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THE CHINESE REMAINDER THEOREM 
A N D THE INVARIANT BASIS PROPERTY 

BY 

DAVID F. ANDERSON 

ABSTRACT. The Chinese Remainder Theorem states that if J 
and J are comaximal ideals of a ring R, then A/(IC\J)A is isomor
phic to AlIAxA/JA for any left R -module A. In this paper we 
study the converse; when does A/(IC\J)A and A/IAxA/JA 
isomorphic imply that I and J are comaximal? 

One of the most useful tools in ring theory is the Chinese Remainder 
Theorem (CRT): if J and / are ideals of a ring R (with 1) which are comaximal 
(I+J=R), then the natural homomorphism R-*R/IxR/J induces an 
isomorphism /: R/(inJ)-*R/IxR/J. f is both a ring and R-module isomorph
ism. More generally, if A is any left JR-module, the natural homomorphism 
AI(inJ)A-+AIIA x AI J A is an isomorphism. We remark that CRT fails if I 
and J are only assumed to be comaximal left ideals. 

A natural question arises: if A/(IflJ)A and A/IAxA/JA are isomorphic 
(not necessarily by the natural homomorphism), does I+J= JR? We say that a 
R-module A satisfies CCI if whenever A/( in/)A and A/IAxA/JA are 
isomorphic, then 1+7 = R. A module need not satisfy CCI; for example, if F is 
a free R-module of infinite rank, then F^FxF, so CCI fails for F with 
1 = J = 0. Also, the Z-module Z/2Z does not satisfy CCI with I = / = 3Z. 

We first consider the case when R is commutative. Recall that a R-module 
A is locally finitely generated if AM is a finitely generated JRM-module for all 
maximal ideals M of R. J(R) will denote the Jacobson radical of R. 

PROPOSITION 1. Let R be a commutative ring and A a R-module. 
(1) If A satisfies CCI, then A/MA is a finitely generated R-module for all 

maximal ideals M. 
(2) Assume that A is locally finitely generated, then A satisfies CCI iff A M ^ 0 

for all maximal ideals M. 
(3) If A is locally finitely generated, then A satisfies CCI implies ann(A)^ 

/(JR). If A is finitely generated, then A satisfies CCI iff ann(A)<^J(R). 

Proof. (1) If some V=A/MA is not finitely generated, then V is an infinite 
dimensional vector space over k = R/M. Thus V^VxV as k-modules, and 
hence as JR-modules. Thus CCI fails for A with I = J = M. 
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(2) Suppose there is an isomorphism / : AI(ir\J)A->AJIA x AI J A with 
J + / ^ J R ; then I+J is contained in some maximal ideal M. Let N = 
AM/MMAM, then / induces an isomorphism / : N->NxN. Since N is a finitely 
generated RM/MM vector space, necessarily N = 0. But thus A M = 0 by 
Nakayama's Lemma. Conversely, if some AM = 0, then A/MA = 0, so 
AIMA « A!MAX AIMA. Thus CCI fails for A with I = J = M. 

(3) This follows from (2) because A M # 0 implies ann(A) c M. If A is finitely 
generated then A M ^ 0 iff ann(A) <z Af. • 

(3) shows that the converse of (1) need not hold. Let P be the set of prime 
numbers, then A = Q © £ p e p Z / p Z is not locally finitely generated, but A 
satisfies CCI. Over a local ring any finitely generated module satisfies CCI. 
Any free R-module of finite rank satisfies CCI. Let Q be the set of odd prime 
numbers, then A = Z q e 0 2/qZ is locally finitely generated, has ann(A) = 0, but 
does not satisfy CCI. Hence the converse of the first part of (3) does not hold. 

A related question is: which rings R satisfy CCI for all finitely generated 
free R-modules? Thus we say that a ring R satisfies CC2 if all finitely 
generated free left 1?-modules satisfy CCI. Proposition 1 shows that any 
commutative ring satisfies CC2. 

We recall that a ring R satisfies the invariant basis property or invariant basis 
number (IBN) if Rm~Rn implies m = n. Rings which satisfy IBN include 
commutative rings, division rings, and (left) noetherian rings. Let k be a field 
and V an infinite dimensional k vector space, then R =Homk(V, V) does not 
satisfy IBN. An excellent reference on the invariant basis property is [1]. 

PROPOSITION 2. A ring R satisfies CC2 iff every homomorphic image of R 
satisfies IBN. 

Proof. Suppose that some R = R/L does not satisfy IBN; then Rm « jRn for 
some m < n . Choose i, j>0 so that i(n-m) = m+j, then .Rm+i «j^m+i(n-m)+i = 

K2 ( m + ' \ Let l = m+j, then Rl**RlxRl; so CCI fails for Rl with I = J = L. 
Conversely, suppose CC2 fails. Then there are ideals I and / with I+JÏ^R 

and a finitely generated free £ -module F such that F/(inj)F and F/IFxF/JF 
are isomorphic, by say /. Let L = I+J, then / induces an isomorphism / : 
F/LF-+F/LFXF/LF. Thus R=R/L does not satisfy IBN. • 

Thus any ring which satisfies CC2 also satisfies IBN. However, the converse 
is not true. For there exists a ring R which satisfies IBN, but not all of its 
homomorphic images satisfy IBN [ l , p . 221]. Thus the class of rings which 
satisfy CC2 lies strictly between the class of commutative rings and the class of 
rings which satisfy IBN. 
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