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DIMENSION THEORY VIA BISECTOR CHAINS 

BY 

LUDVIK JANOS 

ABSTRACT. For two subsets Z and Y of a metric space (X, d) 
the set Z is said to be a bisector in Y iff Z <= Y and there exist two 
distinct points Vi, y2eY such that Z = {z:d(z,yl) = d(z,y2) and 
z G Y). Considering chains of consecutive bisectors X => X! => • • • => 
Xfc we denote by b{X, d) the maximum of their length. The topolog
ical invariant b{X) is defined as the minimum of b(X, d) taken over 
the set of all metrizations of X. It is proved that if X is compact then 
dim(X) < b(X) < 2 dim(X) +1, b(X) = 0 iff dim(X) = 0 and b(X) = n 
implies dim(X) = n for n = 1 and ». The sharp result 6(En) = n for 
n = 1,2,. . . is obtained for Euclidean space En. 

1. Introduction. The idea of characterizing dimension of a metrizable to
pological space X by exhibiting a metric on X with certain particular properties 
goes back to J. de Groot and J. Nagata [4]. The known fact that a space X is 
zero-dimensional if and only if one can introduce on X a non-archimedian 
metric has been generalized by J. de Groot [1] to an arbitrary dimension. In 
our paper [2] we have shown that for separable metrizable spaces still another, 
and completely different metric characterization of zero-dimensionality is avail
able. Calling a metric space (X, d) rigid iff no two distinct pairs of points in X 
have the same distance we have shown that a separable metrizable space X is 
zero-dimensional if and only if there exists a rigid metric on X. It was again J. 
de Groot who conjectured that the idea of rigidity is capable of generalization 
to characterize arbitrary dimension, but he never achieved to prove it as he 
died shortly after. The purpose of this paper is to show that the elementary and 
heavily metric dependent notion of bisector provides one such possible 
generalization. 

2. Bisectors in metric spaces. 

DEFINITION 2.1. For an ordered pair (xi, x2) of distinct points in a metric 
space (X, d) we define the set H(xl9 x2), "the half space determined by 
(xi, x2)'\ as {x:d(x, x1)<d(x, x2)} and the bisector B(xu x2) as {x:d(x, xx) = 
d(x, x2)}. 

The following facts about H(xu x2) and B(xu x2) follow readily from the 
definition: 

(1) H(xi, x2) is open, xteH(xu x2) but x2éH(xi, x2)UB(xi, x2). 
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(2) B(xu x2) is closed, B(xu x2) = B(x2, xx) and the sets H(xu JC2), B(XU X2) 
and H(x2, Xi) form a disjoint partition of X. 

(3) The boundary Bd[H(xu x2)] of H(xu x2) is contained in B(xu x2), the 
complement Compl H(xu x2) of H(xu x2) equals H(x2, *i) U B(xu x2) and the 
closure Cl[H(xux2)] of H(jti,x2) is contained in H(xu x2)UB(xb x2). 

LEMMA 2.1. In a compact metric space (X, d) ffie family {H(xi, x2): JCi, JC2G X 
and Xi 5* JC2} O/ all half-spaces in (X, d) forms a sub-basis for the topology of X. 

Proof. It is enough to show that given an open ball B(x0, r) = {x : d(x, x0)< r} 
for x0eX and r>0 we can produce a finite family of half-spaces {H(x0, Xi):i = 
1,2 , . . . , n} whose intersection flT î H(x0, jtf) is contained in B(x0, r). By the 
compactness of X this follows from the obvious fact that {x0} = 
n{Cl[H(x0,x)]:xeX, x*x0}. 

REMARK 2.1. In the sequel we shall deal with boundaries of elements of the 
basis considered above. We see easily that the boundary of an intersection 
nr=i H(xh yO is a closed set contained in UT=i B(xh y*). 

DEFINITION 2.2. For two subsets Y and Z of a metric space (X, d) we write 
Y>Z and say that Z is a bisector in Y iff Z c Y and there are distinct 
elements yl9 y2eY such that Z = B(y{, y2)H Y. For a singleton {x} with xeX 
and the empty subset 6 of X we postulate the relation {x} > 0 to be true. 

We shall consider chains of consecutive bisectors in (X, d); for X=>Xi=> 
X2^---^XnweshallwriteX1l>X2I>->XniffX i>X i+1for/ = l , 2 , . . . , n - l . 

DEFINITION 2.3. For a nonempty metric space (X, d) we define the number 
b(X, d), "the maximal length of the bisector chains", in the following way: If 
there is an infinite chain X = X0 >Xi >Xt > • • • or if the set of numbers k in 
the chains X = X 0>X 1>- • ->Xk D>0 terminating by the empty set 6 is 
unbounded we set b(X, d) = <». In the opposite case we set b(X, d) = max{k: 
there is a chain X = X0 >Xt > • • • Xk > 0}. 

REMARK 2.2. For the Euclidean space (En, e) equipped with the usual metric 
e, the number b(En, e) equals n for n - 1 ,2 , . . . , as can easily be shown by 
elementary geometrical arguments. It is also seen why the convention {x} > 6 
was adopted. 

The following two properties of fe(X, d) are easy to establish: 
(1) If Yc X is a nonempty subset of (X, d) then b(Y, d)< b(X, d) where by 

( Y, d) is of course understood the metric space induced on Y by the metric d. 
(2) If Y c X i s a nonempty bisector in (X, d) then b(Y, d)<b(X, d ) -1 , i.e. 

b( Y, d)< b(X, d) if b(X, <*) is finite. 

DEFINITION 2.4. If X is a metrizable topological space we denote by 
M(X) the set of all metrics on X compatible with the topology of X. We define 
the topological invariant b(X) as the minimum of b(X, d) for d 6 M(X). 

https://doi.org/10.4153/CMB-1977-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-048-3


1977] BISECTOR CHAINS 315 

EXAMPLE. From this definition and Remark 2.2. follows that b(En)<n 
for n = 1,2, Later we shall prove that in fact b(E)n = n for n = 1,2, 

Denoting by dim(X) the dimension of the space X we are now in a position 
to state our main theorem. 

THEOREM 2.1. If X is a nonempty compact metrizable space then dim(X)^ 
b(X) ^ 2 dim(X) +1 and for n = 0,1, and <» we have the following implications: 

MX) = 0«*dim(X) = 0 

fc(X)=l«->dim(X)=l 

6(X) = oo«*dim(X) = oo. 

3. Proof of the theorem. 
DEFINITION 3.1. A metric space (X, d) is said to be metrically rigid iff for 

every a > 0 the equation d(xu x2) = a has at most one solution {JCI, x2}cX. 

DEFINITION 3.2. We say that a metric space (X, d) is bisector-empty iff 
b(X, d) = 0, i.e., if the only bisector in X is the empty set 0. 

REMARK 3.1. It is obvious that rigidity implies the property of being bisector-
empty. The simple example of four points {(0,0), (2,0), (2,1), (0,1)} in (E2, e) 
shows that the converse is false. 

We shall need some well known facts from dimension theory. 

THEOREM 3.1. (J. Nagata). A metrizable space X has the inductive dimension 
Ind(X)^ n if and only if there exists a a-locally finite open basis L for X such 
that the dimension Ind[Bd(t/)] of the boundary Bd(J7) of each element UeLis 
< n - l . 

For the proof see [5] page 18. 

REMARK 3.2. Since on the class of separable metric spaces all the three 
dimension functions ind(X), Ind(X) and dim(X) coincide and since we do not 
consider other spaces in the sequel, we shall denote this function by dim(X). 

COROLLARY 3.1. If a separable metric space X has a basis L such that the 
boundary Bd(V) of each VeL has dimension^n-l then dim(X)^n. 

Proof. Since X is separable, L contains a countable subfamily L* which is 
also a basis for X. Thus L* is a a-locally finite basis and the conclusion follows. 

From this corollary and Lemma 2.1., we obtain the necessary connection 
between the metric concept of bisector and the topological concept of dimen
sion. 

THEOREM 3.2. If in a compact metric space (X, d) every bisector has dimen
sion < n - 1 then dim(X)< n. (n = 0,1,.. .). 
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Proof. Taking as a basis L the family of all finite intersections of half-spaces 
as considered in Lemma 2.1., we observe that the boundary of each element of 
L is a subset of a finite union of bisectors (see Remark 2.1.) and hence has 
dimension < n - l . Corollary 3.1. completes our proof. 

THEOREM 3.3. A nonempty separable metrizable space X is zero-dimensional 
if and only if there is d e M (X) such that (X, d) is metrically rigid. 

Proof. (See [2]). 

COROLLARY 3.2. For a nonempty compact metrizable space X we have: 

b(X) = 0 iff dim(X) = 0 

Proof. If b(X) = 0 then there is d e M(X) with b(X, d) = 0 implying that the 
metric space (X, d) is bisector-empty. Theorem 3.2. implies that dim(X) = 0. 
On the other hand if dim(X) = 0 Theorem 3.3. implies that there exists a rigid 
metric d e M(X) on X and this in turn implies that (X, d) is bisector-empty and 
a fortiori b(X) = 0. 

COROLLARY 3.3. For a compact metrizable space X we have 

6(X)==l-*dim(X)=l . 

Proof. Since b(X) = l there is deM(X) with b(x, d) = l implying that for 
every nonempty bisector Y in (X, d) we have b( Y, d) = 0, and a fortiori b( Y) = 0. 
Theorem 3.2. implies that dim(X)< 1. But if dim(X) were zero then Corollary 
3.3. would imply b(X) = 0 contrary to our hypothesis. Thus we have dim(X) = 1. 

COROLLARY 3.4. For a compact metrizable space X we have 

6 ( X ) < n - * d i m ( X ) < n for n = 0 , l , . . . . 

Proof. The implication has been proven for n = 0 and 1. We proceed by 
induction. Assume it is true for n - 1 . Since b(X)^n there is deM(X) with 
6(X, d)^n, implying that for every nonempty bisector Y in (X, d) we have 
b(Y, d)^n-l, and a fortiori & ( Y ) < n - l , which by the induction hypothesis 
implies d i m ( Y ) ^ n - l . The conclusion that dim(X)^n follows from Theorem 
3.2., thus completing our proof. 

From what we have proved so far follows that b(X) majorizes dim(X) on the 
class of compact metric spaces. To obtain a result in the opposite direction we 
need: 

LEMMA 3.1. For a nonempty separable metrizable space X we have 

dim(X)<n->b(X)<2n + l for n = 0 , l , . . . . 

Proof. This follows readily from the fact that X can be topologically embed
ded in E2n+1 and the fact that fc(E2n+1)<2n + l. 

https://doi.org/10.4153/CMB-1977-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-048-3


1977] BISECTOR CHAINS 317 

COROLLARY 3.5. For a compact metrizable space X we have 

h(X) = oo-*dim(X) = oo. 

Proof. If dim(X) were finite, say k then Lemma 3.1. would imply that 
fr(X)^2k + l contrary to the hypothesis. 

The proof of Theorem 2.1. now follows as the conjunction of results 
obtained by Corollaries 3.1.-3.5. 

Finally for the Euclidean cube In we obtain a sharp result: 

THEOREM 3.4. b(F) = n for n = l , 2 , . . . . 

Proof. Since F c En and since fe(£n)< n we have ft(In)< n. But since F is 
compact and dim(In) = n our Theorem 2.1. implies that ft(In) = n. 

We are now in the position to extend this sharp result to Euclidean spaces 
En. 

COROLLARY 3.6. For the Euclidean space En we have b(En) = n for n = 
1,2 , . . . . 

Proof. We already know that fc(En)<n. From the fact that In<=En and 
Theorem 3.4. we conclude the opposite inequality which completes our proof. 

As the reader might have noticed, the hypothesis of compactness in Theorem 
2.1. is needed only because it is involved in Lemma 2.1. The validity of this 
theorem may therefore be extended to all separable metric spaces X with the 
property that for every d e M(X) the family of half-spaces in (X, d) form a 
subbasis for topology of X. 

We conjecture that in fact b(X) coincides with the dimension of X on the 
class of separable metric spaces. 
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