SEMIGROUPS ACTING ON CONTINUA

J. M. DAY and A. D. WALLACE¹

(Received 15 November 1965)

A semigroup is a nonvoid Hausdorff space together with a continuous associative multiplication. (The latter phrase will generally be abbreviated to CAM and the multiplication in a semigroup will be denoted by juxtaposition unless the contrary is made explicit.)

Any Hausdorff space may be supplied with a CAM, and, for example, one may define xy = x for all x and y. The addition of algebraic conditions may change the situation greatly and a circle together with a diameter does not admit a CAM with unit. It was shown in [W1] (see [KW1] for another example) that the space consisting of the curve $y = \sin(1/x)$, $0 < x \leq 1$, together with its limit continuum, does not admit a CAM with unit. (This result follows readily from a result of Robert Hunter's [H].)

An act is such a continuous function

$$T \times X \to X$$

that T is a semigroup and X is a nonvoid Hausdorff space and, denoting the value of the anonymous function at the place (t, x) by tx, the associativity condition

$$t_1(t_2 x) = (t_1 t_2) x$$

holds for all $t_1, t_2 \in T$ and all $x \in X$. We shall refer to this situation as an action of T on X and say that T acts on X, or use similar terminology.

Again, any semigroup may act upon any space, for example one may put tx = x for all $t \in T$ and all $x \in X$. Moreover, the situation in which Tis a group is so well known as not to require explication. However, when Tis merely a semigroup, very little is known without additional conditions on T and X of an algebraic and metric nature, and it is our intention here to inaugurate such an investigation, of a modest character.

Put in its simplest form, we shall give conditions under which a compact connected semigroup may not act upon the sinuscurve described in an earlier paragraph. In more detail, suppose that the space X contains an open dense half-line whose complement is a set C, that there is some $q \in X$ such that Tq = X, that T acts unitarily on X ($x \in Tx$ for each $x \in X$), and that a

327

¹ This work was partially supported by N.S.F. Grant GP 3623.

certain natural hypothesis is made to exclude trivial action of the sort just indicated — then C is (topologically) homogeneous.

It may be remarked that, from a paper by J. Aczel and A. D. Wallace (to appear), it can be concluded that X must indeed have the structure of a semigroup provided that T is commutative. It is also proved there that if T and X are compact, T acts unitarily, and $\{Tx \mid x \in X\}$ is a tower, then there exists $q \in X$ with Tq = X.

For material concerning *discrete* semigroups reference may be made to the books of Clifford-Preston [CP] and Ljapin [L] and for the general case to the excellent expository dissertation of Paalman-de Miranda [P-de M] and the forthcoming research monograph of Mostert-Hofmann.

Insofar as topology is concerned, we assume familiarity with much standard material and refer to Hocking-Young [HY], Hu [Hu], Kelley [K] and Wilder [Wi]. It does not follow that we adhere to the language and notation of any of these, but generally we note any departure from the customary rubric. In particular, we prefer A^* , A^0 , and $F(A) = A^* \setminus A^0$ for the closure, interior and boundary of the set A. Where there may be confusion of meaning, topological usuage will take precedence of algebraic usage. Thus to say a set is *closed*, is to mean that it is closed in the topology and *not* that it is a subsemigroup.

"Space" will include the quantifier "Hausdorff". A continuum is a compact connected space and a *bing* (Middle English, Old Norse— heap, pile) is a compact connected semigroup.

1

Henceforth it will be supposed that $T \times X \to X$ is an *act*, as defined earlier. For A contained in X and M contained in T we write

$$MA = \{tx \mid t \in M \text{ and } x \in A\},\$$
$$M^{(-1)}A = \{x \mid Mx \cap A \neq \Box\}$$

 $M^{[-1]}A = \{x \mid Mx \subset A\}.$

and

It will be observed that no differentiation is made between x and $\{x\}$ if it is not convenient to do so, and does not readily lead to confusion. In this vein we write $A \setminus x$ rather than $A \setminus \{x\}$, and so on. Also, inclusive quantifiers will be omitted if there is likely to be no misunderstanding.

It may be observed that

(1.1)
$$M^{[-1]}A = X \setminus M^{(-1)}(X \setminus A).$$

Proof of the following have been given in [W 1] and [W 6] in various

forms and in varying degrees of generality and we content ourselves with a brief sketch.

(1.2) (i) If M is compact and if A is closed then $M^{(-1)}$ A is closed.

- (ii) If A is open then $M^{(-1)}$ A is open.
 - (iii) If M is compact and if A is open then $M^{[-1]} A$ is open.
 - (iv) If A is closed then $M^{[-1]}$ A is closed.
 - (v) If M is compact then $\{x \mid A \subset Mx\} = \cap \{M^{(-1)}a \mid a \in A\}$ is closed and hence if A is also closed then $\{x \mid Mx = A\}$ is closed.

For the proof of (i) it may be observed that

$$M^{(-1)}A = q((M \times X) \cap \alpha^{-1}(A))$$

where α is the (continuous) action-map, $\alpha(t, x) = tx$, and q is the projection of $T \times X$ onto X. From this, (iii) follows via (1.1). The others are similar.

The set $A \subset X$ is an *M-ideal* if A is non-void and if $MA \subset A$. If T and X are compact and if X properly contains a T-ideal then it is known (e.g., [KW1] and [W1]) that there is a maximal proper ideal and that each such is *open*.

We make repeated use of the fact that

$$M*A* \subset (MA)*$$

(which follows immediately from the continuity of the action) and, in particular,

$$TA^* \subset (TA)^*$$
.

If t is an element of a semigroup then

$$\Gamma(t) = \{t, t^2, t^3, \cdots\}^*$$

and for useful properties reference is made to [P-de M], in particular, p. 22 et seq. (These results are due mainly to Hewitt, Koch and Numakura, *loc. cit.*)

An illustrative and basic example of an act is given as follows. Suppose that X is locally compact Hausdorff and that M(X) is the set of all continuous functions taking X into X, so that M(X) is a semigroup under *composition*, using the compact-open topology. Then M(X) acts on X by evaluation, $(f, x) \rightarrow f(x)$. As a matter of orientation (and we do not use this fact) it may be observed that, recalling that T acts on X, the function

defined by $\Theta: T \to M(X)$ $\Theta(t)(x) = tx$ is a continuous homomorphism which will be an *iseon*

is a continuous homomorphism which will be an *iseomorphism* (homeomorphic isomorphism) into provided that T is compact and that T is effective, which is to say that if $t \neq t'$, then $tx \neq t'x$ for some $x \in X$.

Additional insight into acts may be given. A left congruence on a semigroup S is such an equivalence $C \subset S \times S$ that $\triangle C \subset C$, \triangle being the diagonal, If g is the natural map from S to S/C then, S being compact and C closed, there is a unique manner in which S may act upon S/C such that sg(s') = g(ss'). Thus any compact semigroup acts in a canonical manner upon any of its left quotients.

Now conversely, assume that S acts on X (both being compact) and suppose that Sq = X for some $q \in X$. If C is defined as the set of all (s, s')such that sq = s'q then C is a closed left congruence and there is a homeomorphism of X upon S/C, and the canonical action of S on S/C mimics in all essential respects the original action of S on X.

A congruence on a semigroup S is a subset of $S \times S$ which is simultaneously an equivalence (reflexive, symmetric and transitive) and a subsemigroup of $S \times S$, using coordinatewise operations in the latter. If S is compact and if C is a closed (in the standard topology of $S \times S$) congruence on S, then S/C is a semigroup and the canonical function

$$g: S \to S/C$$

is a continuous onto homomorphism. The topological parts of this construction are contained, among many other places, in Kelley [K] and the whole matter is essentially in the folklore of semigroups (but cf. [W1] and [W7]).

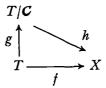
Removal of the harsh hypothesis that S be compact is very much an open question. If S were a group then the function g would be open, which would settle matters. But when S is just a semigroup there are examples to show that S/C need not be Hausdorff, even if it is assumed that S is the real line (but of course the operation is not addition). In this connection, reference is made to the papers of E. J. McShane [M] and B. J. Pettis [P], among others.

Reverting to the present instance, with T acting on X, we define $C \subset T \times T$ by

$$C = \{(t_1, t_2) \mid t_1 x = t_2 x \text{ for all } x \in X\}$$

and readily verify that C is a closed congruence on T. When T is compact, T/C is a semigroup and acts on X, and in fact, T/C is iseomorphic to a subset of M(X) since T/C is compact and separates the points of X.

(1.3) PROPOSITION. Using in part the notation above, suppose that, in the diagram



the continuous function f is consistent with the action of T on X, in the sense that

(*)
$$g(t) = g(t')$$
 implies $f(t) = f(t')$, for all t, t' in T,

and suppose that T is compact. Then there is such a continuous function h that the diagram is analytic, f = hg. If f is bisconsistent, in the sense that (*) is an equivalence rather than merely an implication, then h is a homeomorphism into, f(T) is a semigroup under the multiplication

$$x \circ x' = h(h^{-1}(x)h^{-1}(x')),$$

h is an iseomorphism onto this semigroup and f is similarly a homomorphism. If f is also a translation relative to the given act, in the sense that

$$f(tt') = tf(t')$$
 for all t, t' in T ,

and if C is a minimal T-ideal which intersects f(T), then $C \subset f(T)$, C is a minimal left ideal of $(f(T), \circ)$, and if there is some $u \in T$ with $f(u) \in C$ and uC = C, then (C, \circ) is a group.

PROOF. The first paragraph is easily verified. To prove that $C \subset f(T)$, first notice that f(T) is a T-ideal: for $Tf(T) = f(T^2)$ since f is a translation, and $T^2 \subset T$, so that $Tf(T) \subset f(T)$. This, together with the hypothesis that C is a minimal T-ideal intersecting f(T), implies that $C \subset f(T)$.

Now let x = f(t) be an arbitrary but fixed element of C. From the definition of \circ , one sees that $f(t_1) \circ f(t_2) = f(t_1t_2)$, and f is a translation, so that $f(T) \circ f(t) = f(Tt) = Tf(t)$. Since $f(t) \in C$ and C is a minimal T-ideal, Tf(t) = C. That is, $f(T) \circ x = C$ for arbitrary $x \in C$, so that C is a minimal left ideal of $(f(T), \circ)$.

From the above, (C, \circ) is a semigroup and $C \circ x = C$ for each $x \in C$ since C is a minimal left ideal. If there is some $x \in C$ such that $x \circ C = C$ also, then as is well known, C is a group. Thus we observe that $f(u) \in C$ by hypothesis, and prove that $f(u) \circ C = C$: from the previous paragraph, we have that

$$C = Tf(u) = f(Tu)$$
 and $f(u) \circ f(Tu) = f(uTu)$,

which when combined give

$$f(u) \circ C = f(uTu).$$

Since f is a translation,

$$f(uTu) = uf(Tu),$$

and uf(Tu) equals uC since f(Tu) = C by the above. Therefore

$$f(u) \circ C = uC$$
,

and uC equals C by hypothesis, so we have the desired result,

$$f(u) \circ C = C.$$

In the following corollary and in our later use of (1.3), we shall have, for some $a \in X$, f(t) = ta (and thus f(T) = Ta) and the condition

(†) ta = t'a implies tx = t'x for all $t, t' \in T$ and all $x \in X$.

It is easy to see that *f* is a biconsistent translation.

NOTATION. $Q = \{x \in X \mid Tx = X\}.$

(1.31) COROLLARY. If X = Q and if there is some $a \in X$ which satisfies ([†]), then X is a left simple semigroup, hence X is iseomorphic to $E \times H$, where E is the set of idempotents of X and H is a maximal subgroup of X. If also, there is some $u \in X$ with uX = X, then X is a group.

PROOF. Define $f: T \to X$ by f(t) = ta; then f is a biconsistent translation and f(T) = Ta = X (since $a \in Q$), so that X is a semigroup by (1.3). It is clear that X is the only T-ideal since X = Q, so also by (1.3), X has no proper left ideals — i.e., X is left simple. Then by a result in [W 3], X is iseomorphic to $E \times H$.

If there is $u \in T$ such that uX = X, then by the above and (1.3), X is a group.

(1.4) PROPOSITION.

(i) If T is compact and X is a continuum, then each maximal proper T-ideal is open and dense.

(ii) Suppose that $X \neq Q \neq \Box$. Then X\Q is the unique maximal proper T-ideal, and if also T and X are continua, then X\Q is open, dense and connected.

PROOF. (i) Let J be a maximal proper T-ideal and let $x \in X \setminus J$; $X \setminus J$ is closed since either $X \setminus J = \{x\}$ or $X \setminus J = \{y \in X \mid Ty = Tx\}$, which is closed because T is compact. Therefore J is open.

Since J is a proper open set and X is connected, $J \notin J^*$; J^* is also a T-ideal and J is a maximal proper one, hence $J^* = X$, and thus J is dense.

(ii) $Q \cap Tx \neq \Box$ if and only if $x \in Q$ (if there is some $q \in Q \cap Tx$, then $X = Tq \subset T^2x \subset Tx$, hence X = Tx so that $x \in Q$; if $x \in Q$, obviously $x \in Q \cap Tx$). Therefore $Tx \subset X \setminus Q$ if and only if $x \in X \setminus Q$, i.e., $X \setminus Q = T^{[-1]}(X \setminus Q)$. This implies that $T(X \setminus Q) \subset X \setminus Q$; it is nonempty and proper, hence is a proper T-ideal, since $X \neq Q \neq \Box$ by hypothesis; and if J is a set properly containing $X \setminus Q$, then J intersects Q, hence TJ = X, so that no proper T-ideal properly contains $X \setminus Q$.

Now assume further that T and X are continua. $X \mid Q$ is open and dense by the preceding proof. Suppose that $X \mid Q$ is not connected, so that $X \mid Q = U \cup V$, where U and V are disjoint nonempty open sets. Observe that $X \mid Q = T^{[-1]}U \cup T^{[-1]}V$ since $x \in Q$ implies Tx = X so that $Tx \notin U$ and $Tx \notin V$, hence $x \notin T^{[-1]}U \cup T^{[-1]}V$; conversely, $x \in X \mid Q$ implies $Tx \subset X \setminus Q$ since $X \setminus Q$ is a *T*-ideal, and Tx is a continuum, so either $Tx \subset U$ or $Tx \subset V$. Therefore at least one of $T^{[-1]}U$ and $T^{[-1]}V$ is nonempty, say $T^{[-1]}U \neq \Box$. Both sets are proper and they are open by (1.2) (iii). Thus X being connected implies that there is some $x \in (T^{[-1]}U)* \setminus T^{[-1]}U$. Because $T^{[-1]}V$ is an open set disjoint from $T^{[-1]}U, x \notin T^{[-1]}V$, so that $x \in (T^{[-1]}U)* \cap Q$. Therefore $X = Tx \subset T(T^{[-1]}U)*$; by continuity, $T(T^{[-1]}U)* \subset (TT^{[-1]}U)*$; by definition, $TT^{[-1]}U \subset U$, and thus $X \subset U*$, which contradicts our assumption that V is a nonempty open set disjoint from U.

2

The following lemma differs from similar statements in [F], [W 1], [W 4], and [W 6] only in that we do not require the semigroup to be connected. The fact that connectedness is unnecessary proves very useful in (2.3), where we apply it to a semigroup of the form $\Gamma(t)$.

(2.1) LEMMA. Let X be a continuum, let $H \subset X$, and let S be a compact semigroup acting on X. If $F(H) \neq \square$ and there exists an S-ideal in H, then there is some $p \in F(H)$ such that $Sp \subset H^*$.

PROOF. Let G be a component of $H \cap S^{[-1]}H$. $(H \cap S^{[-1]}H$ is nonempty since there is an S-ideal L contained in H by hypothesis, and $\Box \neq SL \subset L \subset H$ implies $\Box \neq L \subset H \cap S^{[-1]}H$). Then $G \cup SG \subset H$, hence $G^* \cup SG^* \subset H^*$ by continuity of the action. Suppose that $(G^* \cup SG^*) \cap F(H) = \Box$; then $G^* \cup SG^* \subset H^0$, which is to say, $G^* \subset H^0 \cap S^{[-1]}H^0$. Since S is compact, $S^{[-1]}H^0$ is open by 1.2 (iii), so $H^0 \cap S^{[-1]}H^0$ is open; it is also a proper subset of X since it is contained in H and $F(H) \neq \Box$. Of course $H^0 \cap S^{[-1]}H^0 \subset H \cap S^{[-1]}H$, so we have that $G = G^*$ and that G must be a component of $H^0 \cap S^{[-1]}H^0$. But then G is a component of a proper open subset of a continuum, whose closure does not intersect the boundary of the open set, and this is impossible (see [HY], for example). Therefore there must be some $p \in (G^* \cup SG^*) \cap F(H)$, and then $Sp \subset S(G^* \cup SG^*) = SG^* \cup S^2G^* \subset SG^* \subset H^*$.

A subset N of a continuum is a *nodal set* iff N is a nondegenerate continuum and F(N) is exactly one point. When a set B is the intersection of all the nodal sets containing it, we will say that B = D(B). Faucett has proved that if A is the complement of a maximal proper ideal of a bing and if A = D(A), then cardinal A = 1 [F]. We have proved a more general result (2.3), that if T is a bing acting on a continuum X, and if A is a *subset* of the complement of a maximal proper T-ideal, then A = D(A) implies that cardinal A = 1. We shall use without proof the following facts:

- (a) D(A) is a continuum [R].
- (β) If A = D(A) and F is a continuum intersecting A, then $A \cap F$ is a continuum [R].
- (γ) If A = D(A) is contained in an open set U and $y \notin U$, then there is a nodal set N containing A such that $y \notin N$ and $F(N) \in U[R]$.
- (b) If N is a collection of nodal sets, if $A_0 = \cap N \neq \square$, and if $Z = \{F(N) \mid N \in N\}$, then $A_0 \cap Z^* \neq \square$ (easily proved using (γ)).

The following lemma contains the heart of the proof of (2.3), our generalization of Faucett's theorem. The reason we define N, which may be a proper subset of M, and $A_0 = \cap N$, is that (2.2) (ii) need not be true if one states it for A and $\{F(M) \mid M \in M\}$, rather than for A_0 and $Z = \{F(N) \mid N \in N\}$.

(2.2) LEMMA. Let A be a nonempty set in a continuum X such that A = D(A), and let M be all the nodal sets containing A. Fix N_0 in M, let $N = \{N \in M \mid N \subset N_0\}$, let $Z = \{F(N) \mid N \in N\}$ and let $A_0 = \cap N$. Then

(i) $A \cap Z^* = A_0 \cap Z^*$.

(ii) If B is a continuum intersecting both A_0 and $X \setminus A_0$, then $B \supset A_0 \cap Z^*$.

(iii) Suppose that T is a semigroup acting on X and that $t \in T$, $a' \in A_0 \cap Z^*$ such that $ta' \in A_0$. Then A_0 contains a $\Gamma(t)$ -ideal.

PROOF. (i) Suppose $M \in M$ and $Z^* \notin M$. Since M is closed this implies that $Z \notin M$, so there is some $N \in N$ such that $F(N) \notin Z$. Now M is connected, $M \cap N \neq \Box$ since $A \subset M \cap N$, and F(N) is a cutpoint of X not contained in M, hence $M \subset N$. Therefore $M \subset N_0$, so that $M \in N$. We have proved that if $M \in M \setminus N$, then $Z^* \subset M$. Now $A = [\cap N] \cap [\cap (M \setminus N)]$ by definition, hence $A \cap Z^* = [\cap N] \cap Z^*$, which is precisely $A_0 \cap Z^*$.

(ii) First observe that $Z^* \cap N = (Z \cap N)^*$ for $N \in N$: let $p \in Z^* \cap N$, so that either p = F(N), in which case $p \in Z \cap N$, or else $p \in Z^* \cap N^0$, so that surely $p \in (Z \cap N)^*$. The other inclusion is obvious.

Suppose now that B is a continuum intersecting both A_0 and $X | A_0$, so that B intersects X | N for some $N \in N$. If we can show that B contains $N \cap Z$, then B is closed so that B will contain $(N \cap Z)^* = N \cap Z^*$, which contains $A_0 \cap Z^*$. Thus let $p \in N \cap Z$. In case p = F(N), then $p \in B$ since B is a connected set intersecting both X | N and N (since $A_0 \subset N$). Otherwise $p \in N \setminus F(N)$; since $p \in Z$, there is some $N_1 \in N$ such that $p = F(N_1)$. We will prove below that $N_1 \subset N$, from which it is clear that $F(N_1)$ separates $X \setminus N$ from $A_0 \subset N_1$, hence the connected set B must contain $F(N_1) = p$. To prove that $N, N_1 \in N$ and $F(N_1) \in N$ imply $N_1 \subset N$, first note that $(X \setminus N)^*$ is connected since its boundary is a point and X is connected; therefore, since $p = F(N_1)$ is a cutpoint and $p \notin (X \setminus N)^*$, either (1) $(X \setminus N)^* \subset N_1$ or (2) $(X \setminus N)^* \subset X \setminus N_1$. It is not possible that (1) holds: for we know that $N \cup N_1 \subset N_0$ by definition of N, hence $(X \setminus N_0)^* \subset (X \setminus N)^*$ and, if $(X \setminus N)^*$ were contained in N_1 , we would have $(X \setminus N_0)^* \subset N_1 \subset N_0$. But this implies that $X \setminus N_0 = \Box$, which is false because N_0 is nodal (a closed set with nonempty boundary cannot have an empty complement). Therefore it must be true that (2) holds, which clearly implies that $N_1 \subset N$.

(iii) We are given a set A_0 ; for $n \ge 1$, define A_n to be $tA_{n-1} \cap A_0$. Observe that $A_0 = D(A_0)$, so that A_0 is a continuum by (α); then by induction, using these facts, (β) and the continuity of t, each A_n is a continuum. One also easily shows by induction that $tA_n \subset tA_{n-1}$, so that if there were a nonempty A_n such that $tA_n \subset A_0$, then A_n would be a $\Gamma(t)$ -ideal in A_0 and we would be done. Suppose therefore, in the remainder of the proof, that whenever $A_n \neq \Box$, $tA_n \notin A_0$; we will first show, by induction, that this implies $A_n \neq \Box$ for each *n*, and then we will use this fact to exhibit a $\Gamma(t)$ -ideal in A_0 . We will prove each A_n nonempty by showing that there is some $a_n \in A_n$ such that $ta_n = a'$. We lean heavily on the hypotheses that $a' \in Z^* \cap A_0$ and $ta' \in A_0$, and on the fact, stated as (2.2) (ii), that $Z^* \cap A_0$ has the property that a continuum intersecting both A_0 and its complement must contain $Z^* \cap A_0$. (Thus $Z^* \cap A_0$ behaves somewhat like a *C*-set; see § 3 for definition.) First observe that $A_0 \neq \Box$ by hypothesis, hence tA_0 is a nonempty subcontinuum by continuity of the action. Also, tA_0 intersects both $X \mid A_0$ (by supposition) and A_0 (since $ta' \in tA_0 \cap A_0$). Hence $tA_0 \supset Z^* \cap A_0$ by (2.2) (ii), so there must be some $a_0 \in A_0$ such that $ta_0 = a'$. Now suppose that $n \ge 0$ and that we have $a_n \in A_n$ such that $ta_n = a'$; then $a' \in tA_n \cap A_0 = A_{n+1}$ so that $ta' \in tA_{n+1} \cap A_0$. Also, tA_{n+1} is a continuum and it intersects $X \mid A_0$ by supposition, hence again by (2.2) (ii), we have $Z^* \cap A_0 \subset tA_{n+1}$. Therefore there is some $a_{n+1} \in A_{n+1}$ such that $ta_{n+1} = a'$. Therefore $A_n \neq \Box$ for each *n*; also, $t: X \rightarrow X$ is a continuous function, hence there is a $\Gamma(t)$ -ideal in A_0 by the following remark.

REMARK. Let $t: X \to X$ be a continuous function, let A_0 be a compact subset of X, and define, inductively,

$$A_{n+1} = t(A_n) \cap A_0.$$

If each of the sets A_n is nonempty, then there is a nonempty closed set B contained in every A_n such that $t(B) \subset B$.

PROOF. Immediately from the definition there is, for each n, an element $x_n \in A_0$ such that

 $\{x_n, t(x_n), \cdots, t^n(x_n)\} \subset A_0.$

For $n \geq 1$, let

$$B_n = \{x_n, x_{n+1}, \cdots, \}^*,$$

so that these sets form a tower of closed subsets of the compact set A_0 , and hence that

$$B_0 = \cap \{B_n \mid n \ge 1\} \subset A_0$$

is nonempty. It follows that $t^{k}(B_{0}) \subset A_{0}$ for every $k \geq 1$, and from this that

$$B = (\cup \{t^k(B_0) \mid k \ge 1\})^*$$

is the desired set.

(2.3) PROPOSITION. Suppose that T acts on X, X is a continuum, J is a maximal proper T-ideal and A is a nonempty subset of $X \setminus J$ such that A = D(A). If either

(a) T is a continuum, or

(b) T is Γ -compact ($\Gamma(t)$ is compact for each $t \in T$) and there is a T-ideal contained in $X \setminus N_0$ for some nodal set N_0 containing A,

then cardinal A = 1.

PROOF. If $a \in X \setminus J$, then $J \cup Ta$ is clearly a *T*-ideal; *J* is a maximal proper *T*-ideal, hence either $J \cup Ta = J$ or $J \cup Ta = X$. The former implies that $J \cup a = X$ and we are done. Therefore, suppose for the rest of this proof that $J \cup Ta = X$ for each $a \in X \setminus J$. Then in particular, since $J \subset X \setminus A$, $(X \setminus A) \cup Ta = X$ for each $a \in A$. We will find an $a' \in A$ such that $Ta' \subset (X \setminus A) \cup a'$, which clearly implies that A = a', the desired conclusion.

Let us first prove that given the other hypotheses, (a) implies (b). Obviously, T compact implies T Γ -compact. Let $x \in J$ (which is nonempty by definition of T-ideal) and note that $Tx \subset J \subset X \setminus A$ and that Tx is a continuum since T is and since the action is continuous. Therefore $X \setminus Tx$ is open so that if $y \in Tx$, then by (γ) , there is a nodal set N_0 containing Asuch that $y \notin N_0$ and $F(N_0) \in X \setminus Tx$. Tx is connected, in the complement of the cutpoint $F(N_0)$, and intersects $X \setminus N_0$, so we conclude that $Tx \subset X \setminus N_0$. Since Tx is a T-ideal, (b) is satisfied.

Assume (b) now, let $N = \{N \mid A \subset N \subset N_0 \text{ and } N \text{ is noda}\}$, let $A_0 = \cap N$, and let $Z = \{F(N) \mid N \in N\}$. Choose $a' \in A_0 \cap Z^*$, which is nonempty by (δ) ; note that $A_0 \cap Z^* = A \cap Z^*$ by (2.2) (i), so that $a' \in A$; and suppose that $ta' \in A$. We will show that ta' = a', hence $Ta' \subset (X \setminus A) \cup a'$, which is the desired result. Since $A \subset A_0$, we have $a', ta' \in A_0$, so (2.2) (iii) asserts that there exists a $\Gamma(t)$ -ideal in A_0 . It is clear that each $N \in N$ also contains this $\Gamma(t)$ -ideal, and for each $N \in N, X \setminus N$ contains a T-ideal, hence a $\Gamma(t)$ ideal (by (b), since $X \setminus N_0 \subset X \setminus N$). Finally, the action map $T \times X \to X$ restricted to $\Gamma(t) \times X$ is an action of the compact semigroup $\Gamma(t)$ on the continuum X, so by (2.1), since $F(N) = F(X \setminus N) =$ one point, we have $\Gamma(t)F(N) \subset N^*$ and $\Gamma(t)F(N) \subset (X \setminus N)^*$. That is, $\Gamma(t)F(N) = F(N)$. This is true for each $N \in N$, which is to say $\Gamma(t)z = z$ for each $z \in Z$. Now $a' \in Z^*$ and the action is continuous, hence also $\Gamma(t)a' = a'$, so that, in particular, ta' = a'.

(2.3.1) COROLLARY. Let S be a bing and J be a maximal proper (left, right or two-sided) ideal of S. If A is a nonempty subset of $S \setminus J$ and A = D(A), then cardinal A = 1.

PROOF. First suppose that J is a maximal proper left ideal of S. The multiplication of S is an action of S on itself (on the left) and, with respect to this action, J is a maximal proper S-ideal. S is a continuum so that cardinal A = 1 by (2.3). Left-right duality gives the same result when J is a maximal proper right ideal of S.

Suppose now that J is a maximal proper two-sided ideal of S. One can check that the space $T = S \times S$ with the multiplication

$$(x, y)(x', y') = (xx', y'y)$$

is a semigroup, and that

 $T \times S \rightarrow S$

defined by ((x, y), s) = xsy is an action of T on S. T is a continuum and one can see without difficulty that J is a maximal proper T-ideal, so that we may again use (2.3) to conclude that cardinal A = 1.

3

We will use without proof the following facts.

- (c) Let X be a continuum containing an open dense half-line, W, and let $C = X \setminus W$. Then C is a C-set, i.e., a continuum which intersects C and is not contained in C, must contain C.
- (ρ) A locally connected subcontinuum which intersects a nondegenerate C-set is contained in it (follows from a result in [W 5]).

(3.1) PROPOSITION. Let X be a continuum containing an open dense half line, W, let $C = X \setminus W$, and suppose that cardinal C > 1. Let T be a bing acting unitarily on X such that $\Box \neq Q \neq X$. Then Q is a single element, the endpoint q of X, $C \subset Tx$ for each $x \in X$, and either

(i) $TC \notin C$, so that TC is homeomorphic with X and the Q-set of the act $T \times TC \rightarrow TC$ is all of TC; or, disjunctively,

(ii) $TC \subset C$, C is the unique minimal T-ideal and C is a homogeneous space.

If also there is some $a \in X$ such that

(†) $ta = t'a \text{ implies } tx = t'x \text{ for all } x \in X,$

then Ta has the structure of a semigroup, C is the minimal ideal of Ta and a group.

PROOF. Since T and X are continua, $X \setminus Q$ is connected and dense in X by (1.4), so Q must be a subset of $C \cup q$, where q is the endpoint of X. Q is the complement of a maximal proper T-ideal by (1.4), C = D(C), and cardinal C > 1 by hypothesis, hence Q cannot contain C by (2.3); thus to prove that Q = q, we must show that $Q \cap C \neq \Box$ implies $Q \supset C$. Whether or not Q intersects $C, C = B_1 \cup B_2$, where

$$B_1 = \{x \in C \mid Tx \supset C\}, \ B_2 = \{x \in C \mid Tx \subset C\}.$$

This follows from (ε) since, for each $x \in C$, Tx is a continuum and $x \in Tx \cap C$. If $Q \cap C \neq \Box$, then $Q \cap C = B_1$: for obviously $Q \cap C \subset B_1$, and if $x \in B_1$, $Q \cap Tx \neq \Box$, hence $x \in Q$ (see proof of (1.4) (ii)). Therefore if $Q \cap C \neq \Box$,

$$C = (Q \cap C) \cup \{x \in C \mid Tx \subset C\},\$$

which are both closed sets by continuity and compactness. They are disjoint by continuity, and C is connected by either (α) or (ε), hence if $Q \cap C \neq \Box$ then $C = Q \cap C$, which is false.

We prove next that $C \subset Tx$ for each $x \in X$, which observation was made to the authors by K. Sigmon. Suppose first that there is some $x \in W$ such that $Tx \subset W$. Let $t \in T$ such that $tu \in C$ and let A be the arc in W joining x and u. Since tA is a locally connected continuum intersecting C and since C is a nondegenerate C-set, tA must be contained in C by (δ); but this contradicts $tx \in W \cap tA$. Therefore, for each $x \in W$, $Tx \cap C \neq \Box$. Also, $x \in Tx \cap W$ for each $x \in W$, Tx is a continuum, and C is a C-set, hence Txmust contain C for each $x \in W$. Because W is dense and the act is continuous, Tx must contain C for each $x \in C$ as well.

(i) Suppose $TC \notin C$ and let $x \in C$ such that $Tx \notin C$. Since $C \subset Tx$, Tx is homeomorphic with X, and since $T(Tx) \subset Tx$, T acts on Tx via a restriction of the original action. Let Q_x be the Q-set for this restricted action: i.e., $Q_x = \{y \in Tx \mid Ty = Tx\}$. Since $x \in C \cap Q_x$, $Q_x \neq \Box$ and Q_x is not just the endpoint of Tx, hence by the first assertion of this theorem, we conclude that $Q_x = Tx$. Therefore Tx = TC and the proof of (i) is complete.

(ii) Suppose that $TC \subset C$. We proved above that $C \subset Tx$ for each $x \in X$, which is to say, C is a subset of every T-ideal; thus, when $TC \subset C$, Tx = C for each $x \in C$ and C is the unique minimal T-ideal.

We prove that C is homogeneous by a series of assertions:

(1) For each $x \in W$, Tx is the continuum irreducible between C and x. For Tx is a continuum containing C and x, hence Tx is homeomorphic with X. T acts on Tx, $x \in Q_x = \{y \in Tx \mid Ty = Tx\}$ and $C \subset Tx \setminus Q_x$, hence Q_x contains only the endpoint of Tx by the first assertion proved above. Therefore, x is the endpoint of Tx.

(2) T contains an idempotent e which acts as identity for X. For there exists $t \in T$ such that tq = q, since Tq = X by (i) above; then tX is a continuum containing q and intersecting C ($tC \subset tX \cap C$), hence tX = X. Therefore $t^n X = X$ for each $n \ge 1$, hence yX = X for each $y \in \Gamma(t)$. $\Gamma(t)$ contains an idempotent e since $\Gamma(t)$ is compact [P-de M].

(3) Let $J = \{t \in T \mid tW \subset W\}$; then $T \setminus J = \{t \in T \mid tX \subset C\}$, and J is open. The bracketed set is closed by (1.2) (iv), and it is clear that $T \setminus J$ contains it. Conversely let $t \in T \setminus J$, so that $ty \in C$ for some $y \in W$. If A is an arc in W containing y, then tA is a locally connected continuum intersecting C, hence $tA \subset C$ by (ζ) ; W is the union of a family of such arcs, hence $tW \subset C$. Therefore, $t \in T \setminus J$ implies $tW \subset C$, hence $tX \subset C$.

(4) If $t \in J^*$ then tC = C, hence t is a homeomorphism of C onto itself. By continuity of the action, we have only to prove that tC = C for each $t \in J$, so let $t \in J$. Then tX is a continuum not contained in but intersecting C, hence $C \subset tX$ by (ε). $tX = tW \cup tC$ and $tW \subset W$, hence $C \subset tC$. Then, since T is compact, t is a homeomorphism of C onto itself by the Swelling Lemma [W 1], [W 2].

(5) Let J_0 be the component of J which contains e, and let $T_0 = J_0^*$; then $T_0x = Tx$ for each $x \in X$. If J = T, then $T_0 = T$ and we are done, so suppose $J \neq T$. Then J_0 is a component of a proper open subset of the continuum T, hence $J_0^* = T_0$ intersects the boundary of J [HY]. Let $t \in T_0 \setminus J$; then $tX \subset C$ by (3), so that T_0x intersects C for any $x \in X$. Also, $x = ex \in T_0 x$, and it is clear that T_0x is a subcontinuum of Tx. Thus if $x \in W$, T_0x is a continuum containing C and x; hence $T_0x \supset Tx$, by (1). It is clear that $T_0x \subset Tx$ for any $x \in X$, hence $T_0x = Tx$ for each $x \in W$. Continuity then gives $T_0x = Tx$ for each $x \in X$.

(6) C is homogeneous. Since $T_0x = C$ for each $x \in C$, by (5), and since each member of T_0 is a homeormorphism of C onto itself by (4), C must be homogeneous.

We suppose now that there is some $a \in X$ satisfying (†); then, as remarked in § 1, $t \to ta$ is a biconsistent translation of T onto Ta, so that Ta has a semigroup structure with C as minimal left ideal, by (1.3). Since C is the unique minimal T-ideal, it is the unique minimal left ideal of the semigroup Ta, hence is the minimal ideal of Ta [P-de M]. According to (1.3), to prove that C is also a group, we have only to produce some $u \in T$ with $ua \in C$ and uC = C; but there exists $u \in T_0$ with $ua \in C$ since $T_0a = Ta \supset C$, and uC = C by (4).

Case (i) of the theorem is not vacuous. The dual of a construction due to Koch and Wallace, p. 282, [KW 2], shows that any continuum X with an isolated arc A admits the structure of a semigroup with the endpoint

340

of A as right unit and with Xb = B for each $b \in B = (X \setminus A)^*$. Thus if we take X as in the theorem and let A be an arc in X containing q, then X with the semigroup mentioned is a bing acting on itself as described in case (i).

Bibliography

- [CP] A. H. Clifford and G. B. Preston, 'The algebraic theory of semigroups', Math. Surveys 7, (Providence, 1961).
- [F] W. M. Faucett, 'Topological semigroups and continua with cutpoints', P.A.M.S. 6 (1955), 748-756.
- [HY] J. G. Hocking and G. S. Young, Topology (Reading, 1961).
- [Hu] S. T. Hu, Elements of general topology (San Francisco, 1964).
- [H] R. P. Hunter, 'Sur les C-ensembles dans les demigroupes', Bull. Soc. Math. Belgique 14 (1962), 190-195.
- [K] J. L. Kelley, General topology (Princeton, 1955).
- [KW] R. J. Koch and A. D. Wallace

[1] 'Maximal ideals in compact connected semigroups', Duke J. Math. 21 (1954), 681-685.

- [2] 'Admissibility of semigroup structures on continua', T.A.M.S. 88 (1958), 277-287.
- [L] E. S. Ljapin, Semigroups, Translations of Math. Monographs 3, (Providence, 1963).
- [M] E. J. McShane, 'Images of sets satisfying the condition of Baire', Annals of Math. 51 (1950), 380-386.
- [P] B. J. Pettis, 'Remarks on a theorem of E. J. McShane', Bull. A.M.S. 2 (1951), 166-171.
- [P-de M] A. B. Paalman-de Miranda, Topological semigroups, (Mathematisch Centrum, Amsterdam, 1964).
- [R] R. Remage, Jr., 'Invariance and periodicity properties of nonalternating in the large transformations', Dissertation, University of Penn., 1950, unpublished.
- [W] A. D. Wallace

[1] 'Lectures on topological semigroups', (1955-56, Noted by R. J. Koch), (1959-60, Notes by A. L. Hudson), (1961-62, Notes by A. L. Hudson), (1964-65, Notes by J. M. Day).

- [2] 'Inverses in euclidean mobs', Math. J. Okayama Univ. 3 (1953), 23-28.
- [3] 'Cohomology, dimension and mobs', Summa Brasil Math. 3 (1953), 43-54.
- [4] 'Struct ideals', P.A.M.S. 6 (1955), 634-638.
- [5] 'The position of C-sets in semigroups', P.A.M.S. 6 (1955), 639-642.
- [6] 'Relative ideals in semigroups, I', Colloq. Math. 9 (1962), 55-61.
- [7] 'Relative ideals in semigroups, II', Acta Math. 14 (1963), 137-148.

University of Florida

and

University of Miami