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Abstract 

For an efficient product family development an abstraction of concrete product variants is 

necessary in order to recognize and systematically describe characteristic properties of a variant. 

System architecture models represent a possibility for the systematic description of the product 

variety. The structure of architecture models for existing product families resembles a reverse 

engineering process, in which products have to be analyzed on their structures. This paper 

describes a reverse engineering approach for building up system architecture models as basis for 

developing product families. 

Keywords: systems engineering (SE), systematic approach, product architecture 

1. Introduction 

Changing market conditions, new product requirements and the increasing amount of electronic 

components and software in products are today’s companies challenges. In addition, there are trends 

such as the individualization of products, which customers can identify with. The classic processes 

and methods of domain-distributed and document-centric product development are reaching their 

limits due to the increasing organizational complexity. In order to meet the increasing complexity of 

products and to be able to differentiate themselves on the market with a sufficient variety of products, 

companies are confronted with the need to perform their product development more efficient. In terms 

of high competitiveness, it is essential for them to be able to economically develop and produce 

product families. Product development processes, which are characterized by a multitude of linked and 

exchangeable information from many domains, require a high level of data consistency. However, in 

product development each discipline uses its own development methods and often obtains its data 

manually. Compared to processes such as logistics, where the use of mature ERP systems ensures a 

high level of information consistency and data integrity, the product development is often 

characterized by a large number of isolated solutions. Model-based Systems Engineering (MBSE) is 

regarded as the development trend with which the increasing complexity of interdisciplinary product 

development processes is to remain manageable through a continuous and holistic model orientation in 

product development. Systems modeled by means of formal graphical modelling language should 

ensure that all domains involved in the development are able to build up a common understanding of 

the system to be developed in the future and to achieve a high degree of information consistency at the 

same time. Engineering activities from different disciplines are thus supported organizationally and 

system-technically throughout the entire product life cycle, from requirements recording to recycling. 
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For this purpose, the development processes and their logic have to be modelled in this system model. 

The basic structure of system models are system architectures - they are describing the structure and the 

interaction of functionalities and components of a system and thus represent the early phase of 

development, such as conception, and can serve as a basis for various authoring tools in which the 

product design is determined and validated step by step through simulation and analysis. With regard to 

product families, they offer an abstract and valuable reference for the development of generations and 

variants. The paper presents an approach for building system architectures for existing product families. 

The architecture models that can be generated by the help of this approach are supporting an efficient 

development of product variants and generations. (Eigner et al., 2017; Weilkiens et al., 2016) 

1.1. Problem statement 

Unusually product development starts on a white sheet of paper - companies that develop cars today 

probably will not develop coffee machines tomorrow. Albers et al. (2016) show that the majority of 

the activities of development departments are part of the development of product families (Albers et 

al., 2016). This refers to variants and generations of products, with variations in design and principle 

or functional integration. They are characterized by a high level of reuse of functions and components, 

however, the effort for creating such variants and generations increases rapidly with the number. 

In context of the current research project with a plant manufacturer, the development process for 

variants of mechanical expander tools for steel pipes is to be investigated. The main challenges, the 

company has to face are due to the customer individuality of the variants. A customer order represents 

an area of application defined by the customer, which is usually unique and has to be implemented 

using different tools. It comprises different tube materials, with different tube dimensions and required 

plant cycle times, for which as few different tools as possible are required. The resulting demands on 

the tool range to be supplied are highly contradictory and require a circular problem-solving process to 

find the right tool configuration and its unique geometric characteristics. As an example of this, a 

sufficient tool strength at high material yield strength and small pipe diameters is to be mentioned, as 

this is where conflicts arise, especially due to space constraints. Similar conflicting requirements are 

represented by large tube diameter ranges at constantly high cycle times, which presuppose a tool 

stroke that cannot be realized. For an efficient product family development, an abstraction of concrete 

product variants is necessary in order to recognize and systematically describe the characteristic 

properties of a variant. System architecture models represent a possibility for a systematic description 

of the product variety in a useful abstraction. Within the system architecture, correlations between 

functional and logical structures can be mapped in a descriptive, qualitative model. Furthermore, the 

elements of an architecture, such as functions or components, can be specified by their most important 

properties. Architectural models thus are a useful reference for variant and further development, 

because both conceptual and physical elements can be inherited. The specific meaning of system 

architectures can be seen in the INCOSE Vision 2025, in which it is titled as an essential discipline for 

the successful application of systems engineering (INCOSE, 2014). In the context of MBSE, there are 

several approaches to support the creation of system architectures. Mostly, new developments are the 

focus of interest, which is why the development of functional architectures is particularly addressed. 

With reference to the statistics for development activities, it can be deduced that building architectures 

for existing products or product families should be focused. In the industrial practice, the building of 

system architectures should be understood as a reverse engineering process, in which physical 

products have to be analyzed on their structures. (Weilkiens et al., 2016) 

1.2. Objective of the research activities 

The research activities primarily aim at the creation and use of architectural models for the 

development of product families. The defined goal is to develop a systematic approach to analyze 

product families in order to be able to formally describe the systems architecture models. For this 

purpose, different approaches to analyze products and product families are taken up and extended with 

the philosophy of the Reverse-Engineering to define a Reverse-Architecting-Approach. This Reverse-

Architecting-Approach describes necessary phases and activities to get from the real product family to 

a system architecture with defined abstraction levels. The architectural model must be able to describe 
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the complete composition of the product from a functional and physical perspective. Since the current 

project example represents a product family, different architectures are existing. Therefore, it is the 

explicit goal to create a reference architecture. It must be able to represent the totality of all possible 

variants in one architecture and allow changes for new variants at the same time. Levels of abstraction 

are intended to promote a downstream variation of the product in various phases of development. 

Thus, step-by-step abstraction can be used both in the design phase and in the conceptual phase of the 

development. Modelling the complete reference architecture enables the specification of architectural 

elements such as functions and components by means of certain properties. In this way, functional 

elements such as “increase force” or “reduce friction” can be specified by properties such as forces, 

transmission ratios, lubricant requirements or surface pressures. Components, on the other hand, can 

be specified by concrete design descriptive properties such as dimensions. These quantifiable 

properties are machine interpretable. For a model-based development of variants, the specification of 

architectural elements offers a number of advantages. Within the system model, the properties can be 

linked to requirements by decision routines and analytical relationships and enable a requirement-

driven variant development. On the other hand, the transferability of architecture information to 

different domain models, in which the shape is determined and analyzed, is made possible. Thus, 

functional and physical structure and their properties can be transferred for the initial setup of a 

physical model to get a rough design of the components. Moreover, it can be used for the numerical 

determination of material stress in a structural-mechanical analysis if the architecture information is 

transferred to a FEM model. Similarly, it can be used for the verification of the tribological properties 

in flow simulations to determine the frictional power. The properties of a variant determined step by 

step in the domain models can be traced back to the architectural model and describe its specific 

characteristics. For this purpose, they are inherited from the reference architecture to a variant 

architecture to be available for creating the geometry in a CAD system. The starting point for 

configuration is the requirements specification, which is linked to the architecture within the system 

model. In this paper, an overall framework of the Reverse-Architecting-Approach is presented. The 

phases and activities of the approach are described as a procedure model. It serves as a basis for 

variant development and will be validated using the mechanical expander tool. 

2. Literature overview 

2.1. System architecture and architecture models 

The origin of system architecture is due to the software industry, where it describes the structure of IT 

systems, consisting of software and hardware elements, properties of these elements and their relationship 

to one another (ISO/IEC, 2007). Systems Engineering, which represents system thinking and the holistic 

view of complex systems, reissues the term system architecture. System architecture thus describes “the 

fundamental organization of a system, embodied in its components, their relationship to each other and the 

environment, and the principles governing its design and evolution” (ISO/IEC, 2007). From the point of 

view of product development, this definition is not new - it is the well-known definition of the product 

architecture from Ulrich: “In the informal sense, the architecture of the product is the schema according to 

which the functions of the product are mapped to physical components” (Ulrich, 1995). He defines the 

product architecture more precisely as the “arrangement of functional elements”, the “assignment of 

functional elements to physical elements” and the “specification of interfaces between interacting physical 

components” (Ulrich, 1995). The multitude of existing definitions has the same core statement in common: 

The system architecture describes the functional structure and the physical structure of a system as well as 

the interactions of its elements in an abstract way (Figure 1). It defines how and why a system came to its 

form. In the context of MBSE, the definition of system architecture models was taken up again. 

Architecture models are formally described models that consist of architectural elements such as functions, 

function flows, interfaces, and logical and physical elements. They are arranged in architectural abstraction 

levels that allow different views of a system and describe properties and logical relationships to other 

elements that are consistent (Weilkiens et al., 2016). At this point it should be mentioned, that there is not a 

single type of architectural description. Depending on the centre of interest, service-oriented architectures, 

solution-oriented architectures, architectures for IT systems or for product lines are of importance. Within 
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the scope of research activities, architectures for product lines or product families and solution-oriented 

architectures are of particular interest. 

 

Figure 1. System architecture 

Architectures for product families are strongly oriented to the physical structure. They describe the 

product variety in an abstracted way from the concrete design, which is why they can be applied for a 

certain degree of product variation and can serve dynamic stakeholder requirements. They are 

typically more concrete than solution-oriented architectures, as many elements and properties are 

usually inherited. They offer an efficient way to create variants. By definition, solution-oriented 

architectures correspond to the classic system architecture. Functions, principles as well as 

components are used for the description of the solution of a system for a special use. By these different 

abstraction levels they address both the conceptional, as well as the design phase of the development 

and possess a quite generic character. In this contribution an integrated approach is to be presented, 

which extends the procedure for building up solution-oriented architectures by aspects of the product 

families. This type of architecture is of particular interest when concepts of product families become 

increasingly obsolete and new concepts have to be considered. (Philips, 2018) 

2.2. Architecture definition process 

System architecture activities aim at a global system solution based on principles, concepts and 

properties that are logically and consistently linked. In principle, a distinction is made between 

architecture and design activities, which are based on different ways of mind. Architecture activities 

are abstract and strongly conceptually oriented. They describe the superordinate concepts, emergent 

properties and characterize elements of the system, e.g. functions, flows, interfaces and data of a 

system to fulfill the specified requirements. The resulting architectural models are shape-independent 

and very flexible. They describe the “what”. Design activities are strongly technology oriented. They 

describe physical, structural properties of the system. Design activities take up the artifacts determined 

in the architecture activities to find solutions in order to examine compatibility and feasibility for the 

implementation. They analyze the architecture to determine possible technologies that fulfill the 

requirements and describe the “how”. The architecture and design process is iterative and the physical 

architecture becomes more concrete as the number of design decisions increases. Most approaches and 

activities refer to the synthesis of systems and products. Since the building of system architectures 

does not begin on a white sheet of paper but with an existing physical product or product family, a 

suitable procedure for this reverse engineering process must be described to get from the actual shape 

of a product to its globally valid system architecture. (Walden et al., 2015) 
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2.3. Architecting and analyse approaches 

The existing approaches are largely concerned with the new development of systems and describe the 

classical activities for the synthesis of architectures. The basic idea of the approaches can be traced back to 

standardized process models such as VDI2206 (development of mechatronic systems) or VDI2221 

(development of technical systems and products). Requirements are the basis for all architectural processes. 

A constant alignment with the requirements has to take place in the subsequent architecting phases. The 

three common phases of an architecture are the functional design, logical design and physical design. 

Activities of functional design aim at the determination of a functional structure. An abstract description of 

the product is to be determined, which subdivides the product starting from its main function into 

subfunctions (Daniilidis, 2017; VDI, 2004). In principle, a distinction is made between hierarchical and 

flow-oriented consideration. According to Fixson, a rule-based method should answer the question: “what 

are the functions of a product and how can they can be determined?” (Fixson, 2005). He argues that 

functions of the same degree of abstraction must always be on the same hierarchy level and that the highest 

hierarchy level describes the entirety of the functions of all components. In addition, Göpfert and Tretow 

consider that three hierarchy levels are sufficient for the functional description (Feldhusen and Grote, 

2013). SysML4Consens was developed as a specification language for the hierarchical modelling of 

function structures, which is used in tools for building architectures (Gausemeier, 2011). The flow-based 

consideration of functional structures is widely acknowledged as it strongly supports to find solutions by 

integrating system flows. Stone describes three heuristics used to identify basic system flows, simultaneous 

subfunctions, and the conversion and forwarding of flows (Stone, 2000). Albers et al. describe an 

Approach for the identification of functions and system flows by the consideration of effective surfaces and 

effective structure elements. In addition, they describe a possibility to cluster functions into functional units 

that are relevant for a particular discipline. For this purpose, functional units are extended with system 

flows. Like Weilkiens, they use SysML as description language for functional modelling (Albers et al., 

2016; Weilkiens et al., 2016). In the logical design, the logical elements are mapped as binding part 

between functional and physical design. It is used to search for solutions and to develop concepts by 

determining effect principles or solution elements that fulfill the function (Daniilidis, 2017; VDI, 2004). 

Kleiner argues that technology decisions are also solution elements. In some approaches, the logical level is 

merely described as the linking relationship between function and component (Kleiner, 2012; Fixson, 

2005). Gausemeier and Albers consider the logical level by integrating the effect structure model. It 

describes the elements required to fulfill functions and the system flows and interfaces and the merging of 

functional structures and effect elements (Gausemeier, 2011; Albers et al., 2016). The physical design 

describes the derivation of the product structure with its modules and components from the effect structure. 

Albers describes a possibility of deriving the physical structure using a matrix in which he correlates 

components and effect structure elements (Albers et al., 2016). Weilkiens furthermore describes an 

approach for building architectures for product lines using variation points for variants that extend the 

architecture (Weilkiens et al., 2016). The approaches do not describe an analysis procedure for existing 

products, but they contain valuable steps for use in a Reverse-Architecting Approach. Aspects of product 

and product family analysis must also be considered as the basis for the Reverse-Architecting-Approach. 

With regard to the analysis of product families, the reference product structure approach of Feldhusen and 

Grote is widely used. It aims at the determination of the structure of a theoretical product, which contains 

all possible characteristics. It describes the largest possible product structure that can be used for all product 

variants in product groups. The nodes of the structure are placeholders for different component variants or 

solutions. A multitude of variants can be described with a single structure using this approach. An method 

to systematically analyze products is given by van Wie. He refers to the steps taken by Ulrich and Eppinger 

to build system architectures: The simultaneous generation of schemata for functions and components, the 

clustering of elements, the creation of a geometric layout as well as the consideration of internal and 

external connections (Ulrich and Eppinger, 2000). Van Wie takes up the steps in his approach and 

describes 6 diagrams for the analysis of products. The Spatial Constraint Diagram is a product sketch with 

subdivisions of geometric units that define the systems boundary. In addition, material, energy and signal 

flows are assigned to the units. In the Functional Layout Diagram, product functions and their spatial 

boundaries are identified by looking at the system flows and the structure. Therefore function-related black 

boxes are created that are linked to system flows. In the Physical Solution Diagram, the actual physical 
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components of the component are identified, which are combined into modules in the following diagrams. 

(Feldhusen and Grote, 2013; van Wie, 2002) 

3. Reverse Architecting Approach 

3.1. Reverse Architecting Framework 

The Reverse-Architecting-Framework describes a systematic procedure for building architectural 

models for products and product families. It is based on the well-known phases of product 

development and defines five superordinate states (Figure 2). 

 
Figure 2. Reverse-Architecting-Framework 

The starting point of the procedure is an existing physical product or an existing product family with 

variants and generations of a product. At this point, it should be noted that the level of abstraction has to 

be defined with caution. It has to be decided, how far a system can be abstracted, so that the abstract 

component is still sufficient close to all variants. Effort and benefit of system architectures are not in a 

good relation if a car and an aircraft are to be described abstractly by a system architecture of a 

transportation. At first a reference product structure is determined from the existing variants and 

generations of the product, which is able to describe the product family in a more abstract form. It 

contains all possible characteristics of the product in a single structure, which can have different options 

at defined variation points and is open to modifications. The reference product structure is the basis for 

creating the (reference) system architecture model. It contains the stages three, four and five, i.e. the 

classical levels of the system architecture (physical, logical and functional). The reference product is 

examined more closely in the physical structure. In addition to the composition of components and their 

variants at defined variation points, the relevant properties for describing the design characteristics such 

as dimensions are taken into account. They will be applied as value properties to specify the components 

in the physical reference structure. These architecture information, consisting of structure information 

and value properties, can be used in two cases. They can be linked to requirements of a system model 

using decision routines and analytic relationships to find the right configuration and can be transferred to 

domain-specific models like CAD or FEM models to define and analyze the shape of a variant. The 

architecture of a new variant is generated by inheriting the structure elements and their value properties 

out of the reference architecture. If the configuration of components is known and the geometric 

expression must be determined, this form of abstraction is sufficient for developing new variants. The 

more abstract levels of the reference product are described as the logical and functional structure. The 

logical structure describes the principles and technologies used to fulfill product functions within the 

product family. It describes the technical solution of the functionalities and the function-design context 

as a connecting element. The logical level does not have to be described necessarily - it is the result of 

the transformation relations between functional and physical level. Depending on the necessity, this 

transformation relationship can be examined in more detail. However, for a subsequent use of 

architecture models for developing product families, it is to be considered as it is an important element to 

enable a maximum variation of solutions, that should always be strived for. 
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The most abstract form, the functional structure, describes the product functions to be realized as well 

as their interaction through exchange and transformation of material, energy and signal. In context of 

product innovation and variation, it is an important basic framework into which new elements are to 

be integrated. Existing and missing functionalities and system flows, that are essential for 

implementing new solution, can be determined using it. As well as in the physical architecture, the 

specification of properties on the functional level promises great benefit for variant development. So 

that requirements and boundary conditions are already specified in that early concept phase, as well as 

system flows, the selection of the technical solutions can be supported by using rules or templates for 

the configuration. Hereinafter, the systematic procedure model for the implementation of the Reverse-

Architecting-Approach is presented. According to Figure 3, the procedure is divided into 6 phases 

with various activities that have a distinct work result. 

 
Figure 3. Tasks and results of Reverse-Architecting-Approach 

The defined results are based on the phases of the Reverse-Architecting-Framework and thus represent 

the typical RFLP levels in modification. As mentioned in the previous paragraph, the logical structure is 

only considered by regarding the transformation relationship between the functional and physical levels. 

For an explicit attention, the method allows an extension of the physical to functional stage. The 

activities within the phases, which are listed in Figure 4, are described with regard to build up system 

architecture models. The structural stage is the initial phase of the method and deals with the physical 

structure of the product family to be analyzed. Within its framework, the product structures of different 

variants and generations are determined and compared. The comparison of the structures reveals points 

of variation, at which different characteristics of the product are generated by changing the principle or 

the shape. In this comparison, standard components as well as options of different types of components 

are identified. The mapping of the basic structure of standard components with different options at 

variation points leads to a reference product structure which is able to completely describe the variation 

of the product family. For the subsequent analysis of the shape-describing parameters, standard 

components only have to be considered once, which reduces the effort of the analysis. Options, on the 

other hand, must be examined with regard to different shapes and parameter characteristics in many 

product variants. The design parameters determined such as dimensions specify their components within 

the reference product architecture using value properties. The reference product architecture and their 

properties represent the work result of the first stage. It describes the physical structure and the important 

geometric information of the system. In the subsequent Black Box Stage the system environment, the 

input and output of the system as well as the basic interfaces with the system environment are analyzed 

and described. Black Box means, that no internal system elements and flows are considered. The first 

step is to identify the system boundary and the operating states of the system. 
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Figure 4. Reverse-Architecting Stages and activities 

They describe whether fundamental changes of the overall system occur which influence the system 

environment and possible inputs and outputs. The consideration of the operating states provides 

system flows of materialistic, energetic or signalling nature that affect the system from his 

environment and that affect the environment from the system. It aims to identify interfaces of the 

system with its environment, which are located on the system boundary. They exchange system flows 

and properties that are inherited to their binding element of the system architecture and can be used for 

detecting technical solutions based on configuration rules (Figure 5, left). Since it is very difficult to 

represent architectures in their entirety, Figure 5 presents a layout for an architecture model, consisting 

of essential architectural elements and properties. 

Interfaces in connection with system flows are already to be assigned for functions such as energy 

supply, force absorption or signal reception. At this point it should be noted that the actual 

definition of a black box is no longer correct, because the interfaces belong to the system. However, 

they should be considered separately. The result of the Black Box Stage is the environment- and 

interface-architecture. The use case stage is applied to examine the internal structure of the black 

box. It is dedicated to detect the purpose of the system and the associated main and auxiliary 

functions as well as the internal system flows. For this purpose, the transformations of the system 

flows taking place in the operating state of the system are considered across the system boundaries 

as well as inside the system and the main functions are derived from them. If a substance in a certain 

state is led into the system via the interface and led out of the system in another state via an 

interface, the function for that transformation is to be defined (Figure 5, middle). Auxiliary 

functions, whose necessity results from the operation, are to be supplemented to the architecture. 

The functions of the system are to be coupled with the system flows to be transferred from the 

interfaces. Additional internal system flows, which do not derive from the environment of the 

system, are to be considered and their connections to the system have to be defined. The result of 

the Use Case Stage is the main function architecture. 

 
Figure 5. Layout Black Box Stage, Use Case Stage and Concretization Stage 

In the following Functional Room Stage, the physical structure is examined with regard to how functions 

are realized. A combination of analysis of the form and the function is used to identify basic functional 
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spaces, i.e. areas of the product within which certain functions are fulfilled. At that point the user can feel 

free to define these spaces roughly or finely. Since the concretisation of these function spaces is to be 

done in the following phase, the first level function space should be chosen roughly. Function spaces 

are imaginary construction spaces in which main functions tend to be realised in the first level. This is 

why they have to be linked with the main functions or the corresponding functions. These main 

functions consist of a set of subfunctions. If interface-functions, e.g. force absorption, are realized 

within a functional space, they are inherited from the Black Box to the functional space. The result of 

this stage is a kind of modular functional architecture. At this point the properties of functional rooms 

regarding to system flows as well as to functions themselves have to be specified. As an example, this 

could be the kind of flow, like electrical energy, as well as value properties of the flow like the amount 

of voltage. They will be inherited to the physical component that fulfils the function and can be used 

for electrical or physical models in the following. The functional spaces are concretized in the 

Concretization Stage. A closer look at the first level functional spaces reveals a series of sub-functions 

that are necessary to fulfil the main function. They are to be defined within the functional space 

(Figure 5, right). The existing system flows from the Use Case Stage are to be linked with the 

functional spaces, or more precisely with the subfunctions contained therein. In addition, interfaces 

between the function spaces themselves must be defined. Subfunctions of a function space are able to 

define second level function spaces, if this level of detailing is necessary. They can consist of several 

subfunctions, which are fulfilled by a smaller function space. This stage results in detailed system flow 

architecture. The last level of detail to be reached for the function spaces is a single component of the 

physical structure. However, in many cases the assignment to modules is sufficient. They are reached 

in the final Physical to Functional Stage, where they are linked to the physical structure. As a result, 

they deliver a complete flow-describing system architecture that has a continuous link from functional 

to physical. 

3.2. Validation 

Within the project the approach is used for modelling the reference system architecture of a 

mechanical expander tools to generate new variants on the basis of specified requirements. Therefore, 

the architecture of all variants has been analyzed in order to identify and model a reference system 

architecture including all variations. To define and analyze the shape of variants in physical, fem and 

cad models, the relevant properties have been specified for their components. These properties have 

been coupled with requirements by parameter diagrams for analytic relationships and decision routines 

(Figure 6). The dependency on requirements and shape of the product variant described by 

relationships is used to automatically generate requirement-controlled variants, by triggering 

calculations based on properties. Current work in the project examines the validation of the procedure 

for the construction of the complete system architecture. 

 
Figure 6. Physical (reference) architecture as a basis for creating product variation 
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4. Summary and conclusion 

A systematic Reverse-Architecting-Approach for building up system architecture models that includes 

selected aspects of product analysis and architecture modelling has been fully described and 

successfully validated. The further activities are dealing with detailing the approach by investigation 

of different products from most diverse industries. The activities aim at establishing a standard for the 

development of system architectures for existing products. In the future, architectures created on the 

basis of this procedure should represent a useful basis for creating product innovation through 

integration of new functions into existing structures. 
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