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ABSTRACT. We present a model for wave propagation in the marginal ice zone (MIZ). The model is
based on a two-dimensional linear water wave floating-elastic-plate solution in the frequency domain
using a matched eigenfunction expansion. The model is fully coherent so the results are dependent on
exact geometry, and we show firstly that this dependence can be effectively removed by averaging over
random floe lengths. We present a range of predictions from the model which show various curves of
transmitted energy as a function of the floe thickness, number of floes and wave period. These curves
show that it is possible with this simple model to make predictions about wave intensity with distance
into the MIZ. The results predict that the MIZ acts as a low-pass filter and and that the filtering is
strongly dependent on floe thickness and number but that it is independent of floe length.

1. INTRODUCTION
The sea ice that forms in the polar oceans plays a key role in
driving the world’s oceanic circulatory system and hence the
world’s climatic system. It is therefore important to under-
stand the processes which influence the extent of this sea
ice. Squire and others (1995) and Wadhams (2000) have
pointed out evidence to suggest that ocean waves play a
major role in the fracturing of ice-covered seas. The analysis
of this phenomenon involves many complicated variables,
and considerable idealization is required. One aspect which
is critical to understand is the wave scattering by the region
of broken ice, known as the marginal ice zone (MIZ), which
forms at the boundary of open water and frozen seas. This
paper presents a simple model for wave propagation through
the MIZ.

The MIZ is an interfacial region which forms at the
boundary of open and frozen oceans. It consists of a vast
field of ice floes and is subject to considerable wave action
due to its proximity to the open ocean. Experiments have
shown that the wave intensity decays exponentially with
distance from the open ocean and that this rate of decay is
highly dependent on the wave period (Wadhams and others,
1986, 1988). It has also been shown experimentally that the
ice floes can bend significantly (Squire and Martin, 1980),
and it is standard to model ice floes as floating elastic plates
(Squire and others, 1995).

A number of models for wave propagation in the MIZ
have been presented. The most sophisticated were the fully
three-dimensional models using a coupling of solutions for
individual ice floes with a transport equation (Masson and
LeBlond, 1989; Meylan and others, 1997). These models,
which were derived separately, have been recently shown to
be almost identical (Meylan and Masson, 2006). Another
three-dimensional model was developed by Dixon and
Squire (2001) based on the coherent potential approxima-
tion. We present here a much simpler model based on a
two-dimensional solution. While this model is much
simpler, it has a number of advantages over the three-
dimensional models, the most important being that it is
much less computationally demanding. We also believe that
a simple model is the best place to begin to make
comparisons with data and to test and debug the more

sophisticated models. We also believe this simpler model
will be able to make the kinds of predictions that are
required practically, which the more sophisticated models
have not been able to do.

The two-dimensional solution is based on a matched
eigenfunction expansion. The model is described in detail in
Kohout and others (in press) where the solution is carefully
analyzed for energy conservation, compared with previous
results and compared to a series of experiments which were
performed by Sakai and Hanai (2002) using floating plastic
sheets in a two-dimensional wave tank. We are therefore
confident that the numerical solution presented here is
correct.

2. FORMULATION AND PRELIMINARIES
We model the MIZ as a set of floating elastic plates
occupying the water surface. A small-amplitude wave is
incident from the left. We assume the problem is linear and
ignore any dissipation The submergence of the plates is
considered negligible. We assume that the problem is
invariant in the y direction. The set of plates consists of
two semi-infinite plates separated by a region consisting of a
finite number of plates with variable properties. The left
plate edges are at x ¼ l�, and the right plate edges are at
x ¼ r� for the �th plate. We note that we simulate open
water by setting the plate properties, such as the thickness,
to a negligibly small value. However, in the results we
present here, we consider only contiguous plates except for
the plate on the left where we set the thickness sufficiently
small that it approximates open water. We also assume that
the plate edges are free to move at each boundary. A
schematic diagram of the problem is shown in Figure 1. We
consider fluid of finite depth because this is required by our
solution method. However, we will set the depth to be
sufficiently large to be modelled as infinite in the results. The
solution method and formulation of this problem is de-
scribed in detail in Kohout and others (in press).

2.1. Assumptions and conditions
We assume that the fluid has constant depth h and occupies
the region �1 < x, y < 1 and �h < z � 0. In this region
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the fluid flow is irrotational and inviscid so that the fluid
velocity can be written and the gradient of a velocity
potential � which satisfies Laplace’s equation in the fluid
region. We consider only incident waves of a single
frequency ! and we assume that these waves also have no
variation with respect to y. The velocity potential of the
wave can therefore be expressed as (Stoker, 1957; Fox and
Squire, 1994)

�ðx, y, z, tÞ ¼ <f�ðx, zÞe�i!tg, ð1Þ
where � is a complex-valued potential, ! is the radian
frequency and < denotes the real part.

We assume the seabed is impermeable and therefore the
velocity component normal to the sea floor vanishes. Hence,
the velocity potential at the sea floor satisfies

@�

@z
¼ 0 at z ¼ �h, 8x, y: ð2Þ

Using linearity at the free surface, the kinematic condition is

@�

@t
¼ @�

@z
at z ¼ 0, 8x, y ð3Þ

(Billingham and King, 2000), where � is the displacement.
We assume the ice floes have uniform mass density �i and
thickness � (where the thickness of each floe may vary). We
assume the amplitude at the free surface is small relative to
the wavelength and that the curvature is small and linearity
can be applied. We assume the equation of motion for the
floe is given by the elastic-plate equation

P ¼ D@4
x� þm

@2�

@t2
at z ¼ 0, 8x, y ð4Þ

(Wang and Meylan, 2004), where P is the pressure at
the surface, D is the rigidity constant of the plate (D ¼
Y�3=½12ð1� �2Þ�, where Y is the Young’s modulus and � is
Poisson’s ratio) and m ¼ �i� .

The dynamic condition at the free surface is given by the
linearized Bournoulli’s equation

@�

@t
þ P

�
þ g� ¼ 0 at z ¼ 0, 8x, y ð5Þ

(Stoker, 1957), where P is the pressure at the water surface
and � is the water density. Equating (4) and (5) gives

D@4
x� þm

@2�

@t2
þ �

@�

@t
þ �g� ¼ 0 at z ¼ 0, 8x, y: ð6Þ

Additional constraints apply at the edges of the elastic plates
(Fox and Squire, 1994). We assume that the plate edges are

free, which implies that the bending moment and the
shearing forces at the edges are zero. Therefore the edge
boundary conditions can be expressed as

@2�

@x2 ¼ 0 at z ¼ 0 for x ¼ l, r , 8y ð7Þ
and

@3�

@x3 ¼ 0 at z ¼ 0 for x ¼ l, r , 8y ð8Þ

where l and r represent the left and right edge of the plate.

2.2. Non-dimensionalizing the variables
It is convenient to reduce the number of constants in the
equations by non-dimensionalizing. We non-dimension-
alize by scaling the spatial variables by a length parameter L,
and the time variables by a time parameter

ffiffiffiffiffiffiffiffi
L=g

p
. The

choice of length parameter L we leave open, but two
common values are the water depth h or the characteristic
length L ¼ ðD=�gÞ1=4 which have the effect of removing one
further variable from the equations. The non-dimensional
variables, denoted by an overbar, are

�x ¼ x
L
, �y ¼ y

L
, �z ¼ z

L
, �� ¼ �

L
,

�t ¼ tffiffiffiffiffiffiffiffi
g=L

p and �� ¼ �

L
ffiffiffiffiffiffi
Lg

p :

The boundary condition given by Equation (6) can now be
non-dimensionally expressed as

�@4
�x �� þ �

@2��

@ �t2
þ @ ��

@�t
þ �� ¼ 0 at z ¼ 0, 8x, y ð9Þ

where � ¼ D=ð�gL4Þ is referred to as the stiffness constant
and � ¼ m=ð�LÞ is referred to as the mass constant.
Hereinafter, all equations are expressed non-dimensionally,
and for simplicity the overbar will be omitted from the
dimensionless variables.

2.3. Eliminating time
The time dependence can be eliminated from Equations (2),
(9), (7) and (8) using Equation (1) to give us the following

Fig. 1. A schematic diagram showing the set of ice floes and the
coordinate systems used in the solution. The three-dimensional
region is defined by �1 < x, y < 1 and �h < z � 0, where we
assume constant depth h. I represents the incident wave. R� and T�
represent the reflection and transmission coefficients of the �th
plate. l� and r� represent the left and right edge of the floe �. There
are � floes.

Fig. 2. E vs floe length L for the periods T shown. � ¼ 1m and
� ¼ 7. The floes are all of identical length.
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system of equations throughout the fluid, written entirely in
terms of the velocity potential

@2

@x2 þ
@2

@z2

� �
� ¼ 0 for � h < z � 0, 8x ð10Þ

@�

@z
¼ 0 at z ¼ �h, 8x ð11Þ

and also using Equation (3)

�
@4

@x4 � �	þ 1
� �

@�

@z
� 	� ¼ 0 at z ¼ 0, 8x ð12Þ

where 	 ¼ !2 and

@3

@x3

� �
@�

@z
¼ 0 at z ¼ 0 for x ¼ l, r ð13Þ

@2

@x2

� �
@�

@z
¼ 0 at z ¼ 0 for x ¼ l, r : ð14Þ

3. METHOD OF SOLUTION
3.1. Eigenfunction expansion
We apply the eigenfunction matching method to solve for
the velocity potential. This method has been applied in
many situations for linear water wave problems, and the
technique is described in Linton and McIver (2001). The
method was developed by Fox and Squire (1994) for the case
of the elastic-plate boundary condition.

3.1.1. Separation of variables
The potential velocity can be written in terms of an in-
finite series of separated eigenfunctions of the form � ¼
ekx cos ½kðz þ hÞ�, where k satisfies the dispersion equation

k tanðkhÞ ¼ � 	

�k4 þ 1� 	�
: ð15Þ

The dispersion equation, because it depends on � and �, has
different solutions under floes of different properties. Solving
for k, the dispersion equation (15) gives one purely
imaginary root with positive imaginary part, two complex
roots with positive real part (in all physical cases) and an

infinite number of positive real roots which approach n
/h
as n approaches 1, plus the negative of these roots (Fox and
Squire, 1994). The imaginary roots correspond to travelling
modes propagating along the x axis. The complex roots
correspond to damped travelling modes, and the real roots
correspond to the evanescent modes. We denote the
solutions of the dispersion equation (15) under the �th floe
by k�(n), where n ¼ �2, –1 corresponds to the complex
roots with positive real part, n ¼ 0 corresponds to the
imaginary root with positive imaginary part, and n positive
corresponds to the real roots with positive real part. This
allows us to express the potential as a sum of eigenfunctions
under each floe.

3.2. Expressions for the potential velocity
The potential � can now be expressed as the following sum
of eigenfunctions:

� ¼

Ie�k1ð0Þðx�r1Þ cos k1ð0ÞðzþhÞ½ �
cos k1ð0Þhð Þ

þPM
n¼�2 R1ðnÞek1ðnÞðx�r1Þ cos k1ðnÞðzþhÞ½ �

cos k1ðnÞhð Þ for x < r1

PM
n¼�2 T�ðnÞe�k�ðnÞðx�l�Þ cos k�ðnÞðzþhÞ½ �

cos k�ðnÞhð Þ

þPM
n¼�2 R�ðnÞek�ðnÞðx�r�Þ cos k�ðnÞðzþhÞ½ �

cos k�ðnÞhð Þ
for l� < x < r�

PM
n¼�2 T�ðnÞe�k�ðnÞðx�l�Þ cos k�ðnÞðzþhÞ½ �

cos k�ðnÞhð Þ for l� < x

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

where � is the �th plate, � is the last plate, r� represents the
x coordinate of the right edge of the �th plate, l� represents
the x coordinate of the left edge of the �th plate, R�(n)
represents the reflected potential coefficient of the nth mode
under the �th plate, T�(n) represents the transmitted poten-
tial coefficient of the nth mode under the �th plate and I is
the incident wave amplitude. Note that we have divided by
cos(kh). This is so the coefficients are normalized by the
potential at the top surface rather than at the bottom surface.
This means that if the water is deep and the potential at the
bottom surface is small, we avoid the problem of having very

Fig. 3. E vs the total length of the all the finite-length floes for
100 trials where the length of each plate is chosen at random be-
tween 10 and 1000m for the periods T shown. � ¼ 1m and � ¼ 7.

Fig. 4. The displacement vs distance x showing the displacement
and floe geometry for three of the realizations used in Figure 3 for
the periods T shown. The boxed regions represent each plate.
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small numbers for the coefficients in the expansion. We
have truncated the expansion at a finite number of modes
and we will solve for the coefficents R�(n) and T�(n)
numerically. Finally, we can find the displacement from
the potential using Equation (3).

3.3. Solving via eigenfunction matching
To solve for the coefficients, we require as many equations
as we have unknowns. We impose the condition that the
potential and its derivative across each floe boundary are
continuous and that the floe satisfies the free-edge
conditions. We impose continuity by multiplying the
potentials and their derivatives by various orthogonal
functions and integrating and imposing the condition that
these integrals must be equal. The orthogonal functions we
choose are cos(m
/h)(z+ h), where m is a natural number.
These have the advantage that in the limit of large n the
vertical eigenfunctions under each plate take this form. The

coefficients can now be found through matching the
integrals along the water column of the potentials and
their derivatives at each adjacent edge:Z 0

�h
�� r�, z

� �
cos

m


h
ðz þ hÞ dz

¼
Z 0

�h
��þ1 l�þ1, z

� �
cos

m


h
ðz þ hÞ dz,

Z 0

�h

@�� r�, z
� �
@x

cos
m


h
ðz þ hÞ dz

¼
Z 0

�h

@��þ1 l�þ1, z
� �
@x

cos
m


h
ðz þ hÞ dz,

ð16Þ

where m 2 ½0,M� and �� is the potential under the �th

Fig. 7. As Figure 6 except that � ¼ 1 and different values of � as
shown are chosen.

Fig. 5. As Figure 3 except that the period T ¼ 6 and different values
of � as shown are used.

Fig. 6. E vs T for the values of � shown for 100 trials. The length of
each plate is randomly chosen between 10 and 1000m.

Fig. 8. E vs floe thickness � for 100 trials. The length of each plate is
chosen at random between 10 and 1000m. The thickness of the
plates is constant for each trial and is chosen at random between
0.01 and 2m. � ¼ 7.

Kohout and Meylan: Wave scattering in the marginal ice zone104

https://doi.org/10.3189/172756406781811844 Published online by Cambridge University Press

https://doi.org/10.3189/172756406781811844


plate. This gives us four fewer equations than there are
unknowns at each plate boundary.

The remaining four equations are given by the two edge
conditions at each plate edge:

@3

@x3

� �
@��

@z
¼ 0 for z ¼ 0 and x ¼ l�, r�

@2

@x2

� �
@��

@z
¼ 0 for z ¼ 0 and x ¼ l�, r�:

ð17Þ

This gives us a system of simultaneous equations which we
solve for the unknown coefficients R� and T�.

4. RESULTS
We now have a model which can be used to simulate an
ocean wave propagating under a region of ice floes. We
will set the water depth sufficiently large so that it can
be considered infinite and choose the following values

for the constants: Y ¼ 6GPa, � ¼ 0.3, g ¼ 9.8m s–2, � ¼
1025.0 kgm–3 and �i ¼ 922.5 kgm–3. We assume that the
thickness of the semi-infinite plate on the left is sufficiently
small to simulate open water. The semi-infinite plate to
the right is a semi-infinite ice floe which is chosen to have
the same thickness as the other floes (if the floe thicknesses
are different and chosen randomly then the thickness of the
semi-infinite floe is also random). A wave is incident from
the left hand (open-water side) of unit amplitude and we
focus our results on the transmitted energy in the righthand
semi-infinite plate which we denote by E. We have four free
variables: the incident period, jT j; the length of each floe, L;
the thickness of each floe, � ; and the number of floes, �
(note the number of finite floes is � – 2).

One of the most important features of our model is that it
is fully coherent. This means that we will always observe
effects of cancellation and addition of waves, no matter how
large the ice-floe sizes or number of ice floes. This can be
seen in Figure 2 where the transmitted energy in the

Fig. 11. E vs sum of � for each plate, where � is chosen at random
between 0.01 and 2m for each plate for 100 trials for period T
shown. � ¼ 7.

Fig. 10. As Figure 8 except T ¼ 6 and � varies as shown.

Fig. 9. The displacement vs distance x showing the displacement
and floe geometry for three of the realizations used in Figure 8 for
the periods T shown. The boxed regions represent each plate.

Fig. 12. As Figure 11 except T ¼ 6 and � varies as shown.
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righthand semi-infinite region, E, is shown as a function of
floe length for � ¼ 7 for the periods of 6, 8 and 10 s. To
remove this resonating effect, we will always use random
floe lengths and will present many different solutions. The
floe lengths are selected at random between 10 and 1000m.
The first result we establish is to show that the effect of these
random floe lengths can be neglected. Figure 3 shows results
for � ¼ 7 for the periods shown. Each sample is shown with
a plus. It can be seen that there is no correlation between
floe length and E. Figure 4 shows the displacement for three
of the random samples from Figure 3. It is interesting to have
some visualization of the solution which is provided by the
model for each sample. It can be seen that the model
provides much more information than just E since it provides
the displacement of each ice floe. This implies that the
model could be used to predict other effects such as floe
break-up. Figure 5 shows that as we increase the number of
ice floes, there is still no correlation with the total floe
length. We conclude that the process of setting the floe
lengths to be random will be an effective way to remove the
coherent effects which were seen in Figure 2, and we will
use this in our subsequent work.

Next we examine E in relation to variation in T for fixed
floe thickness. Figure 6 shows clear relationships between E
and T, which depend on the floe thickness; it is also evident
that at low periods there is a much greater variability in the
value of E than at higher periods. This is to be expected since
the greater the reflection, the greater the coherent effects can
be. Figure 7 shows that as we increase the number of floes,
we get a marked decrease in E.

Similar investigations are made into the effect of the floe
thickness � . Figure 8 shows the effect of increasing the floe
thickness for different periods and fixed numbers of floes. A
strong decease in E can be seen with increasing floe
thickness. Figure 9 shows the displacement results for three
of the simulations shown in Figure 8. Figure 10 shows the
effect of floe thickness for fixed periods and different
numbers of floes. This figure also shows the strong depend-
ence of floe thickness on E and that there is a strong decease
in E as the number of floes is increased.

Figures 11 and 12 show the effect of the floe thickness on
E for random floe thicknesses. Interestingly, considering the
strong dependence on � in the previous figures, the results
for random floe thicknesses do not show the same strong
correlation. Figures 11 and 12 show only a slight tendency
for a decrease in E as the overall � of each floe increases. The
reason for the weak correlation is not properly understood
and needs to be the subject of further investigation.

Figure 13 shows the effect of increasing the number of
floes. We see that E depends strongly on the number of floes
and that this dependence is much stronger for small periods.
Figure 14 is Figure 13 averaged over five trials. This figure
shows more clearly the decay of energy with increasing
numbers of floes. It also shows that this decay appears
exponential, which agrees with the experimental results of
Wadhams and others (1986, 1988).

5. SUMMARY
We have presented a model for wave propagation in the MIZ
based on a solution for wave propagation under two-
dimensional floating elastic plates. This model is fully
coherent andwe showed that this coherence can be removed
from the model by averaging over the floe length. We then
presented various curves which showed the relationship
between transmitted energy and the wave period, floe
thickness and number of floes. The results showed that the
MIZ acts as a low-pass filter and that the scattering is most
strongly dependent on floe thickness and number. The results
presented are preliminary results from the model, and future
work is planned to establish much more clearly the
relationships between the various parameters. We also plan
to compare the results with experimental measurements.
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