A CHARACTERISATION OF 3-JORDAN HOMOMORPHISMS ON BANACH ALGEBRAS

A. ZIVARI-KAZEMPOUR

(Received 24 June 2015; accepted 4 July 2015; first published online 4 September 2015)

Abstract

We show that, under special hypotheses, each 3-Jordan homomorphism φ between Banach algebras \mathcal{A} and \mathcal{B} is a 3-homomorphism.

2010 *Mathematics subject classification*: primary 47B48; secondary 46L05, 46H25. *Keywords and phrases*: *n*-homomorphism, *n*-Jordan homomorphism, *C**-algebra.

1. Introduction

Let \mathcal{A} and \mathcal{B} be complex Banach algebras and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an *n*-homomorphism if, for all $a_1, a_2, \ldots, a_n \in \mathcal{A}$,

$$\varphi(a_1a_2\cdots a_n)=\varphi(a_1)\varphi(a_2)\cdots\varphi(a_n).$$

The concept of an *n*-homomorphism was studied for complex algebras by Hejazian *et al.* in [6]. A 2-homomorphism is just a homomorphism in the usual sense. One may refer to [2] for certain properties of 3-homomorphisms.

Eshaghi Gordji [4] introduced the concept of an *n*-Jordan homomorphism. A linear map φ between Banach algebras \mathcal{A} and \mathcal{B} is called an *n*-Jordan homomorphism if

$$\varphi(a^n) = \varphi(a)^n, \quad a \in \mathcal{A}.$$

A 2-Jordan homomorphism is called simply a Jordan homomorphism.

It is obvious that each *n*-homomorphism is an *n*-Jordan homomorphism, but in general the converse is false. The converse statement may be true under certain conditions. For example, it is shown in [4] that every *n*-Jordan homomorphism between two commutative Banach algebras is an *n*-homomorphism for $n \in \{2, 3, 4\}$ and this result is extended to the case n = 5 in [5].

The following theorem is due to Zelazko [8]. See also [10] for another approach to the same result.

^{© 2015} Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

THEOREM 1.1. Suppose that \mathcal{A} is a Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism.

In [4], Eshaghi Gordji claimed a proof of the following assertion.

Assertion 1.2. Suppose that \mathcal{A} is a Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each 3-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a 3-homomorphism.

Assertion 1.2 is [4, Theorem 2.5] and the proof given in [4] proceeds in two steps. In the first step, it is claimed that if we replace y by y - z in [4, (2.9)], we obtain [4, (2.10)]. This is true if the Banach algebra \mathcal{A} is commutative, but it does not seem to follow in the general case when \mathcal{A} need not be commutative. Also, it is claimed that if we replace x by x + z in [4, (2.14)], then

$$h(yx^{2} + yz^{2} + 2yxz - x^{2}y - z^{2}y - 2xzy) = 0,$$

but this too does not seem to follow without the commutativity of \mathcal{A} . Since (2.10) and this last equation may not be valid, it seems that the conditions which are assumed in Assertion 1.2 do not imply that φ is a 3-homomorphism.

A linear map φ between Banach algebras \mathcal{A} and \mathcal{B} is called a co-homomorphism if

$$\varphi(ab) = -\varphi(a)\varphi(b), \quad a, b \in \mathcal{A}$$

and it is called a co-Jordan homomorphism if $\varphi(a^2) = -\varphi(a)^2$ for all $a \in \mathcal{A}$.

In this paper, we prove Assertion 1.2 with the additional hypothesis that the Banach algebra \mathcal{A} is unital. By [7, Lemma 6.3.2], each Jordan homomorphism is 3-Jordan, but the converse is not true. We first prove that if \mathcal{A} is unital, then each 3-Jordan homomorphism from \mathcal{A} into \mathbb{C} is either a Jordan homomorphism or a co-Jordan homomorphism. Then we use this fact to prove our main result (Theorem 2.4 below).

2. Main results

We commence with a characterisation of a co-Jordan homomorphism.

THEOREM 2.1. Suppose that \mathcal{A} is a Banach algebra, which need not be commutative. Then each co-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ is a co-homomorphism.

PROOF. Suppose that φ is a co-Jordan homomorphism, so that $\varphi(a^2) = -\varphi(a)^2$ for all $a \in \mathcal{A}$. Replacing *a* by a + b gives

$$\varphi(ab + ba) = -2\varphi(a)\varphi(b), \quad a, b \in \mathcal{A}.$$
(2.1)

Then, by (2.1),

$$2\varphi(aba) = \varphi[(ab + ba)a + a(ab + ba)] - \varphi[a^{2}b + ba^{2}]$$

$$= -2[\varphi(ab + ba)\varphi(a) - \varphi(a^{2})\varphi(b)]$$

$$= -2[-2\varphi(a)^{2}\varphi(b) + \varphi(a)^{2}\varphi(b)]$$

$$= 2\varphi(a)^{2}\varphi(b).$$

Therefore,

$$\varphi(aba) = \varphi(a)^2 \varphi(b), \quad a, b \in \mathcal{A}.$$
 (2.2)

Let a and b be arbitrary elements of \mathcal{A} and put

$$2t = \varphi(ab - ba). \tag{2.3}$$

303

It follows from (2.1) and (2.3) that

$$\varphi(ab) - t = -\varphi(a)\varphi(b), \quad \varphi(ba) + t = -\varphi(a)\varphi(b). \tag{2.4}$$

By (2.2)–(2.4),

$$\begin{aligned} 4t^2 &= \varphi(ab - ba)^2 = -\varphi[(ab - ba)^2] \\ &= -\varphi[(ab)^2 + (ba)^2 - ab^2a - ba^2b] \\ &= [\varphi(ab)^2 + \varphi(ba)^2 + \varphi(a)^2\varphi(b^2) + \varphi(b)^2\varphi(a^2)] \\ &= [t - \varphi(a)\varphi(b)]^2 + [-t - \varphi(a)\varphi(b)]^2 - [2\varphi(a)^2\varphi(b)^2] \\ &= 2t^2. \end{aligned}$$

Hence, t = 0, which proves that $\varphi(ab) = \varphi(ba)$. Therefore, by (2.1), $\varphi(ab) = -\varphi(a)\varphi(b)$ and the proof is complete.

LEMMA 2.2. Let \mathcal{A} be a unital Banach algebra with unit e and $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be a nonzero 3-Jordan homomorphism. Then $\varphi(e) \neq 0$.

PROOF. Let φ be a nonzero 3-Jordan homomorphism, so that $\varphi(a^3) = \varphi(a)^3$ for all $a \in \mathcal{A}$. Replacing a by a + b gives

$$\varphi(ab^2 + b^2a + a^2b + ba^2 + aba + bab) = 3\varphi(a)^2\varphi(b) + 3\varphi(a)\varphi(b)^2$$
(2.5)

and replacing b by -b in (2.5) gives

$$\varphi(ab^2 + b^2a - a^2b - ba^2 - aba + bab) = -3\varphi(a)^2\varphi(b) + 3\varphi(a)\varphi(b)^2.$$
(2.6)

By (2.5) and (2.6),

$$\varphi(ab^2 + b^2a + bab) = 3\varphi(a)\varphi(b)^2, \quad a, b \in \mathcal{A}.$$
(2.7)

Now assume that $\varphi(e) = 0$ and take b = e in (2.7). It follows that $\varphi(a) = 0$ for all $a \in \mathcal{A}$, which is a contradiction.

LEMMA 2.3. Let \mathcal{A} be a unital Banach algebra with unit e and $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be a nonzero 3-Jordan homomorphism. Then φ is either a Jordan homomorphism or a co-Jordan homomorphism.

PROOF. Let φ be a nonzero 3-Jordan homomorphism. Then, for all $a \in \mathcal{A}$,

$$\varphi(a^3) = \varphi(a)^3. \tag{2.8}$$

[3]

Replace *a* by a + e in (2.8) to obtain

$$\varphi(a+a^2) = \varphi(a)^2 \varphi(e) + \varphi(a)\varphi(e)^2.$$
(2.9)

Replacing *a* by *e* in (2.8) gives $\varphi(e) = \varphi(e)^3$. By Lemma 2.2, $\varphi(e) \neq 0$ and so $\varphi(e) = 1$ or $\varphi(e) = -1$. If $\varphi(e) = 1$, (2.9) gives

$$\varphi(a^2) = \varphi(a)^2$$

for all $a \in \mathcal{A}$; hence, φ is Jordan. If $\varphi(e) = -1$, (2.9) gives

$$\varphi(a^2) = -\varphi(a)^2$$

and so φ is co-Jordan.

Now we state and prove the main theorem.

THEOREM 2.4. Suppose that \mathcal{A} is a unital Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each 3-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a 3-homomorphism.

PROOF. We first assume that $\mathcal{B} = \mathbb{C}$ and let $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be a 3-Jordan homomorphism. By Lemma 2.3, φ is either a Jordan homomorphism or a co-Jordan homomorphism. If φ is Jordan, then by Zelazko's theorem it is a homomorphism and so it is a 3-homomorphism. If φ is co-Jordan, then by Theorem 2.1 it is a co-homomorphism, that is, for all $a, b \in \mathcal{A}$,

$$\varphi(ab) = -\varphi(a)\varphi(b).$$

Therefore,

$$\varphi(abc) = -\varphi(a)\varphi(bc) = -\varphi(a)[-\varphi(b)\varphi(c)] = \varphi(a)\varphi(b)\varphi(c)$$

for all $a, b, c \in \mathcal{A}$, and φ is 3-homomorphism.

Now suppose that \mathcal{B} is semisimple and commutative. Let $\mathfrak{M}(\mathcal{B})$ be the maximal ideal space of \mathcal{B} and associate with each $f \in \mathfrak{M}(\mathcal{B})$ a function $\varphi_f : \mathcal{A} \longrightarrow \mathbb{C}$ defined by

$$\varphi_f(a) := f(\varphi(a)), \quad a \in \mathcal{A}.$$

Pick $f \in \mathfrak{M}(\mathcal{B})$. It is easy to see that φ_f is a 3-Jordan homomorphism, so by the above argument it is a 3-homomorphism. Thus, by the definition of φ_f ,

$$f(\varphi(abc)) = f(\varphi(a))f(\varphi(b))f(\varphi(c)) = f(\varphi(a)\varphi(b)\varphi(c)).$$

Since $f \in \mathfrak{M}(\mathcal{B})$ was arbitrary and \mathcal{B} is assumed to be semisimple,

$$\varphi(abc) = \varphi(a)\varphi(b)\varphi(c)$$

for all $a, b, c \in \mathcal{A}$. This complete the proof.

[4]

It is well known that, on the second dual space \mathcal{A}'' of a Banach algebra \mathcal{A} , there are two multiplications, called the first and second Arens products, which make \mathcal{A}'' into a Banach algebra [1]. If these products coincide on \mathcal{A}'' , then \mathcal{A} is said to be Arens regular. For more information on the Arens products, one may refer to [3].

It is shown in [3] that every C^* -algebra \mathcal{A} is Arens regular and semisimple. Also, the second dual of a C^* -algebra is also a C^* -algebra.

COROLLARY 2.5. Suppose that \mathcal{A} and \mathcal{B} are C^* -algebras, where \mathcal{A} need not be commutative, and suppose that \mathcal{B} is commutative. Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a 3-Jordan homomorphism. Then $\varphi'' : \mathcal{A}'' \longrightarrow \mathcal{B}''$ is a 3-homomorphism.

PROOF. Suppose that \mathcal{B} is a commutative C^* -algebra. Then, by [9, Lemma 1.2], \mathcal{B}'' is commutative and it is semisimple, because every C^* -algebra is semisimple. On the other hand, the second dual of a C^* -algebra is unital [3], so \mathcal{A}'' is unital. Therefore, the result follows from [10, Theorem 8] and Theorem 2.4.

The next result follows from the preceding corollary and [2, Theorem 2.1].

COROLLARY 2.6. Suppose that \mathcal{A} and \mathcal{B} are C^* -algebras, where \mathcal{A} need not be commutative, and suppose that \mathcal{B} is commutative. Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be an involution-preserving 3-Jordan homomorphism. Then $\|\varphi''\| \leq 1$.

For a nonsemisimple Banach algebra \mathcal{B} , the next result characterises the 3-Jordan homomorphisms.

THEOREM 2.7. Suppose that φ is a 3-Jordan homomorphism from a unital Banach algebra \mathcal{A} into a commutative Banach algebra \mathcal{B} such that, for all $a, b, c \in \mathcal{A}$,

$$\varphi(abc - acb) = 0. \tag{2.10}$$

Then φ is a 3-homomorphism.

PROOF. Let *e* be the unit element of \mathcal{A} . Taking a = e in (2.10) gives $\varphi(bc - cb) = 0$ for all $b, c \in \mathcal{A}$. Therefore,

$$\varphi((ab)c) = \varphi(c(ab)) = \varphi(c(ba))$$

and

$$\varphi(a(bc)) = \varphi((bc)a) = \varphi(b(ca)) = \varphi(b(ac)).$$

That is,

$$\varphi(abc) = \varphi(xyz), \tag{2.11}$$

whenever (x, y, z) is a permutation of (a, b, c). By the assumption, φ is a 3-Jordan homomorphism, that is, $\varphi(a^3) = \varphi(a)^3$ for all $a \in \mathcal{A}$. Replacing *a* by a + b gives

$$\varphi[ab^{2} + b^{2}a + a^{2}b + ba^{2} + aba + bab] = 3\varphi(a)\varphi(b)^{2} + 3\varphi(a)^{2}\varphi(b)$$
(2.12)

and replacing b by -b in (2.12) gives

$$\varphi[ab^{2} + b^{2}a - a^{2}b - ba^{2} - aba + bab] = 3\varphi(a)\varphi(b)^{2} - 3\varphi(a)^{2}\varphi(b).$$
(2.13)

By (2.12) and (2.13),

$$\varphi[ab^2 + b^2a + bab] = 3\varphi(a)\varphi(b)^2. \tag{2.14}$$

Replacing *b* by b - c in (2.14),

$$\varphi[abc + acb + bac + bca + cab + cba] = 6\varphi(a)\varphi(b)\varphi(c). \tag{2.15}$$

By (2.11) and (2.15),

$$\varphi(abc) = \varphi(a)\varphi(b)\varphi(c),$$

as required.

In view of Assertion 1.2 and Theorem 2.4, it is natural to ask the next question.

QUESTION 2.8. Does Assertion 1.2 hold without any additional hypothesis?

Acknowledgements

The author gratefully acknowledges the helpful comments of the anonymous referees.

References

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebra (Springer, New York, 1973).
- [2] J. Bračič and M. S. Moslehian, 'On automatic continuity of 3-homomorphisms on Banach algebras', Bull. Malays. Math. Sci. Soc. (2) 30(2) (2007), 195–200.
- [3] H. G. Dales, *Banach Algebras and Automatic Continuity*, London Mathematical Society Monographs, 24 (Clarendon Press, Oxford, 2000).
- [4] M. Eshaghi Gordji, 'n-Jordan homomorphisms', Bull. Aust. Math. Soc. 80(1) (2009), 159–164.
- [5] M. Eshaghi Gordji, T. Karimi and S. Kaboli Gharetapeh, 'Approximately n-Jordan homomorphisms on Banach algebras', J. Inequal. Appl. 2009 (2009), Article ID 870843, 8 pages.
- [6] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, 'n-homomorphisms', Bull. Iranian Math. Soc. 31(1) (2005), 13–23.
- [7] T. Palmer, *Banach Algebras and the General Theory of *-algebras*, Vol. I (Cambridge University Press, Cambridge, 1994).
- [8] W. Zelazko, 'A characterization of multiplicative linear functionals in complex Banach algebras', *Studia Math.* 30 (1968), 83–85.
- [9] A. Zivari-Kazempour, 'Semisimplicity of the second dual of Banach algebras', J. Pure Appl. Math. Adv. Appl. 10(2) (2013), 183–189.
- [10] A. Zivari-Kazempour, 'A characterization of Jordan homomorphism on Banach algebras', *Chinese J. Math.* 2014 (2014), Article ID 698621, 3 pages.

A. ZIVARI-KAZEMPOUR, Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran e-mail: zivari@abru.ac.ir, zivari6526@gmail.com

306