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It is well-known that Tychonoff's theorem on the product 
of compact spaces may be proved, for the special case of a 
countable number of me t r i c spaces X . X . . . , X , . . . , 

1 2 n 
in the following simple manner . 

oo 
Let P = (p ) be any sequence in X = IT X Choose 

(1) 11 n = l 

a subsequence P = (p ) of P whose projection onto X 
converges, then a subsequence P = (p ) of P whose 
projection onto X converges, and so on by induction. We 

obtain a sequence of sequences P = (p ) . such that, for 

any fixed j , the projection of P onto each X (k <c j) 

converges . Consider the diagonal sequence P* = (p ). 

Since P* is , for any fixed j , essentially a subsequence of 

P , i ts projection onto any X converges, and so P* 
converges in X. Thus we have shown that any sequence in X 
has a convergent subsequence, which, for me t r i c spaces, means 
compactness . The word •'essentially11 above means "from a 
cer ta in index on", and this will be the key to the general izat ion 
of the method. 

If we wish to turn our attention to general compact spaces 
we have to replace sequences by, for example, nets (in the 
sense of Moore-Smith convergence). 

Consider now a wel l-ordered system of compact spaces 
X ^ of any length. We will be able to prove the compactness of 
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n X by an e x t e n s i o n of the above m e t h o d , u s ing the fol lowing 
a 

def in i t ion and t h e o r e m . The def in i t ion g e n e r a l i z e s the c o n c e p t 
of " e s s e n t i a l l y a s u b s e q u e n c e " ; the t h e o r e m m i g h t be r e g a r d e d 
as a s u b s t i t u t e for the d i agona l p r o c e s s , a p p l i c a b l e to any 
n u m b e r of n e t s ( r a t h e r than a s e q u e n c e of s e q u e n c e s ) . We 
s h a l l u s e the t e r m i n o l o g y of Kel ly [ l ] . 

Def in i t ion . The net S i s sub equ iva l en t to the net T 
(not n e c e s s a r i l y defined on the s a m e d i r e c t e d se t ) , if s o m e t a i l 
of S ( i . e . , the ne t c o n s i s t i n g of a l l S(a) wi th a >> a0 for a 
fixed a ) i s a subne t of T . 

E x a m p l e . The s e q u e n c e ( s p e c i a l c a s e of net) 1, 3, 5, 7, . . . 
i s subequ iva l en t to 5 , 6 , 7 , 8 , . . . . 

T H E O R E M 1. Le t X be a fixed ( a b s t r a c t ) se t , D a 

d i r e c t e d se t , and, for e a c h d£ D, le t S be a ne t in X s u c h 
(d1) * (d) 

tha t , w h e n e v e r d1 :> d, the ne t S i s s u b e q u i v a l e n t to S 
Then t h e r e i s a ne t ^ in X which i s s u b e q u i v a l e n t to e a c h 

( H \ (r\\ 

S . (The s y s t e m {S } m a y be d e s c r i b e d a s a d i r e c t e d 

s y s t e m of n e t s in X which i s m o n o t o n e d e c r e a s i n g in the s e n s e 
of sub équ iva le n e e . ) 

A s s u m i n g T h e o r e m 1 we now have 

T H E O R E M 2. L e t {X } be an indexed s y s t e m 
— o 

of c o m p a c t topo log ica l s p a c e s , w h e r e a i s a fixed o r d i n a l . 
T h e n the p r o d u c t s p a c e X = n X i s c o m p a c t . 

P r o o f . It wi l l be suff ic ient to show tha t e v e r y ne t in X 
h a s a c o n v e r g e n t subne t . Le t S be any ne t in X. A s s u m e tha t 

for a c e r t a i n o r d i n a l a < c* , a s y s t e m of n e t s u - ( S ) 
1 - ° y x s a < aA 

\ 
e x i s t s such tha t 

(i) if i s m o n o t o n e d e c r e a s i n g in the s e n s e of s u b e q u i v a l e n c e ; 
(a) 

(ii) the p r o j e c t i o n of e a c h S into X c o n v e r g e s . 
Q (a) 

By our t h e o r e m t h e r e i s a ne t S* subequ iva l en t to a l l the S 
of*/ . (In the c a s e otA = 0, s e t S* = S. ) Now we def ine S ^ l a s 

1 
a subne t of S* whose p r o j e c t i o n into X c o n v e r g e s . Since 

1 
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X is a compact, such an S 1 exis ts . In this manner the 
ai 

système/ is expanded by transfinite induction until we obtain 
(<v ) 

the net S ^ , whose projection converges on each X , and 
ù 

which, therefore, converges in X. A res t r i c t ion of it is a 
subnet of the original S. 

On the assumption of the well-ordering theorem, we have 
therefore proved the Theorem of Tychonoff. 

We now proceed to prove Theorem 1. 

Each S is defined on a directed set E . We assume 
(d) 

the E 's a re mutually disjoint and denote their union by E. 
Consider subsets F of E ("F-se ts") having the following 
proper ty : For every d in some tail of D, F contains a tail 

(d) 
of E . Let § be the collection of all these F - s e t s , and let 

us regard <| as directed by inclusion, i. e. , F >̂  F if and 

only if F C F . 
We define a net ^ with domain $ by choosing in each F 

an a rb i t r a ry but fixed element a(F) £ F and then setting 

»{F) = Soa(F), 

where S is the union of all the mappings S , d t D. 

We shall now prove that S* is subequivalent to each S 
Let us fix d up to the end of the proof. To establish our 
asse r t ion we have to find a mapping \± of some tail of 0 into 

Tr(d> w w 
E such that , ,, 

(a) every tail of E contains the }j.-map of some tail 
of §; 

(b) S* = SOJJL, wherever the lat ter is defined. 
(df) (d) 

By hypothesis each S with d* >_ d is subequivalent to S , 
1. e . , there is a mapping y °f sonie tail, T , of E 
into E such that . 

(a1) every tail of E contains the map of some tail of 

E ( d , )
: 
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(d«) _ (d) <d,d«) (d' 
(b1) o = b 0 \ on T 

i 

|JL b y 

L e t Y = [J Ay ' )> ( d i s f ixed) . Now define the m a p p i n g 

|JL = V o or. 

|JL i s defined on tha t t a i l of ç d e t e r m i n e d by the F - s e t 

M (T ( d , ) ) . 
u d' > dv ' 

Given any e l e m e n t e , in E , s e t 
1 

F 4 = y ( e 4 ) 

w h e r e e J i s the t a i l of E d e t e r m i n e d by e , . It i s 
1 1 

e a s i l y s e e n tha t F £ 5 . Wheneve r F > F i . e . , F C F , we 
1 x ~~ 1 1 

have 

o(F) * F , , 
1 

HL(F) = yoo(F) 6 y f F ^ = ^ ' V ^ J C e / 

(d1) 
and so (a) i s s a t i s f i e d . By (b f) we have , on F = M T , 

d f >d 
S = Soy . T h u s for e v e r y F > FQ 

S*(F} = Soa(F) = S0y oor(F) = S.|±(F), 

which p r o v e s (b) . 
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