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It is well-known that Tychonoff's theorem on the product
of compact spaces may be proved, for the special case of a

countable number of metric spaces X1 s X2 e, X, L,
n

in the following simple manner.
. ©
Let P = (pl) be any sequencein X = 1II Xn . Choose

(1), it n=t

= (p ') of P whose projection onto X

(2) i2 (1)

converges, then a subsequence P =(p ) of P whose
projection onto XZ converges, and so on by induction. We

G) _

a subsequence P

obtain a sequence of sequences P (plj)i 5 1 such that, for
any fixed j, the projection of P(J) onto each Xk (k< j)

converges. Consider the diagonal sequence P% = (pn)

i>1"
Since P* is, for any fixed j, essentially a subsequence of
P(J), its projection onto any X(J) converges, and so P%

converges in X. Thus we have shown that any sequence in X
has a convergent subsequence, which, for metric spaces, means
compactness. The word "essentially" above means '"from a
certain index on'', and this will be the key to the generalization
of the method.

If we wish to turn our attention to general compact spaces
we have to replace sequences by, for example, nets (in the

sense of Moore-Smith convergence).

Consider now a well-ordered system of compact spaces
X , of any length. We will be able to prove the compactness of
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M X by an extension of the above method, using the following
a

definition and theorem. The definition generalizes the concept
of "essentially a subsequence'; the theorem might be regarded
as a substitute for the diagonal process, applicable to any
number of nets (rather than a sequence of sequences). We
shall use the terminology of Kelly [1].

Definition. The net S is subequivalent to the net T
(not necessarily defined on the same directed set), if some tail
of S (i.e., the net consisting of all S(a) with a > a, for a
fixed a,) is a subnet of T.

Example. The sequence (special case of net) 1,3,5,7, ...
is subequivalent to 5,6,7,8, ...

THEOREM 1. Let X be a fixed (abstract) set, D a
directed set, and, for each d& D, let S(d) be a netin X such
d! ) d
that, whenever d'> d, the net S( ) is subequivalent to S( ).

Then there s anet S in X which is subequivalent to each

d d
S( ). (The system {S( may be described as a directed

)

} deD
system of nets in X which is monotone decreasing in the sense
of subequivalence.)

Assuming Theorem 1 we now have
THEOREM 2. Let {X } be an indexed system
o a< a

of compact topological spaces, where a, is a fixed ordinal.
Then the product space X =11 X is compact.
o

oL o

Proof. It will be sufficient to show that every net in X
has a convergent subnet. Let S be any netin X. Assume that

(o)

for a certain ordinal Qi <ea,, asystem of nets :'f = {S }

a< «a

exists such that !

(i) & is monotone decreasing in the sense of subequivalence;

(a)

(ii) the projection of each S into Xa converges.
By our theorem there is a net S* subequivalent to all the S(Q)
of . (In the case o = 0, set S¥ = S.) Now we define S(ai) as

a subnet of S¥ whose projection into X converges. Since
o
1
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(2,)

X is a compact, suchan S “’ exists. In this manner the

%

systemcy is expanded by transfinite induction until we obtain
the net S(%) , whose projection converges on each X, and
o

which, therefore, converges in X. A restriction of it is a
subnet of the original S.

On the assumption of the well-ordering theorem, we have
therefore proved the Theorem of Tychonoff.

We now proceed to prove Theorem 1.

(@) (@)

Each S is defined on a directed set E We assume

d .
the E( )'s are mutually disjoint and denote their union by E.
Consider subsets F of E ("F-sets') having the following
property: For every d in some tail of D, F contains a tail

d
of E( ) . Let & be the collection of all these F-sets, and let

us regard $ as directed by inclusion, i.e., F1 > FZ if and

i CF, .
only if F1 2
We define a net S with domain $ by choosing in each F
an arbitrary but fixed element «(F) ¢ F and then setting

S¥ (F) = Soa(F),
(d)

where S is the union of all the mappings S , deD.
d
We shall now prove that S¥ is subequivalent to each S( ).
Let us fix d up to the end of the proof. To establish our
assertion we have to find a mapping p of some tail of ¢ into

d

E( ) such that (d)

(a) every tail of E contains the p-map of some tail
of ¢;

(b) S¥ = Son, wherever the latter is defined.

dl
By hypothesis each S( ) with d' > d is subequivalent to S(d),
. . . (d,d") . (d') (d")
i.e., there is a mapping v of some tail, T , of E
. (d)
into E such that
(d)

(a') every tail of E contains the map of some tail of

(@),

2
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(@) _ @) (@d) @)
(d,d")

(b") S

Let ¥ =Ud'>d(Y
n by

), (d is fixed). Now define the mapping

B =Yo a

p is defined on that tail of ¢ determined by the F-set
(d")

U g4 zd(T ).
Given any element e, in E(d) , set
-1, +
Fo=y (e, )
+ . . (d) . :
where e, is the tail of E determined by e, - It is

easily seen that F1 £ § Whenever FZI-"1 i.e., FCF{l we

have
oAF) & F1 ,
-1, 4+ +
w(F) = yoa(F) e v(F,) = vov " (e, )Ce,
. . (d")
and so (a) is satisfied. By (b') we have, on F = U T ,
d'>d
S = Sey . Thus for every F> F
SE(F) = Sea(F) = Sey oa(F) = Sep(F),
which proves (b).
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