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1. Introduction. The present note deals with bounded endomorphisms of free
p-algebras (pseudocomplemented lattices). The idea of bounded homomorphisms was
introduced by R. McKenzie in [8]. T. Katrinak [5] subsequently studied the properties of
bounded homomorphisms for the varieties of p-algebras. This concept is also an efficient
tool for the characterization of, so-called, splitting as well as projective algebras in the
varieties of all lattices or p-algebras. For details the reader is referred to [2], [5], [6], [7]
and other references therein. Let us emphasize that the main results that are contained in
the above mentioned references strongly depend on the boundedness of each en-
domorphism of any finitely generated free algebra in a given variety.

In [8], R. McKenzie showed that each endomorphism of a finitely generated free
lattice FL(A') is bounded. For the variety of all p-algebras, the same statement was
proved by T. Katrinak in [5]. More precisely, he has considered the countable chain of
equational classes of p-algebras

P,cJ'2c,..cP,c...cP,,

where Pw is the variety of all p-algebras and the nth variety Pn is determined by Lee's
identity i?n (the definition is recalled in the next section). In [5, Lemmas 11, 12], it is
shown that each endomorphism of FPW(X) (a free p-algebra in Pm freely generated by a
finite set A') is bounded. Using this result, it is possible to characterize both the splitting
p-algebras [5, Theorem 3] and projective p-algebras [6, Proposition 5] in the variety Pw.

Concerning the boundedness of endomorphisms of FPn(A
r), « > 1 , Katrinak posed

the question whether the above mentioned result for FPto(A') can be extended to the
remaining varieties Pn, n ^ l . Hence the aim of this note is to investigate bounded
endomorphisms of free p-algebras FPn(A

r), where n > l and X is finite.
The paper is organized as follows. In Section 4, we recall the basic notions and some

of the known results of the theory of free p-algebras. The main results of this paper are
contained in Section 3. We give necessary and sufficient conditions for an endomorphism
of FP, ,^) to be bounded. We make use of the constructive method of limit tables for
endomorphisms of FPn(A

r). Of course, the concept of limit tables is well known from
lattice theory (see, for example [8]). However, in the case of p-algebra limit tables we
have to take into account the principal inner antisymmetry of p-algebras as well as Lee's
identity S£n. An effective algorithm for determining the boundedness of a given
endomorphism is also presented. In Section 4, we investigate the variety Pu i.e. the
equational class of all p-algebras satisfying the Stone identity JC* v j t" = 1. In this class,
we shall construct explicit examples of endomorphisms of FPj(A )̂ that are not bounded.

2. Preliminaries. A p-algebra (pseudocomplemented lattice) is a universal algebra
(L; v, A , *, 0,1), where (L; v, A , 0,1) is a bounded lattice and the unary operation * is
defined by a A b = 0 if and only if a ̂  b*.

DEFINITION (R. McKenzie [5], T. Katrinak [4]). Suppose A, B are p-algebras and / i s
a homomorphism of A into B. We say / is upper bounded if and only if, for each b eB,
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{a eA;f(a)^b} has a greatest element/" (b). We say/is lower bounded if and only if,
for each b e B, {a eA;f{a) 2 b} has a least element f-{b). We say / is bounded if and
only if it is both upper and lower bounded.

In this paper we deal with the p-algebra varieties

where Pw = P is the equational class of all p-algebras and for a p-algebra L, Le Pn for
1 < n < co if and only if L satisfies the identity

{Z£n) : (jt, A X2 A . . . A Xn)* V (jtf A X2 A . . . A Xn)* V . . . V (jt, A Jt2 A . . . A * * ) * = 1.

In what follows, the symbol FPn(X), l < n < w , denotes a free p-algebra freely
generated by a set X. We shall frequently use the following rules of computation in
p-algebras:

(a) a<b implies b* < a*, (d) (a v 6)* = a* A b*,
(b)a<a**, (e) (a A 6 ) " = « " A 6**,
(c) a* = a***, (f) 0* = l andl* = 0.
If, in any p-algebra L, we write B(L) = {a e L;a = a**} then (B(L); +, A, *, 0,1) is

a Boolean algebra when a + b is defined by a + b = (a w b)**.
Later we will need some of Katrinak's results concerning free p-algebras (see [4,

Lemmas 2, 3 and Theorem 3]).
Let a p-algebra L be generated by a subset X, i.e. [X] = L. Then the set

X** = {x**;x eX} generates B(L) in the class of Boolean algebras, i.e. B(L) =
[***]booi- The set X U B{L) generates L in the class of lattices, i.e. L = [X U B(L)]lat.

Suppose that K is a nontrivial equational class of p-algebras. Let L = FK{X) be a
free p-algebra freely generated by X in K. Then B(L) = FB(X**) (the free Boolean
algebra freely generated by the set X**).

Put

From the above results, it follows that 9>(X) = X U FB(Z**) and FP n (* ) = [@(X)]lat.
For 1 < n < co, a family %„ of subsets of B(FPn(X)) is defined as follows:
5 e % if and only if

5 = {(fl, A a2 A . . . A an)*, (a* A a2 A . . . A an)* , . . . , (a, A a2 A . . . A a*)*}

for some «,, a2, . . . , « „ e B(FPn(Ar)).
For n = co, we simply set ^ = 0 .
We see that \J S = lfov each 5 e %, 1 < « < co, because F?n(X) e Pn.
The following lemmas give an algorithm enabling us to decide whether a ̂  b in

F?n{X) for given words a, b e FPn(Z) =

LEMMA 1 [3, Lemma 10]. Let a, be F?n(X) and p e @(X). Then p<avb if and
only if p^a or p<b or there exists 5 e 1 n such that s ̂ a or s < / ; for every s eS.

LEMMA 2 [3, Lemma 8]. aAb^cvdin F P , , ^ ) , 1 < n ^ co, if and only if
(W) a^cvdorb^cvdoraAb^cora/\b^d.
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With regard to the previous lemmas, the word problem for FPn(X), 1 < n < a>, has
an affirmative solution. In addition, an algorithm is given which can be used to decide
whether a = b in FPn(A

r) for words a,be FPn(A').

THEOREM 3 [4, Lemmas 11 and 12]. Let f :FPn(X)^>FPn(X) be an endomorphism.
Then

(i) f is upper bounded,
(ii) / is lower bounded for n = <o,
(iii) / is lower bounded, l^n<u>, whenever the set {a e FPn(A'); /(a) = 1} has a

smallest element /_(1).

Finally, we recall that FPn(X) is infinite, whenever ^ 1 ^ 2 and 1<«<<» (see [4,
Theorem 2]).

3. Limit tables for endomorphisms of FPn(A
r). In this section, we give necessary

and sufficient conditions for an endomorphism of FP, ,^) to be bounded. The
characterization is based on the properties of limit tables for a given endomorphism of
FPn(A'). In the class of lattices the idea of limit tables was introduced by B. J6nsson and
widely exploited by R. McKenzie and A. Kostinsky. In what follows, we shall introduce a
p-algebra type of limit table similar to that in [8]. However, there are principal difficulties
arising in the direct application of the known lattice theoretical type of limit table. More
precisely, we must carefully take into account inner antisymmetries of FPn(A

r) (the lattice
theoretical dual of a given p-algebra need not be a p-algebra) as well as the identity SEn.

From now on we shall suppose that / :FPn(Ar)^FPn(X) is an endomorphism,
1 < n < co, and X is a finite freely generating set.

Let the maps /3m : B(FPn(X))-^ FPn(A
r), m > 0, be defined inductively as follows:

and, for m > 0 ,

/3m+1(a) = /}0(f l)AAV{^CS);S€%,,} (1)

for any a e B(FPn{X)).
We call the family {f5m}m^0 a limit table for the endomorphism/. From the definition

(1), one can easily verify the following rules:
(a) j8m+,(a)s/3m(«);

(b)fl<fc implies pm{a)*pm(b);

(c) a <

a));
(e) fSm(a) < pm(b) if and only if po(a) < /30(&);

(f) /3M(a) = /5o(a)A/5m(l);

We say that a limit table {/3m}m£0 is closed if and only if there is k>0 such that
Pk+\(a) = Pk(a) f°r e a c h a e FB(AT**). It is easy to see that {/3m}me0 is closed if and only
if there is k > 0 such that /3*+i(l) = &(!).
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THEOREM 4. An endomorphism f:FPn{X)^*FPn(X) is bounded if and only if the
limit table for f is closed.

Proof. The crucial step in the proof consists of proving the following statement:
(P) for any aeB(FPn(X)) and b eFPn(X), f(b)>a implies b>pk{a) for some

k>0.
As is usual in such circumstances, we shall proceed by induction on the length of a

lattice term b eFPn(X) = [&(X)]lat. For be3P(X), it is clear that (P) holds true with
k = 0. We now suppose that (P) holds for &,, b2 with corresponding indices &,,fc2 —0.
Then, using Lemmas 1, 2 and (2), one can easily show that (P) holds for b = bt A b2 with
k = max{kl, k2} and for b = btv b2 with k = 1 + max{A:i, k2}, respectively. Now, thanks
to the property (P), the rest of the proof can be carried out as in [8, Section 6] and
therefore is omitted.

LEMMA 5. Let m be an integer such that log2log2log2 m = \X\ +1. Then an
endomorphism f •.FPn(X)->FPn(X) is bounded if and only if the limit table for f is closed
before the m-th column.

Proof. Only the necessity needs a proof. If j8,(l) = 1 then /?,(1) = /J0(l). Hence, the
limit table is closed in the first column.

We now consider the case Pi(l) < 1. Let an equivalence relation 0 on co be defined as
follows:

d(k, m) if and only if, for any a,be FB^**) ,

&+i(«) s= pk(b)&pm+l(a) > pm(b).

We shall prove, in a manner similar to that in [8, Lemma 6.1], the following
statement:

(H) 8(k, m) implies d(k + l,m + 1).
In order to prove (H), we assume 6(k, m) holds and Pk+2(a) > pk+l(b).
Let Re%. Then

1 > j8,(l) ̂  V h+i(R) * &+2(l) a= / W « ) ^ Pk+i(b) = po(b) A A V (PAS); S e %).
From Lemma 1 and 2, we obtain either the existence of r e / ? such that /3*+1(r)s

Pk+i(b) or V Pk+i(R)s V Pk(Si) for some 5, e %,. In the first event, by (2), we have
V Pm+i(R) — Pm+\{r) — fim+\{b)- In the second event two cases can arise:

(i), for every seSu there is rs eR, pk(s) < pk+i(rs),
(ii), there exists *i e Su such that Pk(st) ^ Pk+i(r) for any reR.
In case (i)M the assumption 6{k, m) implies

Pm(s) s pm+1(rt) s V pm+x(R) for each s e S,.
Therefore

j3m+1(fc) s j8m+1(l) < V /5m(S,) s V &,+,(*)•

In case (ii)1; by Lemma 1 and 2, we have

V &+,(#) a: V &-i(£) for some ^ e %„.

Repeating this procedure, we obtain a sequence 5;e%M, / > 1 , such that
V pk+i(R) ^ V pk-j+i(Sj). Again two cases can occur:

(i), for each s e 5y, there is rs e R with pk-i+i(s) < pk+l(rs),
(ii)y there exists st e Sj such that j8t_y+1(sy) ^ Pk+i(r) for any re /? .
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Let j = k + 1. According to Lemmas 1 and 2, case (ii); is not possible. Thus there
exist j-^k and St_/+1 e <&„ such that, for each seSk-i+u there is rs € R with /3y(s) <
Pk+i(rs)- Since Pk — Pj for/=£*:, the assumption 8(k,m) implies /3m+1(6) < V /3m+1(/?).
Thus both (i), and (ii), also imply £„,+,(&)£ V / W O - Therefore /3m+1(6)=s/5m+2(l).
Clearly, from the assumption p**+2(a)s Pk+i(b), it follows that /30(a) s=/30(b). Hence

/3m+2(a) = /80(a) A /3m+2(l) > j80(6) A j8m+I(6) = /3m+I(6).

Thus pk+2(a)^.f}k+i(b) implies j8m+2(a) s/3OT+1(b) and vice versa. The proof of (H) is
complete.

The result of the proof is essentially the same as that of [5, Lemma 6.1]. Indeed, a
simple combinatorial argument shows that 6 partitions co into less than 2 r r classes of
integers, where r = \FB(X**)\. This can be visualized by introducing the following
one-to-one map

[*]©-» {(a, b) e B(F?n(X)), pk+l(a) >

Then we infer the existence of / such that / < m < 2 r r and d(l, m) holds. Clearly, by (H),
/ will be ^-equivalent to an arbitrarily large integer. Since/is bounded, then, by Theorem
4, there exists k0 such that pk+\ = Pk for all k>k0. Hence Pm+X = pm. The fact that
log2 log2 r = \X**\ = \X\ (see [3, Chapter 2, Section II, Theorem 2]) completes the proof
of Lemma 5.

THEOREM 6. Let f be an endomorphism of FPn(A
r), where 1 s n < u> and X is finite.

Then there exists an effective algorithm for determining whether f is bounded.

Proof. In order to decide whether / is bounded, one can construct the first m
columns of the limit table for / , where log2 log2 log2 m = \X\ + 1. By Lemma 5, / is
bounded if and only if /3m+1(l) =/3m(l). Since the word problem for FPn(X) has a
solution, there is an effective algorithm that determines whether /3m+1(l) = p*m(l).

COROLLARY 7. Let n > 2 m . Then each endomorphism of FPn(X) is bounded.

Proof. It can readily be shown that n £ 2 m implies l e S for each S e °Un. Hence
/3,(1) = /30(l) and / is bounded by Theorem 4.

On the set °Un we define a quasiordering « in the following manner:

for Si,S2e%,Si«S2 if and only if either V P\)(S2) = P\>(1) or, for each s, e Su there
is s2 e Sj such that /30(s,) < /50(s2). (3)

Defining S, = S2 if and only if 5,«.S2 and S2 « 5,, one gets an equivalence relation
and the resulting classes are made into a partially ordered set (°lln,«) in the standard
fashion. In what follows we shall ignore the classes and refer directly to their
representatives.

LEMMA 8. Assume V /3A(5O) = p\+i(l) for some So e <?/„. Then the poset (<?/„, « ) has a
least element Sm.

Proof. We shall proceed by induction on Jt>0. Assume k = 0. Put Sm = 5o. Then
V /80(5m) = p^ l ) < V Po(S) for each 5 e %,. Let S e %. Then either V P*o(S) = 1 or, by
Lemma 1, for each seSm, there is s' € S such that fio(s) < jS0(.s')- In both cases we have
Sm « S. Hence 5m is the least element of (%„, « ) .
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Assume k > 0. First we consider the case where So « S for each S e°iln. Then Sm = 50

is the least element of (<%„,«). Now we suppose that there exists St e %„ with the
property So is not «Si. Then V Po(S\) ^ 1 and there is s0 e So such that P0(s0) ^ /J0(s) for
any s eSr. Since

A A (V &_,($); 5 e %,) = &(*„) s V &($,) = &+1(l) < V &

and V &(S,) < V &>(Si) * 1, then, by Lemmas 3 and 4, we get V At-iGSo) ^ V Pk(Si) for
some 5Q6 %„. But this yields

From the induction hypothesis, we obtain that (°Un, «) has a least element Sm.

THEOREM 9. /l^Mme that f: FPn(Ar)-* FPn(A') « a« endomorphism, 1 < « < (0 and X
is finite. Then

(i) if f is bounded then the poset ("?/„, « ) has a least element,
(ii) if (%„, « ) has a least element and /30(l) < 1 tnen f « bounded.

Proof, (i) By Theorem 4, there is fcsO such that )8t+1(l) =/3t(l). If, for each
Se%,\/ po(S) = /30(l) then 5 , « 52 for any Su ^ e %„. Hence (%„, « ) possesses a least
element. Suppose that there exists 50 e °fln with the property V f50(S0) < Po(l). Then

A V ( f t - i ( S ) ; 5 e \ ) = j8*(l) = j8*+I(l)^ V/5

By Lemma 2, two cases can occur: /3*(1) ̂  Pk(s0) for some soeSo
 o r \f Pk-\($\) —

V &(50) for some 5! e %„. In the first case, we have /Jo(so) = po(l) and therefore
V Po(So) = /80(l), a contradiction. Thus only the second case is possible, i.e. pk(l) <
V Pk-i(Si)^\/Pk(So)^Pk(l).

Applying Lemma 8, we obtain the existence of a least element of (%, «).
(ii) Let Sm be the least element of (°Un, « ) and 5 e %,. If V Po(S) = ^0(l) < 1 then,

from Lemma 1, we obtain po(s') = A)(l) for some s' eS. By Lemma 1, (2) and (3), we
can establish that, for each seSm, there is s' eS such that Pk(s)^pk(s') for all fc>0.
Thus pk+i(l) = V Pk(Sm) for all k > 0. Therefore 0,(1) = V Po(Sm) and, for each 5 e Sm,
we have Z?!^) = po(s) A /S^l) = po(s). Then

Hence, by Theorem 4, / is bounded.

REMARK 10. From (1), we see that j80(l) < 1 if and only if there exists a in
B(FPn(X)) with a # 1 and /(a) = 1.

4. Examples of nonbounded endomorphisms in the variety Pu In this section, we
shall construct endomorphisms of FP^A") which are not bounded. Recall that Pi is the
equational class of all p-algebras satisfying the Stone identity **VJC** = 1.

THEOREM 11. For every finite set X with 1^1=2, there exists a nonbounded en-
domorphism of ¥Y*i(X).
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Proof. Consider an endomorphism/:FP1(A
r)—»FP,(A') with

= (*? vx2*)**, /(*2) = (*f*v *2*)**, where X = {xux2) and x^x2. (4)

Let a Boolean endomorphism g of B(FPt(X)) be defined by g(a) =f(a) for each
a e B(FPi(X)). Since B(FP1(A

r)) is finite, g is a bounded Boolean endomorphism.
Clearly, g_(a + b) = g_(a) + g-(b) for every a, be B(FPi(X)). Moreover g_(a) = 0S*(a)
for each a e B(FPi(X)).

Suppose to the contrary that/is bounded. Then, by Theorem 5, (%, « ) possesses a
least element Sm = {a,a*}, where a e BiFP^X)).

Take 5, = {xf, x?*} for i = 1, 2. Then 5m « 5,, i = 1,2. It is routine to check that

and j80(l) = (

Then, by Lemmas 1 and 2, V A A ) < A)(l) f«r ' = 1,2 and

/3o(l)<g-(l) = g_(a + fl*) = g » + g_(fl*) = /3o**(a

Without loss of generality, we may suppose that

/3o(a)<)8o(*?) and )3o(a*)</3o(^r*).

Then either

and )30(fl*)^/30(x2**)
or

/30(a)fi/J0(*r) and /3o(««')s/

In the first case, we see that

$•(*)*;*?• A *;• and /30**(a*)<xfAx2**.
Then (xf A JC|)* = /30(l) ^ x | * < (jcf A X| )* , a contradiction.

The second case can be handled in the same way. Therefore 5m cannot be the least
element of the poset (%„,«). Hence, by Theorem 5, the endomorphism / is not
bounded.

In order to construct nonbounded endomorphisms of FP1(A
r), where \X\ >2, let us

consider an endomorphism

defined by h{a) =/(r(a)) , where / is a nonbounded endomorphism of FPi(2) and the
endomorphism

is defined by x(xx) - xx, r(x2) = x2 and T(X,) = 1 for i > 2.
Since / is not bounded, h is a nonbounded endomorphism of
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