run to reduce bloat, of-
ten encountered in GP in other domains.

4. RESULTS

Straight-line mechanisms were evolved using GP operating on
trees describing mechanisms in a top-down representation
(Fig. 3). We used a population of 100 individuals and fitness

proportional selection using stochastic universal sampling.
The fitness was the linearity of the most linear curve traced
by any of the mechanisms’ vertices, when the crank node
was turned 458. Table 2 summarizes key parameters of this run.

The search progressed in steps of discovery (“Punctuated
Equilibria”; Gould & Eldredge, 1977), as shown in two typi-
cal runs plotted in Figure 10. A variety of mechanisms were
produced, most with linearity exceeding 1000 (i.e., a devia-
tion of 1 mm over 1 m) and some as high as 28,000
(35 mm over 1 m) as seen in Figure 8b. Comparing these
compound mechanisms to the known classical solutions is
difficult, but some clearly infringe on earlier princi-
ples such as that of Robert’s Linkage (1841), as seen in Fig-
ure 8. Two additional results and their trees are shown in Fig-
ure 11.

5. CONCLUSIONS

This paper presented the application of GP to the synthesis of
compound 2-D kinematic mechanisms. Two tree-based
representations were proposed: a top-down representations
that modified an initial base mechanism, and a bottom-up
representation that hierarchically composes atomic compo-
nents. Both these representations allow for systematically
searching the space of mechanisms with a specified number
of degree of freedom. Both representations are order indepen-
dent and largely context independent, which are desirable
properties for evolvability.

Application of a GP to the straight-line problem yielded a
number of mechanisms that are competitive with, and in some
cases infringe upon, previous known inventions. It is difficult
to compare the “inventiveness” of the algorithm to that of
James Watt: in all fairness, the genius of James Watt was in
the very idea to use a linkage mechanism to guide the piston
in a straight line, and to pursue this idea without knowing that
a solution existed at all. It is, however, fair to compare the

Table 2. GP Parameters

Objective: Design a mechanism that traces a straight line.
Test fixture and

embryo:
A four-bar mechanism, tested by cranking one of

the endpoints
Program architecture: Tree containing topology-varying operators
Function set: D and T operators for developing topology
Terminal set: Link lengths and joint positions
Raw fitness: The length to width ratio of the tightest box that

bound the traces of every ungrounded node.
Locking and degenerate mechanisms are
discarded.

Standardized fitness: Same as raw fitness, selected using stochastic
uniform sampling

Parameters: Population size ¼ 100, crossover ¼ 90%, mutation
¼ 10%

Result designation: Best-so-far individual.
Initialization: Random trees of depth 3
Termination: 100–500 generations
Evaluation time: On average 100 ms on Pentium IV, 1.5 GHz.
Overall run time: 4–20 h on a single 1.5-GHz computer

Fig. 11. Mechanisms to trace exact curves. (a) Tracing an exact circle without reference to an existing circle is simple, but (b) tracing an
exact straight line without reference to an existing straight line is a challenge that has occupied inventors for nearly a century. The mecha-
nism shown is “The Peaucellier” (1876). [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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algorithms’ performance to that of Watt’s successors who
tried to synthesize new and improved linkage mechanisms
with the same functionality.

The results shown here are preliminary: only the top-down
representation was tested, and there are many aspects of the
evolutionary process that could enhance these results, includ-
ing, for example, selection methods, diversity maintenance,
bloat prevention, and the use of automatically defined func-
tions. Future work will further examine these issues and their
application to more contemporary kinematic synthesis chal-
lenges such as the design of mechanisms for robotic locomo-
tion.
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