Erratum to "On surface links whose link groups are abelian"

BY TETSUYA ITO

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan. e-mail: tetitoh@kurims.kyoto-u.ac.jp

AND INASA NAKAMURA

Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath), Interdisciplinary Center for Mathematical Sciences, Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan e-mail: inasa@ms.u-tokyo.ac.jp

(Received 26 January 2015; revised 20 February 2015)

In the article [1] we claimed a strict inequality n(n - 1) < 4g(S) for an abelian surface link S of rank n (Theorem 2.1). However, there is an error in proving the strictness of the inequality, so the correct statement is:

THEOREM 2.1. If S is an abelian surface link of rank n > 1, then we have an inequality

 $n(n-1) \leq 4g(S)$.

Accordingly, the correct statements of Corollary 2.2 and Corollary 2.4 are:

COROLLARY 2.2. The rank of an abelian T^2 -link is at most 5.

COROLLARY 2.4. Let S be an abelian surface link. For each $g \ge 0$, the number of genus g components of S is at most 4g + 1.

The results in other sections are not affected by this error.

In the proof, we wrote that $H_2(\mathbb{Z}^n; \mathbb{Z})$ is isomorphic to $H_2(S^4 - S; \mathbb{Z})$ implies $\pi_2(S^4 - S) \cong$ 0 but this is definitely false: the homology Serre spectral sequence for $(S^4 - S) \to K(\mathbb{Z}^n, 1)$ tells that the difference between $H_2(S^4 - S; \mathbb{Z})$ and $H_2(K(\mathbb{Z}^n, 1))$ is $\pi_2(S^4 - S)_{\pi_1(S^4 - S)}/d^3(H_3(K(\mathbb{Z}^n, 1)))$ so $\pi_2(S^4 - S)$ might be non-trivial. Here $\pi_2(S^4 - S)_{\pi_1(S^4 - S)}$ is the largest quotient of $\pi_2(S^4 - S)$ on which $\pi_1(S^4 - S)$ acts trivially, and

$$d^{3}: H_{3}(K(\mathbb{Z}^{n}, 1); \mathbb{Z}) = E^{3}_{3,0} \longrightarrow E^{3}_{0,2} = H_{0}(K(\mathbb{Z}^{n}, 1); \pi_{2}(S^{4} - S)) \cong \pi_{2}(S^{4} - S)_{\pi_{1}(S^{4} - S)}$$

is the differential of the Serre spectral sequence.

In particular, the existence of an abelian surface link of rank 4 with genus 3, and of rank 5 with genus 4, is an open problem.

We gratefully thank J. A. Hillman for pointing out this error in his review.

REFERENCES

 T. ITO and I. NAKAMURA. On surface links whose link groups are abelian. *Math. Proc. Camb. Phil.* Soc. 157 (2014), 63-77.