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SUMMARY

Influenza surveillance enables systematic collection of data on spatially and demographically
heterogeneous epidemics. Different data collection mechanisms record different aspects of the
underlying epidemic with varying bias and noise. We aimed to characterize key differences in
weekly incidence data from three influenza surveillance systems in Melbourne, Australia, from
2009 to 2012: laboratory-confirmed influenza notified to the Victorian Department of Health,
influenza-like illness (ILI) reported through the Victorian General Practice Sentinel Surveillance
scheme, and ILI cases presenting to the Melbourne Medical Deputising Service. Using nonlinear
regression, we found that after adjusting for the effects of geographical region and age group,
characteristics of the epidemic curve (including season length, timing of peak incidence and
constant baseline activity) varied across the systems. We conclude that unmeasured factors
endogenous to each surveillance system cause differences in the disease patterns recorded.
Future research, particularly data synthesis studies, could benefit from accounting for these
differences.
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INTRODUCTION

Influenza is a prevalent and potentially severe public
health problem worldwide. The World Health Organ-
ization (WHO) estimates that each year seasonal
influenza is responsible for 3–5 million cases of severe
illness and 250000–500000 deaths globally [1]. The
pandemic strain influenza A(H1N1)pdm09, which
first emerged in 2009, was associated with an

estimated 280000 deaths worldwide in its first year
of circulation [2]. Teenagers and younger adults were
disproportionately affected, with 62·2% of laboratory-
confirmed cases in Australia aged between 10 and
44 years, compared to an average of 42·8% in the pre-
vious four influenza seasons [3].

Influenza infection is often demographically and
spatially heterogeneous. For example, infants and
young children are at greatly increased risk of hospita-
lization from influenza compared to other age groups
[4]. Socioeconomic disadvantage has also been asso-
ciated with increased influenza activity [5]. Spatially
varying infection rates could be explained by spatial
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variation in age distribution or disadvantage, as well
as vaccine coverage or environmental factors [6].

Influenza surveillance systems, which enable sys-
tematic collection of influenza-related data through a
variety of mechanisms, are a valuable tool for public
health management and scientific research. Surveil-
lance systems are used to detect influenza outbreaks,
monitor circulating strains, inform disease control,
assess the effectiveness of interventions and measure
epidemic severity, onset and duration [7, 8]. Data col-
lected often include spatial and demographic vari-
ables, permitting study of the effects of these factors
on the spread of infection.

In general, surveillance systems capture biased and
noisy subsets of the underlying influenza epidemic.
Noise stems from low specificity in the method of
case ascertainment, leading to false positives in the
dataset. Laboratory testing for influenza infection
typically yields high (although variable) specificity,
while syndromic measures such as clinical diagnosis
of influenza like illness (ILI) have low specificity for
detecting true infection due to the non-specific nature
of influenza symptoms [9]. Accordingly, although ILI
and laboratory-confirmed surveillance often record
comparable trends [10], ILI-based systems typically
have higher noise levels.

Bias may occur according to a number of variables,
measured or otherwise. For example, sentinel surveil-
lance, which involves passive reporting of incident
cases by volunteer medical practices, captures only
cases in the catchment area of participating practices,
leading to geographical bias [11]. Relative to syndro-
mic datasets, which typically consist of all individuals
with ILI presenting to participating health prac-
titioners, laboratory-confirmed surveillance data may
incur greater bias due to variable testing practices,
as health practitioners usually select patients for test-
ing at their own discretion. For example, severe symp-
tomatic cases (typically the very young and elderly)
or those with poor background health status (often
elderly) are more likely to be laboratory tested, poten-
tially causing demographic bias.

Bias and noise may cause differences in the epi-
demic trajectories observed by different surveillance
systems. Such discrepancies are commonly recorded
(e.g. [10–13]) and may be seen as capturing different
aspects of the true underlying epidemic. For example,
if younger cases are over-represented in a given system
and also typically present earlier in the epidemic than
older cases, this will be reflected as an earlier epidemic
peak compared to other systems. Factors endogenous

to the surveillance system, such as reporting mechan-
ism or case ascertainment method, may also result in
biased or imprecise estimates of epidemiological
quantities.

When multiple surveillance systems report on the
same influenza epidemic, the data can be compared
to investigate the contribution of observed variables
such as age and spatial distribution to differences
in the epidemic curves. This study used data from
three surveillance schemes operating in Melbourne,
Australia across four influenza seasons (2009–2012),
including the year of emergence of pandemic influenza
A(H1N1)pdm09. We aimed to:

(1) characterize key features of the distribution of
influenza cases across space, time and demo-
graphic dimensions as recorded by the three sur-
veillance systems;

(2) describe the differences in these distributions
between the systems, and;

(3) investigate the extent to which recorded vari-
ables – year, spatial location, age, pandemic status
(2009 vs. subsequent years) and the surveillance
system itself – account for observed differences in
the epidemic time series.

METHODS

Surveillance systems

We compared data from three surveillance schemes
operating in metropolitan Melbourne: laboratory-
confirmed influenza cases notified to the Victorian
Department of Health (VDH), ILI cases reported
through the Victorian General Practice Sentinel Sur-
veillance (GPSS) scheme, and ILI cases presenting
to the Melbourne Medical Deputising Service
(MMDS). Key attributes of these systems are sum-
marized in Table 1.

We restricted all datasets to those cases whose
primary residence was in metropolitan Melbourne
(defined as the Melbourne greater capital city statisti-
cal area [14]). We defined the influenza seasons as
beginning on the first full ‘surveillance week’
(Monday–Sunday) of each year: 2009 (5 January
2009 to 3 January 2010), 2010 (4 January 2010 to
2 January 2011), 2011 (3 January 2011 to 1 January
2012) and 2012 (2 January 2012 to 6 January 2013).

Ethical approval for this study was granted by the
Health Sciences Human Ethics Sub-Committee of
the University of Melbourne.
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VDH

In Victoria, all medical practitioners and pathology
services are required by law to notify laboratory-
confirmed influenza cases to the VDH within 5 days
of a positive result. From 2010–2012, patients were
selected for testing at the discretion of the health prac-
titioner. In 2009, following the introduction of A
(H1N1)pdm09 influenza to Victoria, the Victorian
Government implemented a multi-phase pandemic re-
sponse plan [15]. From 22 May to 2 June 2009, the
Contain phase of this response was in place and lab-
oratory testing of suspected cases was mandatory.
Victoria transitioned to the Modified Sustain phase
on 3 June and to the Protect phase on 23 June.
During these phases, testing of suspected cases was
no longer mandatory and instead focused on moder-
ate, severe or at-risk cases [15, 16]. As a consequence
of the pandemic response, the proportion of ILI cases
tested was higher in 2009 compared to previous years,
but evidence from the GPSS suggests this increase in
testing was sustained in subsequent years [17].

We considered only those cases that were notified
after presentation to a medical clinic or hospital.
Cases that were identified through an institutional out-
break investigation, tracing of a known case’s contacts
or through the GPSS (these were considered only in
the GPSS dataset) were excluded. We were unable to
identify laboratory-confirmed cases originally present-
ing through the MMDS, leading to the potential for a
small number of duplicate cases in the MMDS and
VDH datasets.

GPSS

The GPSS scheme is coordinated through the
Victorian Infectious Diseases Reference Laboratory
(VIDRL), which recruits volunteer general practi-
tioners (GPs) throughout Victoria. In total, 125 GPs
from 57 practices (43 of them in Melbourne) partici-
pated in the scheme for various lengths of time within
this period. Sentinel GPs reported ILI diagnoses to
VIDRL in each reporting week during the GPSS op-
erating period, typically April–October each year.
Combined nose/throat swabs were taken from a subset
of ILI patients at the GP’s discretion and laboratory
tested at VIDRL; however, the results of these tests
were not considered in the present analyses.

MMDS

The MMDS provides medical care to patients in their
own home or aged-care facility in Melbourne and itsT
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surrounds on weekends, public holidays and after-
hours on weekdays [18]. In 2009–2012, influenza sur-
veillance through the MMDS was coordinated by
VIDRL. MMDS doctors recorded ILI diagnoses in
a digital database on a daily basis; VIDRL searched
this database and extracted the date and postcode
for each ILI consultation.

Measures

To facilitate comparisons, we grouped the data by sur-
veillance system, year, age group (0–4, 5–24, 25–49,
550 years) and geographical region within
Melbourne [Inner, North-East (NE), North-West
(NW) and South-East (SE)]. We do not present sex-
stratified analyses here as sex differences in the data-
sets were minimal. The influenza case counts were
then aggregated by surveillance week (Monday–
Sunday). Since this amounts to averaging the inci-
dence rate across each week, we took the midpoint
of each reporting week as the time corresponding to
data from that week. This resulted in 3×4×4×4=
192 individual weekly incidence rate time series or epi-
demic curves.

The Statistical Area Level 4 (SA4) (as defined by
the Australian Statistical Geography Standard [14])
was our initial geographical unit. Due to small num-
bers of cases appearing in each SA4 in the GPSS
and MMDS datasets, we further aggregated the SA4s
into four larger regions within Melbourne (Inner,
NE, NW, SE). These aggregations were chosen due

to geographical proximity and to reflect similarities
in socioeconomic advantage/disadvantage and health.
Figure 1 maps the SA4 s and larger regions, and sum-
marizes statistics on socioeconomic status and health.

Analyses

To describe the overall epidemiology of the three data-
sets, we computed counts and percentages of influenza
cases in each dataset, first by age group and then by
geographical region, for each year in our study period.
We tested for significant differences in these propor-
tions using Pearson’s χ2 tests.

To quantify the contribution of surveillance system,
year, age group and region to the shape of the epi-
demic curves, we performed multivariable nonlinear
regression with the weekly disease incidence rate as
the response. We had N=8416 observations represent-
ing the average incidence rate (in units of cases per
week) in each surveillance week for each year, surveil-
lance system, age group and region. For the GPSS sys-
tem, case counts outside of the GPSS operating period
were treated as missing data.

We modelled the mean instantaneous incidence
rate λt at time t (measured in weeks) as the sum of a
Gaussian function representing the epidemic compo-
nent and a time-invariant constant representing the
endemic component of the weekly incidence rate:

λt = S���
2π

√ (D/3 · 92) exp
(t− T)2

2(D/3 · 92)2
[ ]

+ C. (1)

Population : 97×104

GPSS practices: 10
IRSAD score: 977
Good/excellent health: 84%

North West (NW)

210

213

Population: 128 × 104

GPSS practices: 17
IRSAD score: 1070
Good/excellent health: 89%

Inner
206
207

208

Population: 95 × 104

GPSS practices: 7
IRSAD score: 1026
Good/excellent health: 87%

North East (NE)

209

211

Population: 96 × 104

GPSS practices: 9
IRSAD score: 995
Good/excellent health: 85%

South East (SE)

214

212

Fig. 1 [colour online]. The Melbourne greater capital city statistical area divided into nine Statistical Area Level Fours
(SA4) (map adapted from [14]). The SA4 code is shown inside each boundary. For each larger region, the boxes show: (1)
approximate population size according to the 2011 Australian census [28]; (2) number of Victorian General Practice
Sentinel Surveillance scheme (GPSS) practices located in that region; (3) Index of Relative Socioeconomic Advantage and
Disadvantage (IRSAD) score, where a higher score indicates greater socioeconomic advantage and a lower score indicates
disadvantage [29], and; (4) percentage of adults reporting good to excellent health on the Australian Bureau of Statistics
Patient Experience Survey 2011–12, as a summary measure of regional health (data are available by Medicare Local
catchment area; boundaries coincide with SA4 s only approximately) [30].
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Here, S may be interpreted as representing the final
size (disease count) of the epidemic component, T the
timing of the week of peak incidence and C the con-
stant baseline or endemic incidence rate. As D/3·92
is the standard deviation parameter and T is the
mean of the Gaussian function in equation (1),
about 95% of epidemic cases are expected to occur
in the time interval T±0·5D, so that D approximates
the duration of the seasonal epidemic.

We modelled log S, D, T and log C as linear in all
variables, choosing the natural logarithms of S and C
as these parameters are necessarily positive. We then
fitted interaction terms between all variables and ‘pan-
demic year’ (2009). This decision was made a priori as
we judged that the effects of surveillance system, age
group and region were likely to be very different in
a year in which a pandemic strain first appeared com-
pared to subsequent years.

As we expected unmeasured sources of variation
in the data to cause over-dispersion, we modelled
the weekly counts of incident disease as independent
negative binomials with mean λt and over-dispersion
parameter α. We allowed α to vary by surveillance sys-
tem as we expected greater numbers of false positives
in the ILI datasets to lead to greater variability in case
counts compared to the laboratory-confirmed dataset.

We numerically maximized the likelihood for this
model with respect to all regression coefficients and
computed likelihood-based confidence intervals. All
analyses were performed in Stata v. 13.0 (StataCorp,
USA).

Sensitivity analysis

From 22 May to 2 June 2009, the Contain phase of
the Victorian Government’s pandemic response plan
was in place and laboratory testing of suspected
cases was mandatory. On 3 June, Victoria transitioned
to the Modified Sustain phase and testing was restric-
ted to moderate, severe or at-risk cases. This probably
contributed to the sharp drop in the observed number
of cases in the VDH dataset around this time [19].

We therefore removed the two data points which
covered the majority of the Contain phase (sur-
veillance weeks beginning 25 May and 1 June) and
re-fitted our multivariate model to check for any
large changes in coefficient estimates.

RESULTS

Table 2 shows the number and proportion of cases
detected by each surveillance system in each year in

our study period, by age group and region. All differ-
ences in proportions (eight comparisons in total) were
found to be significant (P<0·001). Figure 2 shows a
time series of weekly incidence for each system from
2009 to 2012.

Overall, the VDH system detected the largest
number of cases (13514, 63·5% of total) during the
study period, followed by the GPSS (4189, 19·7%)
and MMDS (3568, 16·8%) systems. This pattern was
roughly consistent from 2009 to 2012, although
VDH notifications were comparatively larger in
2009, probably due to increased testing practices as
part of the pandemic response.

In 2010–2012, the spatial distribution of cases
detected by the VDH surveillance system broadly
reflected Melbourne’s regional population distribution
(∼30% of the population lives in the Inner region with
23% in each of the remaining regions; see Fig. 1).
Across these years the age distribution of cases was
largely consistent, with the 25–49 years age group
contributing the greatest number of cases. In 2009,
the 5–24 years age group and the NW region
predominated.

For the GPSS system, Melbourne’s Inner region
consistently reported the highest number of cases,
reflecting the high proportion of GPSS practices
located there (Fig. 1). For the MMDS system, the
oldest age group (550 years) and the NW region
were typically over-represented compared to the
other systems, and the SE region was strongly
under-represented.

Effect of year, surveillance system, age group and
region on epidemic characteristics

Table 3 (2010–2012) and Table 4 (2009) present fully
adjusted estimates for the effects of year, surveillance
system, age group and region on influenza constant
baseline activity (parameter C), final size of the epi-
demic component (S), epidemic duration (D) and tim-
ing of peak incidence (T). Results for 2009 are shown
separately as effects in this year were allowed to vary
by fitting interaction terms. Confidence intervals (CIs)
for epidemic timing are reported as date ranges rather
than being constrained to discrete surveillance weeks,
since all parameters were estimated on a continuous
scale.

We estimated the over-dispersion parameter α to be
0·25 (95% CI 0·22–0·29) for the VDH system, 0·36
(95% CI 0·30–0·43) for the GPSS and 0·52 (95% CI
0·43–0·61) for the MMDS, suggesting significantly
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Table 2. Yearly counts (%) of VDH laboratory-confirmed influenza cases,
and GPSS and MMDS influenza-like illness cases, first by age group, then by
region*

VDH GPSS MMDS

2009
Age group
0–4 404 (7·71) 117 (7·36) 77 (7·80)
5–24 2909 (55·54) 674 (42·39) 325 (32·93)
25–49 1412 (26·96) 567 (35·66) 307 (31·10)
550 513 (9·79) 232 (14·59) 278 (28·17)

Region
Inner 1461 (27·89) 596 (37·48) 338 (34·25)
North-East 1057 (20·18) 232 (14·59) 202 (20·47)
North-West 1570 (29·97) 312 (19·62) 372 (37·69)
South-East 1150 (21·95) 450 (28·30) 75 (7·60)
Total 5238 (100·00) 1590 (100·00) 987 (100·00)

2010
Age group
0–4 212 (13·74) 56 (8·74) 71 (11·08)
5–24 435 (28·19) 170 (26·52) 119 (18·56)
25–49 582 (37·72) 264 (41·19) 183 (28·55)
550 314 (20·35) 151 (23·56) 268 (41·81)

Region
Inner 575 (37·27) 258 (40·25) 176 (27·46)
North-East 321 (20·8) 155 (24·18) 76 (11·86)
North-West 209 (13·55) 139 (21·68) 364 (56·79)
South-East 438 (28·39) 89 (13·88) 25 (3·90)
Total 1543 (100·00) 641 (100·00) 641 (100·00)

2011
Age group
0–4 265 (10·78) 151 (15·3) 65 (9·08)
5–24 561 (22·81) 284 (28·77) 152 (21·23)
25–49 842 (34·24) 388 (39·31) 261 (36·45)
550 791 (32·17) 164 (16·62) 238 (33·24)

Region
Inner 890 (36·19) 491 (49·75) 218 (30·45)
North-East 482 (19·60) 134 (13·58) 126 (17·60)
North-West 503 (20·46) 198 (20·06) 314 (43·85)
South-East 584 (23·75) 164 (16·62) 58 (8·10)
Total 2459 (100·00) 987 (100·00) 716 (100·00)

2012
Age group
0–4 454 (10·62) 108 (11·12) 177 (14·46)
5–24 881 (20·61) 248 (25·54) 229 (18·71)
25–49 1470 (34·39) 385 (39·65) 482 (39·38)
550 1469 (34·37) 230 (23·69) 336 (27·45)

Region
Inner 1483 (34·7) 471 (48·51) 366 (29·9)
North-East 875 (20·47) 207 (21·32) 226 (18·46)
North-West 843 (19·72) 155 (15·96) 520 (42·48)
South-East 1073 (25·11) 138 (14·21) 112 (9·15)
Total 4274 (100·00) 971 (100·00) 1224 (100·00)

VDH, Victorian Department of Health; GPSS, Victorian General Practice Sentinel
Surveillance scheme; MMDS, Melbourne Medical Deputising Service.
* All differences (eight comparisons in total) were significant at the P<0·001 level
using Pearson’s χ2 tests.
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greater over-dispersion in the ILI-based systems com-
pared to the laboratory-confirmed system. Plots of the
fitted curves and data are available in the online
Supplementary material.

2010–2012

For the 2010–2012 data, we estimated significant
effects of year, surveillance scheme, age group and
region on baseline activity and final epidemic size
(Table 3a). This was expected as these parameters
are dependent upon true variations in the size of the
underlying population by age and region, the catch-
ment population of each surveillance system, and the
overall epidemic attack rate in each year.

The duration of the influenza epidemic was
estimated to be significantly longer in both 2011 and
2012 compared to 2010, by 4·1 (95% CI 2·4–5·7)
and 6·5 (95% CI 5·0–7·9) weeks, respectively
(Table 3b). Epidemic duration was estimated to be
significantly longer in the 25–49 and 550 years age
groups compared to the 0–4 years age group, by 3·9
(95% CI 1·6–5·0) and 3·0 (95% CI 0·9–5·0) weeks,
respectively. The duration was estimated to be sig-
nificantly shorter in the NW region and longer in
the SE region compared to the Inner region, with
differences of −3·3 (95% CI −4·8 to −1·7) and 4·0
(95% CI 2·0–6·0) weeks, respectively. We found no
significant effect of surveillance system on epidemic
duration in 2010–2012.

In 2010, and for baseline values of age group (0–4
years) and region (Inner), the peak of the seasonal
epidemic was estimated to occur between 12 and 20
September 2010 with 95% confidence (Table 3b).
The 2012 peak was estimated to occur 4·3 (95% CI
3·9–4·7) weeks earlier in the year than the 2010
peak, or between 12 and 19 August 2012.

The incidence of cases reported through the GPSS
was estimated to peak 2·1 (95% CI 1·6–2·5) weeks
earlier than the VDH scheme. The incidence of
cases in the 550 years age group was estimated
to peak 1·2 (95% CI 0·7–1·8) weeks later than in the
0–4 years age group. Notifications in the NW region
were estimated to peak 0·6 (95% CI 0·1–1·0) weeks
later than the Inner region.

2009

Here we report on effects that were significantly differ-
ent in 2009 from those already reported for 2010–2012
(i.e. effects arising from significant interactions with
pandemic year).

We estimated that in 2009, baseline influenza ac-
tivity was greater for the GPSS (a 2·2-fold increase,
95% CI 1·6–3·0) and MMDS (2·4-fold increase, 95%
CI 1·9–3·0) compared to the VDH surveillance sys-
tem. These effects were significantly different from
those estimated for years 2010–2012, where baseline
activity was the same for the VDH and GPSS and
slightly lower for the MMDS.

We found significant effects of age group on final
epidemic size in 2009, with the 5–24 and 25–49 years
age groups estimated to account for 6·6 (95% CI
5·5–8·0) and 4·0 (95% CI 3·3–4·8) times more cases
than the 0–4 years age group, respectively, a greater
relative amount than in subsequent years. The
550 years group was estimated to account for 1·4
(95% CI 1·2–1·8) times more cases than the youngest
group, a smaller relative effect than in subsequent
years.

The GPSS exhibited a greater epidemic duration,
by 5·0 weeks (95% CI 3·3–6·7), compared to the
VDH system, and the MMDS exhibited a shorter dur-
ation, by 2·1 weeks (95% CI 0·5–3·7). No significant
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Fig. 2 [colour online]. Weekly counts of confirmed influenza cases notified to the Victorian Department of Health (VDH)
and influenza-like illness cases reported through the Victorian General Practice Sentinel Surveillance scheme (GPSS) and
Melbourne Medical Deputising Service (MMDS), from the week starting 5 January 2009 to the week starting 31
December 2012.
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Table 3. Effects of year, surveillance system, age group and region on
influenza epidemic characteristics in 2010–2012

(a) Exponentiated coefficients from the linear predictors for log C and log S (multiplicative
effects)

Variable

C (baseline activity) S (final size)

Estimate (95% CI) Estimate (95% CI)

Constant 0·37*** (0·32–0·44) 54·54*** (46·95–63·37)

Year
2010 1·00 — 1·00 —

2011 1·53*** (1·37–1·70) 1·46*** (1·29–1·65)
2012 1·37*** (1·22–1·54) 2·97*** (2·65–3·3)

System
VDH 1·00 — 1·00 —

GPSS 1·06 (0·89–1·26) 0·24*** (0·21–0·28)
MMDS 0·81*** (0·73–0·91) 0·13*** (0·11–0·15)

Age group
0–4 1·00 — 1·00 —

5–24 1·90*** (1·61–2·23) 2·06*** (1·81–2·35)
25–49 3·74*** (3·22–4·35) 2·76*** (2·42–3·15)
550 3·6*** (3·10–4·18) 1·96*** (1·71–2·24)

Region
Inner 1·00 — 1·00 —

North-East 0·53*** (0·46–0·60) 0·51*** (0·45–0·58)
North-West 0·90 (0·80–1·02) 0·54*** (0·46–0·62)
South-East 0·33*** (0·28–0·39) 0·63*** (0·56–072)

(b) Coefficients for the linear predictors estimating D and T (additive effects)

Variable

D (epidemic duration) T (peak timing)

Estimate (95% CI) Estimate (95% CI)

Constant 10·22*** (8·36 to 12·09) 35·68*** (35·18 to 36·19)

Year
2010 0·00 — 0·00 —

2011 4·05*** (2·40 to 5·70) −0·34 (−0·77 to 0·09)
2012 6·47*** (5·00 to 7·94) −4·32*** (−4·72 to −3·93)

System
VDH 0·00 — 0·00 —

GPSS 0·10 (−1·87 to 2·07) −2·06*** (−2·54 to −1·59)
MMDS 0·37 (−2·18 to 2·92) −0·85* (−1·49 to −0·21)

Age group
0–4 0·00 — 0·00 —

5–24 1·30 (−0·29 to 2·89) 0·01 (−0·43 to 0·46)
25–49 3·29*** (1·57 to 5·01) 0·31 (−0·17 to 0·79)
550 2·95** (0·87 to 5·02) 1·24*** (0·72 to 1·76)

Region
Inner 0·00 — 0·00 —

North-East −1·00 (−2·72 to 0·71) 0·21 (−0·26 to 0·67)
North-West −3·25*** (−4·81 to −1·68) 0·57* (0·12 to 1·03)
South-East 3·98*** (1·95 to 6·01) −0·08 (−0·57 to 0·41)

CI, Confidence interval; VDH, Victorian Department of Health; GPSS, Victorian
General Practice Sentinel Surveillance scheme; MMDS, Melbourne Medical
Deputising Service.
C represents the constant rate of baseline influenza activity; S represents the final
size of the epidemic component; D represents the approximate duration of the epi-
demic component; T represents the timing of the epidemic peak in weeks from
8 January each year, since Thursday 8 January 2009 is halfway through the earliest
surveillance week included in this study.
*P<0·05, ** P<0·01, *** P<0·001.
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Table 4. Effects of surveillance system, age group and region on influenza
epidemic characteristics in 2009 (first emergence of the H1N1 pandemic
influenza virus)

(a) Exponentiated coefficients from the linear predictors for log C and log S
(multiplicative effects)

Variable

C (baseline activity) S (final size)

Estimate (95% CI) Estimate (95% CI)

Constant 0·10***† (0·07–0·15) 116·44***† (96·6–140·35)

System
VDH 1·00 — 1·00 —

GPSS 2·16***† (1·56–2·99) 0·29*** (0·25–0·33)
MMDS 2·38***† (1·88–3·01) 0·11*** (0·09–0·13)

Age group
0–4 1·00 — 1·00 —

5–24 2·84*** (1·94–4·14) 6·63***† (5·53–7·95)
25–49 4·53*** (3·15–6·51) 3·96***† (3·29–4·78)
550 47*** (3·12–6·4) 1·42**† (1·16–1·75)

Region
Inner 1·00 — 1·00 —

North-East 0·70** (0·54–0·9) 0·55*** (0·45–0·65)
North-West 1·02 (0·81–1·29) 0·86† (0·71–1·03)
South-East 0·28*** (0·2–0·41) 0·74** (0·62–0·88)

(b) Coefficients for the linear predictors estimating D and T (additive effects)

Variable

D (epidemic duration) T (peak timing)

Estimate (95% CI) Estimate (95% CI)

Constant 12·62*** (11·10 to 14·14) 26·17***† (25·66 to 26·69)

System
VDH 0·00 — 0·00 —

GPS 5·00***† (3·31 to 6·70) 0·51*† (0·03 to 0·99)
MMDS −2·13** (−3·73 to 0·53) −0·15 (−0·66 to −0·35)

Age group
0–4 0·00 — 0·00 —

5–24 −1·73* (−3·12 to −0·34) −0·33 (−0·78 to 0·12)
25–49 −0·71† (−2·21 to 0·79) 0·24 (−0·25 to 0·73)
550 0·83 (−0·95 to 2·62) 0·67* (0·07 to 1·26)

Region
Inner 0·00 — 0·00 —

North-East −0·10 (−1·33 to 1·14) −0·33 (−0·78 to 0·12)
North-West −2·87*** (−3·97 to −1·77) −1·31***† (−1·72 to −0·9)
South-East 0·23† (−0·96 to 1·42) 0·18 (−0·26 to 0·63)

CI, Confidence interval; VDH, Victorian Department of Health; GPSS, Victorian
General Practice Sentinel Surveillance scheme; MMDS, Melbourne Medical
Deputising Service.
C represents the constant rate of baseline influenza activity; S represents the final
size of the epidemic component; D represents the approximate duration of the
epidemic component; T represents the timing of the epidemic peak in weeks from
8 January each year, since Thursday 8 January 2009 is halfway through the earliest
surveillance week included in this study.
*P<0·05, ** P<0·01, *** P<0·001.
† Significantly different from 2010 estimate (P<0·05).
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differences were observed in subsequent years. The sig-
nificantly longer epidemic duration observed in the SE
region compared to the Inner region in 2010–2012 was
not observed in 2009.

For the baseline levels of age group (0–4 years) and
region (Inner), the peak incidence of influenza in 2009
was estimated to occur 9·5 (95% CI 8·9–10·2) weeks
earlier in the year than the 2010 epidemic (between
7 and 15 July 2009 with 95% confidence). The
influenza epidemic was estimated to peak 1·3 (95%
CI 0·9–1·7) weeks earlier in the NW region than the
inner region in 2009, whereas in subsequent years
the NW peak incidence occurred significantly later
(although this effect was marginal). GPSS notifica-
tions were estimated to peak 0·5 (95% CI 0·0–1·0)
weeks later than VDH notifications in 2009. This
also entailed a significant interaction; in subsequent
years, GPSS incidence peaked earlier than VDH
incidence.

Sensitivity analysis

In a sensitivity analysis, we excluded data points from
the VDH dataset corresponding to the surveillance
weeks from 25 May to 8 June 2009, covering the ma-
jority of the Contain phase of the pandemic response.
We observed a moderate decrease in our estimate for
the effect of the VDH system on final epidemic size.
This was expected since the excluded data points
represented a period of heightened influenza testing
in Victoria. We also observed a 35% decrease in our
estimate of the over-dispersion parameter α for the
VDH data, suggesting lower variability in the data.
A likely explanation is that the excluded data points
exhibited large deviations from the mean which were
unexplained by variables in the model. Most other sig-
nificant parameter estimates did not change by >20%
and this sensitivity analysis did not change our quali-
tative interpretation of the results.

DISCUSSION

We have used a nonlinear regression approach to esti-
mate the contribution of four factors – year, sur-
veillance system, age group and region – to the final
epidemic size, epidemic duration, timing of peak inci-
dence and constant baseline activity observed by three
influenza surveillance schemes. This has allowed us
to investigate the extent to which differences in the
epidemic curves recorded by the three schemes can
be explained by observed demographic, spatial and

seasonal variables, and what differences are due to
unobserved variables or factors endogenous to each
surveillance system.

We found that after adjusting for age, region and
year, the surveillance system from which the data
were derived still had an effect on the shape of the epi-
demic curve. This suggests that unmeasured factors
related to each surveillance system have caused differ-
ences in the patterns of influenza recorded.

Significant effects of surveillance system on final epi-
demic size and baseline activity were found. These
differences were largely expected as the catchment
populations of each surveillance system differ
markedly.

More notably, in 2009 compared to 2010–2012, we
observed a greater relative amount of baseline activity
in the GPSS and MMDS systems compared to the
VDH system. We further estimated that constant
baseline activity, which includes out-of-season ac-
tivity, was 4–6 times higher in 2010, 2011 and 2012
compared to 2009. This suggests that the baseline in-
cidence of laboratory-confirmed cases increased sub-
stantially after 2009 while ILI rates did not increase
proportionately. This is consistent with previous ob-
servations in Victoria and throughout Australia
which have been attributed in part to an increase in
testing rates following the 2009 pandemic [20].

We observed significant effects of surveillance sys-
tem on the timing of the epidemic peak. The
ILI-based systems (GPSS and MMDS) each peaked
1–2 weeks earlier than the system based on confirmed
influenza notifications (VDH), demonstrating that
measurement of epidemic timing may differ sig-
nificantly according to the surveillance strategy used.
This effect cannot be explained by reporting delays
in the VDH system, as in this study notifications
to the VDH were dated according to the day the
case presented to a clinician, the same time reference
used by the GPSS and MMDS systems.

By contrast, in 2009 notifications through the GPSS
system were estimated to peak significantly later than
the VDH, by about half a week. This may have been
caused by the extended GPSS surveillance period,
changes in the reporting behaviour of GPs, or changes
in laboratory testing recommendations during the
season. Overall, in 2009 influenza incidence peaked
much earlier in the year than in subsequent seasons
[19], and this was reflected in our results.

We observed no significant effect of surveillance
system on epidemic duration, except in 2009 when
the epidemic duration observed through the GPSS
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was estimated to be 5 weeks longer than that of the
VDH and 7 weeks longer than that of the MMDS.
This aligns well with previous estimates of season
length in 2009 for the GPSS and MMDS, as defined
using seasonal thresholds proposed by the WHO
[21]. Using this method, the 2009 influenza season
was estimated to last from 10 May to 5 September
(17 weeks) for the GPSS data, and from 31 May to
15 August (11 weeks) for the MMDS [22]. We esti-
mated a season’s duration of between 13 May and
14 September (17·6 weeks) for the GPSS and between
2 June and 16 August (10·5 weeks) for the MMDS (at
baseline levels of region and age group). Estimates
of season duration in subsequent seasons were less
well-matched, with our analysis typically yielding
longer seasons than the WHO method [22, 23].

This study has described in detail the differences
between three surveillance systems reporting on the
same seasonal epidemics across multiple geographical
regions and age groups. When multiple surveillance
systems overlap, meta-analysis can yield deeper in-
sights into the underlying influenza epidemic. For
example, Bayesian evidence synthesis of multiple
data sources can be used to estimate important epi-
demiological quantities with improved accuracy and
precision (e.g. [24, 25]). Our results suggest that sys-
tematic differences exist between the three systems
examined; future data synthesis studies could be
improved by accounting for such differences.

Variations in influenza spread across the regions
and age groups included in our study demonstrate
that influenza epidemics can be spatially and demo-
graphically heterogeneous, even within a relatively
small and inter-connected region such as a city.
Data synthesis could enhance studies of this hetero-
geneity, since surveillance systems are subject to
spatial and demographic bias that could distort
analyses based on individual datasets. In partic-
ular, this could enable more effective examination
of hypotheses related to spatial facilitators of infec-
tion spread, such as area-level socioeconomic
disadvantage.

Limitations

This study had several limitations. First, we chose a
nonlinear model that imperfectly described the true
mean behaviour of the systems being studied. Model
misspecification can lead to biased parameter esti-
mates and false conclusions. We chose a simple
model that could be parameterized by quantities of

epidemiological interest and assumed that the effects
of the variables being studied on these parameters
were additive unless we had strong reason a priori to
fit interaction terms (as in the case of the 2009 pan-
demic). Further interactions may have been present;
we did not test for these. Added complexity would
have reduced the interpretability of the parameters
and increased the risk of over-fitting.

Second, some cases detected by the VDH, GPSS
or MMDS schemes were missing records of one or
more variables, leading to missing data in our study.
However, this missingness was unlikely to be system-
atic since data loss in routine surveillance systems
could have a wide variety of causes. As such this
would be unlikely to bias our results. The GPSS
scheme also operates for a limited period during the
influenza season; extrapolation of results from our
study to times outside the GPSS operating period
(typically April–October) should be treated with
caution.

Third, we were unable to identify laboratory-
confirmed cases in the VDH dataset who had
originally presented through the MMDS, leading
to the potential for duplicate cases in the VDH
and MMDS datasets. However, the fraction of
VDH cases attributable to the MMDS is likely to be
small. The number of MMDS cases included in our
analysis was 74% less than the number of VDH
cases; assuming conservatively that on average 50%
of MMDS cases were laboratory tested and 50% of
these were positive, then only 7% of the VDH dataset
would overlap with the MMDS. Consequently,
we would not expect this overlap to be a source of
significant error in our analysis.

Fourth, for the purposes of this study we treated the
GPSS as an ILI-only surveillance system. A subset of
ILI cases detected by the GPSS are also swabbed and
laboratory-tested; future studies would be enhanced
by considering differences between the epidemic
curves of the test-positive and test-negative cases.
This would allow further investigation of hypoth-
eses regarding differences between ILI-based and lab-
oratory-confirmed surveillance data.

Finally, appropriate population denominators
for this study were not available, meaning that it
was necessary to use disease counts rather than
rates. Raw counts for different systems, regions,
age groups and years are not directly comparable
due to variations in underlying population size;
future studies would benefit from investigating inci-
dence rates when possible. For example, for the
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GPSS data, using total number of laboratory tests
conducted as the denominator for number of posi-
tive tests could lead to further insights [26]. For the
MMDS system, total numbers of call-outs by
MMDS doctors could serve as a population denomi-
nator [27].

CONCLUSIONS

This study has described key differences in the
patterns of influenza spread observed by three surveil-
lance systems (VDH, GPSS, MMDS) in Melbourne,
Australia from 2009 to 2012. We found that these dif-
ferences were not entirely explained by variation in the
spatial and age distributions of cases across the three
systems. This suggests that factors related to the sur-
veillance mechanisms, or other unmeasured variables,
are contributing to systematic differences in the ob-
served epidemic curves. Future research, particularly
data synthesis or meta-analysis studies, would be
improved by accounting for these differences where
possible.
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