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1. We give a complete description of the Brown-McCoy radical of a semigroup
ring R[S], where R is an arbitrary associative ring and S is a commutative cancellative
semigroup; in particular we obtain the answer to a question of E. PuczyTowski stated in
[11].

Throughout this note all rings R are associative with unity 1; all semigroups S are
commutative and cancellative with unity. Note that the condition that R and S have a
unity can be dropped (cf. [8]). The quotient group of S is denoted by Q(S). We say that S
is torsion free (resp. has torsion free rank n) if Q(S) is torsion free (resp. has torsion free
rank n). The Brown-McCoy radical (i.e. the upper radical determined by the class of all
simple rings with unity) of a ring R is denoted by %l(R). We refer to [2] for further detail
on radicals and in particular on the Brown-McCoy radical.

First we state some well-known results and a preliminary lemma. Let R and T be
rings with the same unity such that R c T . Then T is said to be a normalizing extension of
R if T = Rx^ +... + RXn for certain elements xu ..., xn of T and i?xf = x;l? for all i such
that 1 ^ i =£ n. If all xt are central in T, then we say that T is a central normalizing extension
of R.

PROPOSITION 1.1. Let R and T be rings such that T is a normalizing extension of R.
Then

Proof, cf. [9] or [11].

PROPOSITION 1.2. (1) Let G be a finite abelian group of order n and let R be a
G-graded ring. If a = £ «g e<U(R), then nag e<U(R) for all g e G.

gsG

(2) // S is a torsion free commutative semigroup and if R is an S-graded ring, then
<U(R) is homogeneous, i.e. if £ rse%(i?), then rse<&(R) for all s.

s

i Proof. G. M. Bergman has proved this for the Jacobson radical [1], but the result
j remains valid for the Brown-McCoy radical (cf. [11]). Since G. M. Bergman's result is
i only available in preprint, we refer to [9] for an account of his results in the Z-graded

case.

Let H and S be semigroups with H <= S. We say that H is a
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grouplike subset of S (cf. [12]) if a,abeH imply beH(a,be S). Note that H contains the
unity of S.

LEMMA 1.3. If S is a commutative cancellative semigroup and if H is a grouplike subset
of S, then

°U(R[S])nR[H]<=°U(R[H}),

for each ring R.

Proof. It suffices to show that ^(i?[S])ni?[H] is a %-radical ideal of R[H] (in the
"sense of [2]). Let a e°U(R[S])nR[H]. Because ae<K(R[S]) there exist ft, y, sR[S],

n m

l « i « n , such that £ ft(l + a)y( = 1. We may suppose that all ft € R ; for if ft = £ Vy,
i=i 1=1

rf/ 6 R, Sj, e S, then

1 = Z ft (1 + «)7i = I »j,(l + a)sii7i
i '.I

because all ŝ - are central. Write each y{ = 7i>0+ 7i,i such that supp 7i0<= H and supp 7f>1 <=
S\H. Then

The first summation belongs to R[H] and supply ft(l + a ) 7 u )f~iH = 0 , because H is a

grouplike subset of S. Therefore 1 = Z ft(l + a)7i0. Since a is arbitrary, this shows that

t (R[S])nR[H] is a ^-radical ideal of R[H].

2. Torsion free semigroups.

PROPOSITION 2.1 (cf. [5,7]). If S is a free semigroup of rank n (finite or infinite), then

for each ring R, where °Un(R) = <&(i?[S])OR. Moreover

oo

. . . = > PI aUn

and if n is infinite, then aUn(R) = cUx(R).

LEMMA 2.2. Let S be a free group of rank n. Then

for each ring R.

Proof. Because the Brown-McCoy radical satisfies Lemma 2.1 and behaves well with
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respect to normalizing extensions (i.e. satisfies Proposition 1.1), the proof is similar to the
proof of Lemma 2.2 of [8].

LEMMA 2.3. Let S be a semigroup of torsion free rank n. Then

sense

for each ring R.

Proof. Suppose first that S is a group. By the definition of rank there exists a free
subgroup F of rank n such that S/F is a torsion group. Hence by Lemma 2.2, %„(£)<=
cUn(R)[F] = aU(R[F]). So it suffices to prove that %CR[F])<= <U(R[S)), i.e. we will show
that for each a e °U. (R[F]) and ft, y, e R[S], 1 =s i=s m, I ftayf is G-regular in R[S] (in the

of [2]). Let H be the subgroup generated by the set FU ( U supp ft IU ( U supp yX

Then H/F is finite since S/F is an abelian torsion group. Hence R[H] is a normalizing
extension of R[F]. Therefore, £ fta-ft € %(i?[H]) (Proposition 1.1); in particular £ ftay,- is

i i

G-regular in R[H] and thus also in R[S].
Suppose now that S is a semigroup. Let a e°Un(R); we show that a belongs to each

maximal ideal of R[S]. Let M be a maximal ideal of R[S] and let T denote {x e S | x£ M}.
Then,

(i) T is a semigroup because M is a prime ideal,
(ii) if x e S\T, then xy e S\T for all y e S.

Define IT: J?[S]—> i?[T]: X rss •-* Z rss- By (ii) TT is a ring epimorphism. Clearly ker-n-c
seS seT

M. Therefore TT(M) is a maximal ideal of R[T]. Moreover 77-(M)nT=0. So
n(M)R[Q(T)]£ R[Q(T)]. Since R[Q(T)] is a localisation of R[T], ideals of i?[Q(T)J are
generated by their intersection with R[T]. In particular, TT(M)R[Q(T)] is a maximal ideal
of J?[Q(T)]. Clearly ir(M) = -n-(M)i?[Q(T)]ni?[T] by maximality of TT(M). NOW, Q(T) is
a group of torsion free rank m and m =Sn. Since a e %„(/?)<= <%m(JR), the first part of the
proof shows that a = -n-(a)eir(M)i?fQ(T)]. So 7r(a)e-7r(M)i?[Q(T)]ni?[T]= ir(M) and
hence a e M

LEMMA 2.4. / / S is a torsion free semigroup such that Q(S) is a finitely generated free
group with free generators x^ = sxt~

x,..., xn = sj"1 and st,teS, then s 1 ; . . . , sn or
S\t,..., snt is a set of free generators of a subsemigroup of S.

Proof, cf. [3].

THEOREM 2.5. Let S be a torsion free semigroup of rank n, then

for each ring R.

Proof. Once the statement is known for finite rank n it follows from Lemma 1.3,
Proposition 2.1 and by using the same method as in the proof of Theorem 2.3 of [8] that
the result is also valid for infinite rank.
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So we assume that n is finite. By Lemma 2.3 it suffices to prove that %(R[S])<=
%n(R)[S]. Moreover, Proposition 1.2 implies that we only have to prove that if rse
°U(R[S]), where reR and seS, then re°Un(R). Since Q(S) has torsion free rank n, Q(S)
contains a free subgroup F of rank n. Note that F is the quotient group of S n F (since
Q(S)IF is torsion). By Lemma 2.4 S contains a free subsemigroup X of rank n, so Q(X) is
a free group of rank n and Q(S)IQ(X) is torsion. Clearly S' = SnQ(X) is a grouplike
subset of S. Hence rs'G%(R[S']) for some f>0 (Lemma 1.3). Write s1 = y~'x, y, x e X
(since s1 e Q(X)). So rx e %(R[S']). Let x, x B bea set of free generators of X. Then
x = xf< ... xlj, where fcf eN and i, e { l , . . . , n}. Since

and %(R[S']) is a semiprime ideal, it follows that rxfi... xim eaU(R[S')). By multiplying by
those Xj-ejxx,..., xn}\{xii,..., XjJ, we obtain that a = rx, . . . x,, e<&(R[S'])nR[X].

To complete the proof it suffices to show that a = rx1...xn e %(R[X]) = %n(R)[X].
Let M be a maximal ideal of R[X]. If M O X ^ 0 , M contains one of the generators xt (M
is prime). Because of the form of supp <x it follows that <x s M. If M D X = 0 , then
J?[Q(X)]M is a maximal ideal of R[Q(X)]. This follows as in Lemma 2.3. Since
R[X]cR[S']cR[Q(X)] we have M = M'nR[X] where M'= R[Q(X)]MDR[S']. We
claim that M' is a maximal ideal of R[S']. Let N' be an ideal of R[S'] such that
M'^N'cR[S'}. Then M = M'nR[X] = AT f~lR[X] by maximality of M Therefore
R[Q(X)]M = R[Q(X)](N'nR[X]) and clearly R[Q(X)](N'nR[X]) = R[Q(X)]N'. Com-
bining these, we obtain N'<= R[Q(X)]N' n J?[S'] = R[Q{X)]MnR[S'] = M' and hence M'
is maximal. From a e%(R[S']) HR[X] we deduce that aeM'P\R[X] = M. Since M was
arbitrary this proves that ae1l(R[X]) and thus re%ri(R).

3. The main theorem. Before proving the main theorem we need a lemma about
the Brown-McCoy radical of a group ring of a finite abelian group. In the case where the
coefficient ring is commutative, this result has been proved by G. Karpilovsky [5].

LEMMA 3.1. Let R be a ring and G a finite abelian group. Then

= °U(R)[G]+\l,ri(xi-yi)\rieR, xf, yf e G, x?*=yPf

for some k ^ 0 , pf a prime number and pfi e°U(R) i.

Proof. By Proposition 1.1, <U(R)[G]c<U(R[G^, so <U(R[G])m(R)[G]) =
%(R/%(R)[G]). By replacing R by RI°U(R), we may assume that %(R) = {0}. In particular,
we may assume that R is a semiprime ring.

Let I be the torsion part of R for the additive structure. Because I is an ideal of R,
we obtain that %(Z[G])c%(R[G]) (cf. [2]). For the converse inclusion, let a=X>gge
1l(R[G]). If n is the order of the group G, then, by Proposition 1.2, nrgg£^(R[G]) for
all gesuppa. So nrge%(R[G])nRc%(R) = {0} (Lemma 1.3), i.e. r gs l . Therefore
ae%(R[G])n/[G] = ^(7[G]) and consequently SU(R[G]) = %(/[G]). By Bezout's
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theorem I = © Ip where p runs through the set of all prime numbers and where
p

Ip = {xe J | 3n3=0 p"x = 0}. But R is semiprime, and hence so is I. Therefore Ip =
{x 6 /1 px = 0}. Hence

The last equality holds by standard results on radicals (cf. [2]). Now, for any prime p, we
can write G = Gpx Gp., where Gp is the p-torsion part of G and Gp. is a p'-group, i.e. it
has no elements of order p. Because ip[G] = (Jp[Gp])[Gp.], IP[G] is graded by Gp. in a
natural way. Let m be the order of Gp'. Then as above, if a =aigi + • • " + amgm e
%(/p[G]), where g l , . . . , gm e Gp. and every a,eIp[Gp], we obtain that ma^^il^G,,])
for all 1 =£ i =£ m. Since pa,- = 0 and because m and p are relatively prime it follows that
ai€%(Zp[Gp]). Thus <%(Jp[G])c <%(Ip[Gp])[G] and the converse inclusion follows from
Proposition 1.1. Now, similarly as in the proof of Lemma 3.1.6 of [10], we obtain that

where w(JpfGp]) is the augmentation ideal of 7P[GP]. Therefore

ri(*i - y.) I xt, yf G G, xP" = yf for some fc 3»0, prf = o|.

The result follows now from equality (*).

REMARK 3.2. If x, yeG, xpk = y"\ k^O, p prime and reR such that pre°U(R), then
r(x — y) generates a nilpotent ideal modulo °U(R)[G]. Note that this remains true if G is a
semigroup and if we replace %(R) by

THEOREM 3.3. Let S be an arbitrary commutative cancellative semigroup of torsion free
rank n (finite or infinite). Then for each ring R

aU(R[S]) = °Un(R)[S]+{Ytri(si-ti)\rieR,si,tieS,

sfi = t?? for some k 3*0, pf a prime number and pj, e %M(R) |.

Proof. By Lemma 2.3 <%n(R)[S]<=%(R[S]) and, by Remark 3.2, Jf =

11 n(Si ~ 0 I n E R, s,, fj € S, sj"!1 = rj1' for some k ^ 0 , pt a prime number and p^ e %n(R) |<=

%(R[S]). So it suffices to prove that %(R[S])c «Un(R)[S] +Jf. As in the proof of Lemma
3.1 we may suppose that %n(R) = {0}. Let ae%(R[S]). Let (suppa) be the subgroup of
Q{S) generated by supp a. Then (supp a) = G^x G'2, the direct product of a finite group
G^ and a free group G'2. Since Q(S) and Q(S)IG1 have the same torsion free rank, we can
add free generators to G'2 such that we obtain a free group of rank n. This holds also if n
is infinite. So supp a is contained in a subgroup G = GjX G2 of Q(S) where Gl is finite
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and G2 is free of rank n. Let H=G(~\S; since Q(S)/G is torsion (because
rank G = rank Q(S)), we have Q(H) = G. Because H is a grouplike subset of S, a e
°U(R[H]). Let H' be the subsemigroup of G generated by H f l G , . Then H'= GjXff",
where H" = H'C\G2. Let xeH'; then x = gafi where gi e G1; hsH. Write h = hih2,
hxe Gu h2e G2- So h2 = (glh1)~

lxeH'C\G2 since Gx is a group. Note that H" is a torsion
free semigroup of rank n (because Q(H") = G2). Now R[H'] is a normalizing extension of
R[H] and thus a e t ( R [ f f ] ) . Note that i?[H'] = CR[H"])[G!]. Because %n(i?) = {0},
Theorem 2.5 implies that °U(R[H"]) = {0}. By Lemma 3.1,

a e%(R[H']) = %((J?[H"D[G1D = { l <*,(* - y.) | a, 6

Xj, y, e Gi, x ^ = yf'k for some k &0, pf a prime number and fta, = 0 f.

Write ai=Z' 'i J^j with r ^ R and hj&H" for all i,/. Then a = £ ry(ftjXj — h,-yf) and
j i.l

clearly (h,Xj)p' = (h,yi)p' and p^,- = 0 for all i and /. This finishes the proof.

4. On other radicals. In [3] the analogue of Theorem 2.5 is proved for the Jacobson
radical. In the general case the authors of [3] obtained the analogue of Theorem 3.3 only
for algebras over a field. Now, if in our situation we replace maximal ideals by maximal
right ideals and G-regularity by quasi-regularity, we obtain the full analogue of Theorem
3.3 for the Jacobson radical.

Note that Theorem 2.5 also remains valid for the upper nil radical (cf. [3]). If one wants
to extend this result to arbitrary semigroups then there will appear problems which are
related to the unsolved Koethe problem.

For the prime and locally nilpotent radicals the results of G. Bergman are also true (cf.
[11]) and therefore one can easily obtain the analogue of Theorem 3.3 for these two
radicals (see also [4] for the torsion free case).
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