THE CHINESE REMAINDER THEOREM AND THE INVARIANT BASIS PROPERTY

BY DAVID F. ANDERSON

ABSTRACT. The Chinese Remainder Theorem states that if I and J are comaximal ideals of a ring R, then $A/(I \cap J)A$ is isomorphic to $A/IA \times A/JA$ for any left R-module A. In this paper we study the converse; when does $A/(I \cap J)A$ and $A/IA \times A/JA$ isomorphic imply that I and J are comaximal?

One of the most useful tools in ring theory is the Chinese Remainder Theorem (CRT): if I and J are ideals of a ring R (with 1) which are comaximal (I+J=R), then the natural homomorphism $R \rightarrow R/I \times R/J$ induces an isomorphism $f: R/(I \cap J) \rightarrow R/I \times R/J$. f is both a ring and R-module isomorphism. More generally, if A is any left R-module, the natural homomorphism $A/(I \cap J)A \rightarrow A/IA \times A/JA$ is an isomorphism. We remark that CRT fails if I and J are only assumed to be comaximal left ideals.

A natural question arises: if $A/(I \cap J)A$ and $A/IA \times A/JA$ are isomorphic (not necessarily by the natural homomorphism), does I+J=R? We say that a *R*-module *A* satisfies CC1 if whenever $A/(I \cap J)A$ and $A/IA \times A/JA$ are isomorphic, then I+J=R. A module need not satisfy CC1; for example, if *F* is a free *R*-module of infinite rank, then $F \approx F \times F$, so CC1 fails for *F* with I=J=0. Also, the Z-module Z/2Z does not satisfy CC1 with I=J=3Z.

We first consider the case when R is commutative. Recall that a R-module A is locally finitely generated if A_M is a finitely generated R_M -module for all maximal ideals M of R. J(R) will denote the Jacobson radical of R.

PROPOSITION 1. Let R be a commutative ring and A a R-module.

(1) If A satisfies CC1, then A/MA is a finitely generated R-module for all maximal ideals M.

(2) Assume that A is locally finitely generated, then A satisfies CC1 iff $A_M \neq 0$ for all maximal ideals M.

(3) If A is locally finitely generated, then A satisfies CC1 implies $ann(A) \subset J(R)$. If A is finitely generated, then A satisfies CC1 iff $ann(A) \subset J(R)$.

Proof. (1) If some V = A/MA is not finitely generated, then V is an infinite dimensional vector space over k = R/M. Thus $V \approx V \times V$ as k-modules, and hence as R-modules. Thus CC1 fails for A with I = J = M.

Received by the editors August 3, 1977.

AMS(MOS) subject classification (1970). Primary 13A99, 16A48.

D. F. ANDERSON

(2) Suppose there is an isomorphism $f: A/(I \cap J)A \to A/IA \times A/JA$ with $I+J \neq R$; then I+J is contained in some maximal ideal M. Let $N = A_M/M_M A_M$, then f induces an isomorphism $\overline{f}: N \to N \times N$. Since N is a finitely generated R_M/M_M vector space, necessarily N=0. But thus $A_M=0$ by Nakayama's Lemma. Conversely, if some $A_M=0$, then A/MA=0, so $A/MA \approx A/MA \times A/MA$. Thus CC1 fails for A with I=J=M.

(3) This follows from (2) because $A_M \neq 0$ implies $\operatorname{ann}(A) \subset M$. If A is finitely generated then $A_M \neq 0$ iff $\operatorname{ann}(A) \subset M$.

(3) shows that the converse of (1) need not hold. Let P be the set of prime numbers, then $A = \mathbb{Q} \bigoplus_{p \in p} \mathbb{Z}/p\mathbb{Z}$ is not locally finitely generated, but A satisfies CC1. Over a local ring any finitely generated module satisfies CC1. Any free R-module of finite rank satisfies CC1. Let Q be the set of odd prime numbers, then $A = \sum_{q \in Q} \mathbb{Z}/q\mathbb{Z}$ is locally finitely generated, has $\operatorname{ann}(A) = 0$, but does not satisfy CC1. Hence the converse of the first part of (3) does not hold.

A related question is: which rings R satisfy CC1 for all finitely generated free R-modules? Thus we say that a ring R satisfies CC2 if all finitely generated free left R-modules satisfy CC1. Proposition 1 shows that any commutative ring satisfies CC2.

We recall that a ring R satisfies the invariant basis property or invariant basis number (IBN) if $R^m \approx R^n$ implies m = n. Rings which satisfy IBN include commutative rings, division rings, and (left) noetherian rings. Let k be a field and V an infinite dimensional k vector space, then $R = \text{Hom}_k(V, V)$ does not satisfy IBN. An excellent reference on the invariant basis property is [1].

PROPOSITION 2. A ring R satisfies CC2 iff every homomorphic image of R satisfies IBN.

Proof. Suppose that some $\overline{R} = R/L$ does not satisfy IBN; then $\overline{R}^m \approx \overline{R}^n$ for some m < n. Choose $i, j \ge 0$ so that i(n-m) = m+j, then $\overline{R}^{m+i} \approx \overline{R}^{m+i(n-m)+j} = \overline{R}^{2(m+j)}$. Let l = m+j, then $\overline{R}^l \approx \overline{R}^l \times \overline{R}^l$; so CCl fails for R^l with I = J = L.

Conversely, suppose CC2 fails. Then there are ideals I and J with $I+J \neq R$ and a finitely generated free R-module F such that $F/(I \cap J)F$ and $F/IF \times F/JF$ are isomorphic, by say f. Let L = I+J, then f induces an isomorphism \overline{f} : $F/LF \rightarrow F/LF \times F/LF$. Thus $\overline{R} = R/L$ does not satisfy IBN.

Thus any ring which satisfies CC2 also satisfies IBN. However, the converse is not true. For there exists a ring R which satisfies IBN, but not all of its homomorphic images satisfy IBN [1, p. 221]. Thus the class of rings which satisfy CC2 lies strictly between the class of commutative rings and the class of rings which satisfy IBN.

REFERENCES

1. P. M. Cohn, Some remarks on the invariant basis property, Topology, 5 (1966), 215-228.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

362