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The predictions of Length-Of-Day (LOD) are studied by means of Gaussian Process Regression
(GPR). The EOP C04 time-series with daily values from the International Earth Rotation and
Reference Systems Service (IERS) serve as the data basis. Firstly, well known effects that can be
described by functional models, for example effects of the solid Earth and ocean tides or seaso-
nal atmospheric variations, are removed a priori from the C04 time-series. Only the differences
between the modelled and actual LOD, i.e. the irregular and quasi-periodic variations, are
employed for training and prediction. Different input patterns are discussed and compared so
as to optimise the GPRmodel. The optimal patterns have been found in terms of the prediction
accuracy and efficiency, which conduct the multi-step ahead predictions utilising the formerly
predicted values as inputs. Finally, the results of the predictions are analysed and compared
with those obtained by other predictionmethods. It is shown that the accuracy of the predictions
are comparable with that of other prediction methods. The developed method is easy to use.
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1. INTRODUCTION. The Earth Orientation Parameters (EOP): Length-Of-Day
(LOD); xp, yp, pole coordinates and dψ, dε, nutation-precession corrections supply the
time-varying transform between the Celestial and Terrestrial Reference Systems (CRS
and TRS). The near real-time estimates of the EOP are required for various domains
linked to reference systems such as precise orbit determinations of artificial Earth
satellites, interplanetary tracking and navigation by the Deep Space Network
(DSN), positional astronomy and time-keeping (Gambis and Luzum, 2011). The ad-
vanced geodetic techniques (i.e. Very Long Baseline Interferometry (VLBI), Global
Navigation Satellite Systems (GNSS) and Satellite Laser Ranging (SLR)) enable esti-
mation of the EOP with high accuracy up to 5–10 μs in the case of LOD that corre-
sponds to <3 mm on the Earth’s surface and 50–100 μas in the case of xp, yp pole
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coordinates. Nevertheless, the complex process of data processing of advanced
geodetic techniques makes it difficult to determine the EOP in real time.
Consequently, short-term EOP predictions have to be provided for many real-time
applications. EOP predictions are also worthy for theoretical purposes to research
on the dynamics of multifarious geophysical phenomena correlated with the EOP.
Out of the five EOP, the LOD, which represents the variations in Earth’s rotation

rate, is the most difficult to forecast. The greatest difficulties in LOD predictions are
owing to the occurrence of extremes in the LOD signal caused by the collapse of the
tropical monsoon during an EI Ni�no event (Gross et al., 1996). Therefore, accurate
LOD predictions are an on-going challenge, and are the focus of this work. Changes
in LOD could be of tidal and non-tidal origin. Since tidal variations in LOD can be
accurately modelled (Petit and Luzum, 2010), they can be removed from LOD data.
Afterwards, the tidal term can be taken into consideration in the process of calculating
LOD predictions. Non-tidal changes in LOD of periods of five years or less are predo-
minately induced by the exchange of angular momentum between the Earth’s crust
and global atmosphere (Schuh et al., 2002).
Various prediction methods and techniques have been applied in the past to

LOD predictions, e.g., Artificial Neural Networks (ANN) (Schuh et al., 2002;
Zhang et al., 2012), Fuzzy Inference Systems (FIS) (Akyilmaz and Kutterer, 2004),
Autocovariance (AC) (Kosek et al., 1998), Autoregressive (AR), Autoregressive
Moving Average (ARMA) and Autoregressive Integrated Moving Average
(ARIMA) models (Kosek et al., 2005; Niedzielski and Kosek, 2008; Guo et al.,
2013). These models, which are regarded as stochastic methods, are actually used to
forecast the residual time-series after subtracting a polynomial-sinusoidal curve from
LOD time-series used for the Least-Squares (LS) extrapolation. Herein, the combi-
nation of the LS extrapolation with a stochastic method is referred to as LS + stoch-
astic. Besides the LS + stochastic methodology, other approaches have also been
utilised, e.g., the combination of the Discrete Wavelet Transform (DWT) and a stoch-
astic method (i.e. DWT+AC, DWT+FIS) (Kosek et al., 2005; Akyilmaz et al., 2011)
and Kalman filter taking into account the axial component of Atmospheric Angular
Momentum (AAM) which produces ultra short-term predictions (up to ten days) of
LOD (Gross et al., 1998). A comparison of LOD predictions computed by different
methods and techniques can be found in Kalarus et al. (2010).
LOD data contain complex non-linear factors and vary rapidly, and thus, theoreti-

cally it is more rational to predict LOD time-series using non-linear methods. A
Gaussian Process (GP) for Machine Learning (ML) is a generic supervised learning
algorithm primarily designed to solve regression problems (MacKay, 1998;
Ranganathan et al., 2011; Rasmussen et al., 2006; Seeger, 2004; Williams, 1999).
GPR is a kind of non-parametric modelling method based on Bayesian learning
and it has strong capacity to handle stochastic uncertainty and non-stationary pro-
cesses. A GPR model can be utilised to formulate a Bayesian regression framework
that is ideal for predictions of stochastic and non-stationary processes such as LOD
time-series. Therefore, it is theoretically feasible to apply GPR to LOD predictions.
In this work, the GPR technique is employed for LOD modelling and predictions.
As usual, we first extract, for LS extrapolation, a curve comprising a polynomial
and a few sinusoids, which is referred to as polynomial-sinusoidal curve. Then, we
attempt to improve near-term predictions by applying the GPRalgorithm to the residual
time-series after subtracting the polynomial-sinusoidal curve from the LOD time-series.

564 YU LEI AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463314000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000927


Final predictions of LOD are the summation of forecasts of the LOD residuals and
polynomial-sinusoidal curve. It is demonstrated that LOD can be predicted by the
GPR model with accuracy comparable with that of other prediction approaches.
This paper is divided into five sections. Following the introduction, Section 2 reviews

the GPR technique, Section 3 describes the methodology for LOD modelling and pre-
diction based on the GPR model, including data pre-processing, reduction of time-
series and generation of training patterns. The results of the predictions are analysed
and compared with those gained by other approaches in Section 4, followed by a
discussion in Section 5.

2. GAUSSIAN PROCESS REGRESSION. A GP is a collection of random vari-
ables, any finite number of which have a joint Gaussian distribution (MacKay, 1998;
Rasmussen et al., 2006; Seeger, 2004). Given a training set D of n observations, D=
{xi, yi|i = 1, 2,⋯, n}, where x denotes input vector (covariates) of dimension d and y
denotes a scalar output or target (dependent variable), which are real values in the re-
gression setting; the row vector inputs for all n cases are aggregated in the n × d design
matrix X, and the targets are collected in the column vector y, each observed value yi
can be thought of as related to an underlying function f(xi) through a Gaussian noise
model.

yi ¼ f ðxiÞ þ ε ð1Þ
where yi differs from the function value f(xi) by additive Gaussian noise ε with zero
mean and variance σ2n. Conditioning on the training set D and a test input x*, the
GP results in a Gaussian predictive distribution over the corresponding output y*

(MacKay, 1998; Ranganathan et al., 2011; Rasmussen et al., 2006; Seeger, 2004;
Williams, 1999).

pðy� x�j ; DÞ ¼ Nðy�; GPμðx�; DÞ; GPσðx�; DÞÞ ð2Þ
with its variance

GPσðx�; DÞ ¼ kðx�; x�Þ � kðx�;XÞ½kðX ;XÞ þ σ2nIn��1xðx�;XÞT ð3Þ
and its mean

GPμðx�; DÞ ¼ kðx�;XÞ½kðX ;XÞ þ σ2nIn��1y ð4Þ
where k(x*,X) is a row vector of covariance values between x* and the training
inputs X, ki(x

*, X) = cov(x*, xi), here, cov is a covariance function of the GP, k(X, X)
is the n × n matrix of covariance values between the training inputs X, kij (X, X) =
cov(xi, xj), k(x

*, x*) is the covariance value between x*, k(x*,x*) = cov(x*,x*).
The best estimate for y* is the mean of this distribution, and the uncertainty in the

estimate, captured in the variance, relies on both the process noise and the correlation
between the training set and given input. The most widely used covariance function is
the squared exponential covariance function with additive noise (Ko et al., 2007).

covðxi; xjÞ ¼ σ2f exp � 1
2

Xd
m¼1

xðmÞ
i � xðmÞ

j

lm

 !2
2
4

3
5þ σ2nδij ð5Þ
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where the σ2f is the signal variable. The signal variable tunes up the uncertainty of pre-

dictions in areas of training data density. The xðmÞ
i and xðmÞ

j are the mth component of
the vector xi and xj, respectively. The length scales of the process, l = [l1, l2, ⋯, ld],
reflect the relative smoothness of the process along the different input dimension.
The σ2n regulates the global noise of the process. The δij is the Kronecker function,

δij ¼ 1 i ¼ j
0 i ≠ j

�
. The parameters θ = {l, σf, σn} are referred to as hyper-parameters

of the GP. They can be determined by maximizing the log marginal likelihood of the
given training set (Ranganathan et al., 2011; Rasmussen et al., 2006).

θ̂ ¼ argmax log p yjX ; θð Þð Þ

¼ argmax � 1
2
yT kðX ;XÞ þ σ2nIn
� ��1

y� 1
2
log kðX ;XÞ þ σ2nIn
�� ��� n

2
log 2π

� �
ð6Þ

The partial derivative of the function θ̂ is the objective function for hyper-parameters
estimation.

∇JðθrÞ ¼ ∂
∂θr

logð pðy X ; θÞj Þ

¼ 1
2
tr ðkðX ;XÞ�1yÞðkðX ;XÞ�1yÞT � kðX ;XÞ�1
h i ∂kðX ;XÞ

∂θr

� �
ð7Þ

The optimisation problem can be worked out by the algorithm of scaled conjugate
gradient descent. A detailed description of that algorithm can be found, for instance,
in Chen et al. (2014).

(1) Initialize θ1, and set a margin of error eps > 0 and the maximum number N of
iterations to avoid infinite iterations.

(2) For N iterations and ∇JðθrÞj j � eps, compute the gradient of the log marginal
likelihood ∇J(θr);

(3) conserve the result as the direction of the steepest ascent qr =∇J(θr);
(4) determine the optimal step size, λr , using golden point search, and then update

θr + 1 = θr+ λrqr;
(5) calculate the value of the objective function in the case of θr + 1 = θr + λrqr

θrþ1 ¼ argmax logð pðy X ; θrþ1 ¼ θr þ λrqrÞj Þ ð8Þ

(6) go back to step (1) until the number of iterations reaches N.

Theoretically the hyper-parameters θ1 can be randomly assigned. However, because
the optimisation problem is non-convex, there is no guarantee of acquiring a global
optimum. Therefore, in order to avoid local maxima, the hyper-parameters θ1 can
be well initialized as follows.

σ2f ¼
α

n

Xn
i¼1

y2i ð9Þ
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σ2n ¼
1� α

n

Xn
i¼1

y2i ð10Þ

lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2n2 log 2

Xn
i¼1

Xn
j¼1

xi � xj
�� ��2

vuut m ¼ 1; 2; � � � ; d ð11Þ

here α is an empirical value, α∈ [0,1].

3. METHODOLOGY
3.1. Data pre-processing. Daily time-series of LOD used in this contribution are

collected from the IERS EOP 05 C04 series. The LOD data consist of periodic effects
such as influences of the solid Earth tides with periods from five days up to 18·6 years,
diurnal and semi-diurnal variations due to the ocean tides. These tidal variations are
first removed from the observed LOD measurements by using the zonal and ocean
tide models recommended in the IERS Conventions 2010 (Petit and Luzum, 2010).
Hereafter, the time-series thus obtained are denoted as LODR after correcting the
above-mentioned tidal variations for the LOD data.

3.2. Reduction of time-series. The LODR data still consist of a linear part and
some seasonal variations such as annual and semi-annual oscillations. In order to
avoid the error coming from the extrapolation problem, a linear trend and seasonal
variations are reduced from the LODR time-series. To this end the parameters of a
linear term and seasonal variations are estimated by the LS method from the
LODR data: bias (a0) and drift (a1) of the linear term, amplitudes (Aa, Asa) and
phases (Φa, Φsa) of the annual and semi-annual oscillations. Hence the LS model
including a one order polynomial and two sinusoids can be written as

fLODRðtÞ ¼ a0 þ a1tþ AaðωatþΦaÞ þ AsaðωsatþΦsaÞ ð12Þ
where ωa= 2π / 365.24 and ωsa= 2π / 182.62.
The selected LS deterministic model is subsequently used for two purposes: (1) to

obtain stochastic residuals (the differences between the LODR data and LS model)
and (2) to predict the deterministic components of the signal (extrapolation).
In Figure 1, the observed LOD and its representation by the LS model plus tidal

models are plotted from 1 January 1990 to 31 December 2009. Let us note that the
model fLOD(t) = fLODR(t) + tidal term is denoted by the a priori model. The residual
time-series are also shown in Figure 1. The amplitude of the residuals (bottom plot (e))
is small in comparison with that of the original time-series (top plot (a)). This indicates
that the a priori model represents the original LOD time-series rather well. The
differences between the a priorimodel and actual LOD time-series are used for training
the GPR.

3.3. Generation of training patterns. After the LOD time-series have been
reduced, the training patterns are formed. As described in Section 2, the GPR requires
an input before it is able to yield an output. A first possibility is to utilise the variable
time t as the only input for feeding the GPR. The residual value at the time t could then
be employed to form the output of the GPR. Indeed, practical experiments have dem-
onstrated that this procedure can represent the training patterns rather well, but fore-
casts nonetheless fail. This happens because the input variable t in the case of forecast
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has to be extrapolated into the future. As the values of the input data in the case of
forecast, i.e. the extrapolated time t, are not covered by the training set, the GPR gen-
erates poor predictions.
It turns out that for near-term predictions the values from the past few days are most

essential. Consequently, a more sophisticated strategy is to utilise previous values as
inputs of the GPR and future values as outputs. This strategy is based both on theor-
etical considerations concerning the time-varying characteristics of the stochastic resi-
duals and on practical trials. Different training patterns have been implemented based

Figure 1. Plot (a) represents the observed LOD; (b) represents the effects of zonal Earth tides plus
ocean tides; (c) represents the effects of a linear trend plus the seasonal variations including annual
and semi-annual oscillations; (d) as sum of (b) and (c) constructs the a priorimodel of LOD; and (e)
illustrates the LOD residuals calculated as the differences between (a) and (d).
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on the strategy to find which perform best for the predictions of the residuals. We
define the residual time-series as {ξ(i), i = 1, 2, ⋯, }. Then the values of the residual
time-series of the last five days are selected as inputs and the day to be predicted is
selected as an output. Such patterns are given as

fξðt� p� 4Þ; ξðt� p� 3Þ; ξðt� p� 2Þ; ξðt� p� 1Þ; ξðt� pÞg ! fξðtÞg
↓ ↓

input vector output

for p= 1, 2, ⋯ , 360, where p is the number indicating the day in the future to be pre-
dicted. Each element of the input vector is close to each other, so the patterns are called
the continuous patterns.
Similarly, the following patterns have also been generated.

fξðt� 5pÞ; ξðt� 4pÞ; ξðt� 3pÞ; ξðt� 2pÞ; ξðt� pÞg ! fξðtÞg
↓ ↓

input vector output

for p= 1, 2, ⋯, 360. Since the interval between near elements of the input vector is p
rather than 1, the patterns are denoted as the interval patterns, where the further the
day to be forecasted is into the future, the further values in the past are required.
Considering the fact that the closer the observational data is to the day to be fore-

casted, the greater the impact on the prediction is, we form such patterns where the
residuals of the last 1, 2, 3, 4 and 5 days are used to gain the residual value of the
next day. Unlike other patterns, however, the patterns employ the predicted values
as inputs for the next days to be predicted after the first day. Such patterns are
composed as

fξðt� 5Þ; ξðt� 4Þ; ξðt� 3Þ; ξðt� 2Þ; ξðt� 1Þg ! fξðtÞg
↓ ↓

input vector output

Because the patterns utilise the forecasted values as inputs in already existing models to
compute the corresponding prediction values for the future days, such patterns are
called the recursive patterns.
The above-formed pattern matrices are then switched along the entire time-series of

the stochastic residuals, constructing a multitude of pattern pairs. On this basis the
GPR is employed to infer the relationship between past input data and future data
of the residual time-series.

4. PREDICTIONRESULTSANDCOMPARISONWITHOTHERMETHODS.
Daily time-series of the IERS EOP 05 C04 series, which span the time interval from 1
January 1990 to 31 December 2001, are used to train and validate the GPRmodel. The
whole dataset is divided into two parts in such a way that the time-series from 1
January 1990 to 31 December 1999 are employed for training of the GPR model
and the remaining part between 1 January 2000 and 31 December 2001 for validation
of the GPR model.
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The three pattern sets as described in Section 3.3 have been composed, and then used
to train the GPR model, respectively. Then the well-trained GPR model is used to
produce a predicted set of residuals for the future 1∼10, 15, 20, 25, 30, 60, 90, …,
and 360 days. Finally the resulting predicted value of the residuals for any particular
day is added to the corresponding value of the a priorimodel to obtain the actual fore-
casted value of LOD. The comparison of different patterns is given in Figure 2 (in the
meaning of the Root Mean Square (RMS) measure defined in Equation (13)). In
Figure 2, it can be seen that the recursive patterns perform best out of three kinds
of patterns until the 120th day. After the 120th day, the results from the continuous pat-
terns are very close to those from the recursive patterns, but the latter is slighter better
than the former. This difference may come from using predicted values that carry
errors as inputs. Besides the high accuracy, the benefit of using the recursive patterns
is mainly from the computational speed at the modelling stage. This is because we only
set up a universal GPR model for the multi-step ahead predictions. In the following
examples, the recursive patterns will be employed for training of the GPR model.
The RMS errors for different prediction intervals are listed in Table 1. The RMS

error of the prediction day p is defined by

RMSp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl
i¼1

ðOi
d � Fi

dÞ
2

vuut ð13Þ

with F the forecasted value of the developed method obtained for day p, O the actual
value of the IERS C04 series, and l the number of predictions made for the particular
prediction day. 365 predictions starting at different days have been made for each pre-
diction day to compute the RMS error, i.e. l = 365.

Figure 2. Comparison of RMS prediction errors of different patterns. Plot (a) and plot (b) represent
RMS errors of short-term (up to 30 days) and medium-term (up to 360 days) predictions,
respectively.
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The results of GPR predictions are compared with those obtained by other ML
algorithms for medium-term predictions (Table 1), including Back-Propagation
Neural Networks (BPNN) by Schuh et al. (2002), FIS by Akyilmaz and Kutterer
(2004), modified BPNN and General Regression Neural Networks (GRNN) by
Zhang et al. (2012), which are found to be comparable with those of former
approaches. Note that only short-term predictions were carried out by Akyilmaz
and Kutterer (2004). In order to make the comparison illustrative, the RMS prediction
errors obtained by different methods are shown in Figure 3. As can be seen in Figure 3
and Table 1, the proposed algorithm is able to provide predictions which are equal to or
even better than those attained by other ML algorithms, except that the GPR predic-
tions for the intervals of 1, 2, 3 and 4 days are slightly worse than those of BPNN and
FIS, and for the intervals of 60, 90, 120 and 360 days worse than those of modified
BPNN and GRNN. As for the prediction efficiency, the time taken by the developed
strategy is noticeably less than that taken by other ML methods thanks to the used re-
cursive patterns.
It should be pointed out that the RMS errors shown here are obtained by testing the

prediction methods over different prediction periods. This may have affected the results
of the other authors, although we utilize the same equation for calculating the RMS
error and the same LOD reference series (IERS C04 series). A final picture of the
accuracy of different prediction methods could only be attained by a kind of contest
where prediction spans and evaluation scheme are clearly specified in advance.
Fortunately, the EOP Prediction Comparison Campaign (EOP PCC) lasting from

Table 1. Comparison ofGPR, FIS, BPNN,modified BPNNandGRNNRMSprediction errors (in units ofms).

Prediction day GPR BPNN Modified BPNN GRNN FIS

1 0·027 0·019 0·027 0·037 0·017
2 0·058 0·049 0·073 0·074 0·045
3 0·080 0·074 0·093 0·097 0·067
4 0·110 0·097 0·110 0·117 0·088
5 0·116 0·121 0·131 0·134 0·115
6 0·131 0·142 0·148 0·151 0·139
7 0·144 0·159 0·162 0·164 0·153
8 0·158 0·174 0·170 0·174 0·170
9 0·168 0·184 0·176 0·179 0·182
10 0·177 0·193 0·185 0·187 0·188
15 0·204 0·246 0·221 0·204 0·251
20 0·215 0·251 0·217 0·210 0·259
25 0·219 0·249 0·215 0·211 0·267
30 0·221 0·245 0·219 0·217 0·275
60 0·244 0·292 0·219 0·222 —

90 0·264 0·306 0·231 0·226 —

120 0·259 0·314 0·229 0·226 —

150 0·215 0·330 0·237 0·233 —

180 0·205 0·361 0·234 0·234 —

210 0·225 0·397 0·241 0·236 —

240 0·223 0·377 0·236 0·236 —

270 0·227 0·386 0·231 0·240 —

300 0·254 0·402 0·249 0·247 —

330 0·253 0·372 0·262 0·254 —

360 0·260 0·347 0·245 0·250 —
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October 2005 until February 2008 provides an opportunity to compare the perform-
ance of different prediction methods and techniques directly. Therefore, we have con-
ducted a comparison with the results of the EOP PCC for the purpose of evaluating the
prediction accuracy of the proposed algorithm. We have selected the LOD time-series
which span the time interval between 30 September 1995 and 30 September 2005 as the
data basis to forecast the LOD values for the future 1∼500 days during the period
from 1 October 2005 to 28 February 2008 (the same period as that of the EOP
PCC). A comparison with other prediction methods and techniques which computed
LOD predictions during the EOP PCC is shown in Figures 4 to 6, where the Mean-
Absolute-Error (MAE) is selected as the statistical measure among the various statisti-
cal estimates. The MAE is calculated for the ith day in the future by the following.

MAEp ¼ 1
l

Xl
i¼1

Oi
d � Fi

d

�� �� ð14Þ

The MAE given here is obtained by testing the prediction strategies over same predic-
tion period and number. A list of participants who supported the LOD predictions can
be found in Kalarus et al. (2010). What can be said with the information available from
the comparison is that the accuracy of ultra short-term predictions by the GPR is in-
ferior to the prediction accuracy of the number one (Gross et al. (1998)) and the
number two (Kalarus et al. (2010)). For short-term predictions an accuracy is obtained
which is inferior to the best presently available prediction method developed by Gross
et al. (1998). In Figure 6, we can see that the GPR can provide predictions that are
equal to or better than those of other methods until the 300th day. After the 300th
day, the GPR predictions are getting slightly worse than those of the number one
(Gross et al. (1998)).

Figure 3. Comparison of RMS prediction errors of different ML algorithms. Plots (a) and (b)
represent RMS errors of short-term (up to 30 days) and medium-term (up to 360 days)
predictions, respectively.

572 YU LEI AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463314000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000927


5. CONCLUSIONS. GPR modelling is rather easy to use in comparison with
ANN and FIS modelling. Inferring GPR models is a data-driven approach and thus
the presented method can avoid human subjectivity and improve the credibility of pre-
dictions. The comparison with results of other methods clearly proves that GPR is a
very promising tool to predict the variations in LOD. The recursive patterns
perform best out of the three training pattern sets, although the patterns use predicted
values as inputs for the next days to be forecasted. Besides the high accuracy, the

Figure 4. Comparison of MAE of ultra short-term (up to 10 days) predictions by the GPR and
EOP PCC.

Figure 5. Comparison of MAE of short-term (up to 30 days) predictions by the GPR and EOP
PCC.
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recursive patterns require much less computation. Consequently, the application of the
recursive patterns to LOD predictions can not only obtain the accurately predicted
results, but can also substantially improve the prediction efficiency. LOD predictions
will greatly benefit from the developed GPR-based technique using the recursive pat-
terns since the availability of predicted EOP will be very fast, especially for short-term
predictions. Despite the fact that we have set up GPR models with a single output, it is
also possible to construct models with multiple outputs. In this case, the number of
input variables used in GPR prediction models should also be increased. This may
need much more attention while composing the optimal input and output patterns.
In spite of the good quality of predictions obtained so far, further improvements are

possible as follows.
Additional a priori information entered into GPR models as an input variable may

improve the results, mainly of the short-term predictions.
The predicted values of the atmospheric and oceanic excitation functions can be

added into GPR models as pseudo-observational data, similar to what has been
carried out in some other systems.
GPR is a kind of kernel-based ML algorithm and therefore the quality of derived

models is strongly dependent on the kernel (covariance) function. As further work, a
hybrid kernel function may be constructed for GPR so as to improve the prediction
quality.
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